Что называют анизотропией кристаллов. Введение, анизотропность - общие свойства кристаллов

Дефекты кристаллического строения В реальных кристаллах всегда есть дефекты, которые оказывают влияние на свойства сплавов и их обработку. Дефекты – это отклонения от правильного идеального регулярного расположения атомов в решетке кристалла. Различают: точечные, линейные, поверхностные (двухмерные) и объемные (трехмерные). Точечные дефекты Точечные дефекты малы во всех трех измерениях (длина – несколько атомных диаметров). К точечным дефектам относятся вакансии, межузельные атомы, примесные атомы и их комплексы.

В кристаллах всегда есть атомы, кинетическая энергия которых выше средней. Такие атомы, особенно, если они находятся вблизи поверхности, могут выйти на поверхность кристалла, а их место займут атомы, находя

щиеся дальше от поверхности, а принадлежащие им узлы кристаллической решетки окажутся свободными. Так возникают тепловые вакансии, т. е. возникающие при нагреве.
Вакансии искажают кристаллическую решетку изменяя тем самым, например электропроводность, кроме того играют определенную роль в диффузионных процессах, протекающих в металлах.
При комнатной температуре концентрация вакансий невелика, но при повышении температуры, особенно вблизи температуры плавления резко возрастает, но все равно мала – до 2 % при температуре плавления.
Быстрым охлаждением вакансии можно зафиксировать (скорость охлаждения велика, и атомы не успевают вернуться в исходное положение). Такие вакансии называют закалочными.
Вакансии образуются не только в результате нагрева, но и при пластической деформации.
Перемещаясь по кристаллу одиночные вакансии могут встречаться. В этом случае они могут объединяться в пары, образуя дивакансии (бивакансии), т. к. при этом уменьшается их суммарная поверхность, устойчивость такой спаренной вакансии возрастает. Возможно также образование тривакансий и целых цепочек.

Точечные дефекты оказывают влияние на физические свойства металлов: электропроводность, магнитные свойства и т.д., а также на фазовые превращения в металлах и сплавах. На механические свойства влияют мало.

Ли Линейные дефекты имеют малые размеры в двух измерениях и большую протяженность в третьем. Особо важным видом линейных дефектов являются дислокации – локализованные искажения кристаллической решетки, вызванные наличием в них «лишней» атомной плоскости или экстраплоскости.

Кроме краевых дислокаций в кристаллах могут образовываться винтовые дислокации, которые получаются путем частичного сдвига и закручивания.

Дислокации образуются уже при кристаллизации металла, а также в процессе пластической деформации и фазовых превращениях.
Важной характеристикой дислокационной структуры является плотность дислокаций (). Плотность дислокаций – суммарная длина дислокаций, приходящаяся на единицу объема V кристалла. Для отожженнных металлов =10 6 – 10 8 см -2 . После холодной деформации увеличивается до 10 11 – 10 12 см -2 .

Вектор Бюргерса – это мера искаженности кристаллической решетки обусловленная присутствием в ней дислокации; он характеризует сумму всех упругих смещений решетки, накопившихся вокруг дислокации.

Дислокации оказывают влияние на механические свойства металлов.

(например, физических : упругости , электропроводности , теплопроводности , показателя преломления , скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность изотропии .

В отношении одних свойств среда может быть изотропна , а в отношении других - анизотропна ; степень анизотропии также может различаться.

Частный случай анизотропии - ортотропия (от др.-греч. ὀρθός - прямой и τρόπος - направление) - неодинаковость свойств среды по взаимно перпендикулярным направлениям.

Примеры

Анизотропия является характерным свойством кристаллических тел (точнее, лишь тех, кристаллическая решетка которых не обладает высшей - кубической - симметрией). При этом свойство анизотропии в простейшем виде проявляется только у монокристаллов. У поликристаллов анизотропия тела в целом (макроскопически) может не проявляться вследствие беспорядочной ориентировки микрокристаллов, или даже совсем не проявляется, за исключением случаев специальных условий кристаллизации, специальной обработки и т. п.

Причиной анизотропности кристаллов является то, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния (а также некоторые не связанные с ними прямо величины, например, поляризуемость или электропроводность) оказываются неодинаковыми по различным направлениям. Причиной анизотропии молекулярного кристалла может быть также асимметрия его молекул. Макроскопически эта неодинаковость проявляется, как правило, лишь если кристаллическая структура не слишком симметрична.

Помимо кристаллов, естественная анизотропия - характерная особенность многих материалов биологического происхождения, например, деревянных брусков.

Во многих случаях анизотропия может быть следствием внешнего воздействия (например, механической деформации, воздействия электрического или магнитного поля и т. д.). В ряде случаев анизотропия среды может в какой-то степени (а в некоторой слабой степени - часто) сохраняться после исчезновения вызвавшего её внешнего воздействия.

Обменная анизотропия

Обменная анизотропия - особенность петель гистерезиса перемагничивания магнитных материалов, проявляющаяся в несимметричном расположении петли относительно оси ординат .

Анизотропия времени

  • Выражается в существовании необратимых процессов.
  • Философская и естественнонаучная проблема, исторически связанная с началами термодинамики и понятием энтропии .
  • В классической механике время является абсолютной величиной; законы Ньютона инвариантны по отношению к направлению времени.

Напишите отзыв о статье "Анизотропия"

Примечания

См. также

Ссылки

1. Физическая энциклопедия / под ред. Прохорова А. М. - М.: Советская энциклопедия, 1988. - Т. I. - С. 83.

Отрывок, характеризующий Анизотропия

– Нет, Лазареву то какое счастье! 10 франков пожизненного пенсиона.
– Вот так шапка, ребята! – кричал преображенец, надевая мохнатую шапку француза.
– Чудо как хорошо, прелесть!
– Ты слышал отзыв? – сказал гвардейский офицер другому. Третьего дня было Napoleon, France, bravoure; [Наполеон, Франция, храбрость;] вчера Alexandre, Russie, grandeur; [Александр, Россия, величие;] один день наш государь дает отзыв, а другой день Наполеон. Завтра государь пошлет Георгия самому храброму из французских гвардейцев. Нельзя же! Должен ответить тем же.
Борис с своим товарищем Жилинским тоже пришел посмотреть на банкет преображенцев. Возвращаясь назад, Борис заметил Ростова, который стоял у угла дома.
– Ростов! здравствуй; мы и не видались, – сказал он ему, и не мог удержаться, чтобы не спросить у него, что с ним сделалось: так странно мрачно и расстроено было лицо Ростова.
– Ничего, ничего, – отвечал Ростов.
– Ты зайдешь?
– Да, зайду.
Ростов долго стоял у угла, издалека глядя на пирующих. В уме его происходила мучительная работа, которую он никак не мог довести до конца. В душе поднимались страшные сомнения. То ему вспоминался Денисов с своим изменившимся выражением, с своей покорностью и весь госпиталь с этими оторванными руками и ногами, с этой грязью и болезнями. Ему так живо казалось, что он теперь чувствует этот больничный запах мертвого тела, что он оглядывался, чтобы понять, откуда мог происходить этот запах. То ему вспоминался этот самодовольный Бонапарте с своей белой ручкой, который был теперь император, которого любит и уважает император Александр. Для чего же оторванные руки, ноги, убитые люди? То вспоминался ему награжденный Лазарев и Денисов, наказанный и непрощенный. Он заставал себя на таких странных мыслях, что пугался их.
Запах еды преображенцев и голод вызвали его из этого состояния: надо было поесть что нибудь, прежде чем уехать. Он пошел к гостинице, которую видел утром. В гостинице он застал так много народу, офицеров, так же как и он приехавших в статских платьях, что он насилу добился обеда. Два офицера одной с ним дивизии присоединились к нему. Разговор естественно зашел о мире. Офицеры, товарищи Ростова, как и большая часть армии, были недовольны миром, заключенным после Фридланда. Говорили, что еще бы подержаться, Наполеон бы пропал, что у него в войсках ни сухарей, ни зарядов уж не было. Николай молча ел и преимущественно пил. Он выпил один две бутылки вина. Внутренняя поднявшаяся в нем работа, не разрешаясь, всё также томила его. Он боялся предаваться своим мыслям и не мог отстать от них. Вдруг на слова одного из офицеров, что обидно смотреть на французов, Ростов начал кричать с горячностью, ничем не оправданною, и потому очень удивившею офицеров.
– И как вы можете судить, что было бы лучше! – закричал он с лицом, вдруг налившимся кровью. – Как вы можете судить о поступках государя, какое мы имеем право рассуждать?! Мы не можем понять ни цели, ни поступков государя!
– Да я ни слова не говорил о государе, – оправдывался офицер, не могший иначе как тем, что Ростов пьян, объяснить себе его вспыльчивости.
Но Ростов не слушал.
– Мы не чиновники дипломатические, а мы солдаты и больше ничего, – продолжал он. – Умирать велят нам – так умирать. А коли наказывают, так значит – виноват; не нам судить. Угодно государю императору признать Бонапарте императором и заключить с ним союз – значит так надо. А то, коли бы мы стали обо всем судить да рассуждать, так этак ничего святого не останется. Этак мы скажем, что ни Бога нет, ничего нет, – ударяя по столу кричал Николай, весьма некстати, по понятиям своих собеседников, но весьма последовательно по ходу своих мыслей.

Анизотропия - это зависимость свойств материала от направления. Материал считается изотропным , когда его свойства во всех направлениях одинаковые. Если же с изменением направления свойства материала изменяются, материал считается анизотропным.

Анизотропия характерна для кристаллов и обусловлена их упорядоченной структурой. В кристаллах в различных направлениях атомы располагаются с различной плотностью, т.е. на различном расстоянии друг от друга, что отражается на силе взаимодействия атомов. Как следствие, свойства кристаллов в различных направлениях оказываются различными. Например, в кубическом кристалле в направлении координатных осей атомы вещества располагаются на расстоянии друг от друга равном а (рис.1).

В направлении диагонали атомы располагаются на расстоянии а , а в направлении пространственной диагонали - а . Очевидно, такой кристалл легче разорвать в направлении пространственной диагонали, чем в направлении координатных осей, где он обнаруживает наибольшую прочность из-за того, что атомы расположены ближе и сильнее взаимодействуют.

Анизотропия распространяется практически на все свойства кристаллов. Так, кристалл в одном направлении лучше, чем в другом может проводить тепло, электрический ток, свет, лучше намагничиваться и т.д. При этом, чем ниже система симметрии кристалла, тем сильнее проявляется анизотропия его свойств.

В аморфных материалах, из-за хаотического внутреннего строения, атомы в различных направлениях располагаются примерно с одинаковой плотностью. В результате свойства данных материалов в различных направлениях оказываются одинаковыми, т.е. вещество оказывается изотропным.

Металлы и сплавы, полученные в обычных условиях, также очень часто обнаруживают равенство свойств в различных направлениях, хотя и являются материалами кристаллическими, а не аморфными. Это объясняется их зернистым строением. Зёрна данных материалов, будучи кристаллами, в различных направлениях обнаруживают различные свойства, однако в целом материал оказывается изотропным, поскольку зёрна случайным образом ориентированы в пространстве и при сложении свойств в каждом направлении получается примерно одна, усреднённая величина. Такую изотропию называют ложной изотропией или квазиизотропией .

Иногда зёрна поликристаллических материалов оказываются ориентированными преимущественно в одном направлении. Например, зёрна металлов и сплавов при пластическом деформировании вытягиваются в направлении деформации. Такое явление называют текстурой . При появлении текстуры свойства кристаллических материалов вновь начинают зависеть от направления, т.е. материал оказывается анизотропным.

Знаменитое изречение академика А. Е. Ферсмана”Почти весь мир кристалличен. В мире царит кристалл и его твердые прямолинейные законы”полностью согласуется с неугасающим научным интересом ученых всего мира и всех областей знания к данному обьекту исследования.

В течение долгих столетий геометрия кристаллов казалась таинственной и неразрешимой загадкой. Вплоть до XVII в. дальше описаний “удивительных угловатых тел”дело не шло. Датский геолог,кристаллограф Николаус Стеной(1638-1686)впервые сформулировал основные понятия о формировании кристаллов:”Рост кристалла происходит не изнутри,как у растений, но путем наложения на внешние плоскости кристалла мельчайших частиц, приносящихся извне некоторой жидкостью”. Эта идея о росте кристаллов в результате отложения на гранях все новых и новых слоев вещества сохранила свое значение и до сих пор. Ученый открыл закон постоянства углов,но написал он его очень кратко. Этот закон окончательно утвердился в науке после выхода в свет “Кристаллографии”(1783г.)французского естествоиспытателя Ж. Б, Роме де Лиля (1736-1790):”Грани кристалла могут изменяться по своей форме и относительным размерам,но их взаимные наклоны постоянны и неизменны для каждого рода кристаллов”. Закон постоянства углов явился надежным фундаментом для развития геометрической кристаллографии и лег в основу специальных методов Е. С. Федорова,А. К. Болдырева. Эти методы позволяют по углам между гранями,т. е. по внешней форме кристаллов,определять их вещество.

Закон постоянства углов. Внешняя форма кристаллов одного вида может быть различной,но углы между соответствующими гранями у них остаются постоянными.

Рассматривая выращенный кристалл и измеряя углы между гранями мы можем проверить закон постоянства углов. Существенным свойством кристалла является анизотропность. Анизотропия кристаллов воспринимается теоретически очень трудно,поэтому с помощью практической работы можно увидеть и пронаблюдать анизотропию кристаллов.

Глава 1. Кристаллы. Кристаллическая решетка.

Большинство окружающих нас твердых тел – вещества в твердом состоянии. Специальная область физики-физика твердого тела-занимается изучением строения и свойств твердых тел. Эта область физики является ведущей во всех физических исследованиях. Она составляет фундамент современной техники. Знать свойства твердых тел жизненно необходимо.

В любой отрасли техники используются свойства твердого тела:механические,тепловые,электрические,оптические и т. д. Все большее применение в технике находят кристаллы. Ученые,лауреаты Ленинской и Нобелевской премий А. М. Прохоров и Н. Г. Басов разработали квантовый генератор(лазер). Действие лазеров основано на использование свойств монокристаллов

Кристаллы-это твердые тела,атомы или молекулы которых занимают определенные,упорядоченные положения в пространстве.

В начале 19 века впервые было высказано предположение,что внешне правильная форма кристаллов обусловлена внутренне правильным расположением частиц,из которых состоят кристаллы. На основании исследований немецкого физика-теоретика М. Лауэ посредством рентгеновских лучей было выяснено,что это предположение справедливо.

Кристаллы характеризуются наличием значительных сил межмолекулярного взаимодействия, вследствие чего они сохраняют постоянными не только свой обьем,но и форму. Кристаллы различных веществ имеют различную форму.

Для наглядного представления внутренней структуры кристалла применяется способ изображения его с помощью пространственно- кристаллической решетки,узлы которой совпадают с центрами атомов или молекул в кристаллах.

Кристаллы могут иметь форму различных призм и пирамид,в основании которых могут лежать только правильный треугольник, квадрат, параллелограмм и шестиугольник. Представления о периодической структуре кристаллов и симметрии расположения атомов в них в настоящее время имеют строгое экспериментальное подтверждение. Наглядные картины расположения атомов в кристалле удается получать с помощью электронного микроскопа и ионного проектора.

Кристаллические тела могут быть монокристаллами и поликристаллами. Монокристаллом называют одиночный кристалл,имеющий макроскопическую упорядоченную кристаллическую решетку. Монокристаллы обычно обладают геометрически правильной формой. Существенным свойством монокристалла является анизотропия-неодинаковость его свойств по различным направлениям.

Большинство встречающихся в природе и получаемых в технике твердых тел представляют собой множество расположенных беспорядочно мелких кристаллов,которые срослись между собой. Такие тела называются поликристаллами. В отличие от монокристаллов поликристаллы изотропны,т. е. их свойства одинаковы во всех направлениях. Обьясняется это тем,что кристаллы,из которых состоит поликристаллическое тело,ориентированны друг по отношению к другу хаотически. В результате ни одно из направлений не отличается от других.

Существуют четыре типа кристаллов:молекулярные,ковалентные (атомные),ионные и металлические.

Алмаз-кристаллическое вещество с атомной кристаллической решеткой. Каждый атом в кристалле алмаза связан прочными ковалентными связями с четырьмя соседними атомами (рис. 3 кристаллическая решетка алмаза). Это обусловливает исключительную твердость алмаза. Алмаз широко применяют для обработки особо твердых материалов:для резки стекла,при буровых работах в геологии,в полупроводниковых схемах. Алмаз практически не проводит электрический ток,плохо проводит тепло. Прозрачные образцы алмаза сильно преломляют лучи света и при огранке красиво блестят,из таких алмазов делают украшения (бриллианты).

Графит-пример кристалла с так называемой слоистой структурой,у него различие структуры вдоль слоев и поперек них бросается в глаза. В кристаллической решетке графита атомы углерода расположены слоями,состоящими из шестичленных колец. Расстояние между слоями сравнительно велико:примерно в два раза больше,чем длина стороны шестиугольника. Поэтому связи между слоями менее прочны,чем связи внутри них.

Графит мягок,легко расслаивается, непрозрачен, электропроводен и не похож на драгоценный камень. А между тем и алмаз,и графит-это чистый углерод. Различие свойств алмаза и графита связано только с различием кристаллических решеток. При определенных условиях возможен переход вещества из одной кристаллической модификации в другую. Если нагреть графит до температуры 2000-2500 К под давлением 109 Па,то произойдет перестройка кристаллической решетки. в результате чего графит превращается в алмаз. Так получают искусственные алмазы.

Различие в строении кристаллических решеток двух разновидностей углерода (графита и алмаза) обьясняет различие в их физических свойствах:мягкость графита и твердость алмаза; графит-проводник электричества, алмаз-диэлектрик(нет свободных электронов).

Вывод: Частицы, составляющие кристаллы, расположены друг относительно друга в определенном порядке,на определенных расстояниях друг от друга. Совокупность узлов,т. е. точек,соответствующих средним положениям частиц,составляющих кристалл,называют пространственной решеткой этого кристалла Все физические свойства,благодаря которым кристаллы так широко применяются,зависят от их строения-их пространственной кристаллической решетки.

Глава 2. Анизотропия кристаллов.

Силы взаимодействия между атомами в кристаллах по разным направлениям неодинаковы. Поэтому механические,тепловыек,электрические и оптические свойства кристаллов по разным направлениям оказываются различными. Это свойство кристаллов называется анизотропией.

В кристаллической решетке различно число частиц,приходящихся на одинаковые по длине,но разные по направлению отрезки, т. е. плотность расположения частиц кристаллической решетки по разным направлениям не одинакова,что и приводит к различию свойств кристалла вдоль этих направлений.

Простейший пример анизотропии кристаллов –неодинаковая их механическая прочность по разным направлениям. Кристаллы легче всего раскалываются с образованием кусков,ограниченных плоскими гранями,пересекающимися под определенными углами.

Например,кристаллы слюды,имеющие вид тонких пластинок,очень легко разделяются на еще более тонкие пластинки. Если разбить кристаллы соли,то получатся более мелкие кристаллы той же формы. Тела,состоящие из одного или нескольких одинаково расположенных кристаллов,легче деформируются в одном направлении,чем в другом. Это, например, относится к кускам льда. По своим механическим свойствам брусок из льда похож на стопу стеклянных пластин, соединенных не вполне затвердевшим клеем.

Бесцветные кристаллы каменной соли прозрачны,как стекло. Если ударить ножом или молоточком по кристаллу,он разбивается на кубики с ровными,гладкими,плоскими гранями. Это явление спайности,т. е. способности раскалываться по ровным,гладким плоскостям,так называемым плоскостям спайности. Кристаллы кальцита тоже обладают спайностью: при ударе они всегда разбиваются вдоль одной из его диагоналей.

Спайность-это проявление анизотропии прочности кристаллов:силы сцепления между атомами в некоторых симметрично расположенных плоскостях очень малы, и кристаллы раскалываются по этим плоскостям.

Теплопроводность некоторых кристаллов по различным направлениям также не одинакова. У графита теплопроводность вдоль слоев в четыре раза больше, чем по нормали к слоям: тепло легче передается в тех плоскостях и направлениях,где атомы плотно упакованы.

Иногда кристаллы образуются прямо из паров,а не из жидкости. В этом случае они бывают особенно правильны. Примером этого является образование инея и снежинок из водяных паров воздуха. Одна снежинка-это группа кристалликов,образованная более чем из двухсот ледяных частичек. Снежные кристаллы образуются из расположенных в безупречном порядке молекул воды. Но почему они всегда шестиугольные?

Каждая снежинка формируется из шестиугольной молекулы воды. Один атом кислорода окружен четырьмя атомами водорода(два через атомные связи и два через водородные мостики). Затем появляются другие такие же молекулы,все они присоединяются к первой.

Главная особенность,определяющая форму кристалла (снежинок),это крепкая связь между молекулами воды,подобная соединению звеньев в цепи. Отсюда и симметрия. Симметрия-это свойство кристаллов совмещаться друг с другом в различных положениях путем поворотов,отражений,параллельных переносов.

Вывод:Плотность расположения частиц в кристаллической решетке не одинакова по различным направлениям. Силы взаимодействия между атомами в кристаллах по разным направлениям также неодинаковы. Это приводит к зависимости свойств кристаллов от направления-анизотропии.

Глава 3. Кристаллическая решетка поваренной соли.

Простой пример кристаллической решетки представляет решетка кристалла хлористого натрия. Молекула этого вещества состоит из одного атома хлора и одного атома натрия(NaCl). Кристаллическая решетка хлористого натрия состоит из чередующихся ионов хлора и натрия. Каждый ион натрия окружен шестью ионами хлора,расположенными по трем взаимно перпендикулярным направлениям, а каждый ион хлора в свою очередь окружен шестью ионами натрия. У хлористого натрия расстояние между соседними ионами равно 2,81*10-10 м.

В решетке поваренной соли раскалывание происходит легче всего по плоскостям,параллельным АА или ВВ. Поэтому,ударив молотком по кубику кристалла поваренной соли мы разобьем его снова на правильные кубики.

В кубической структуре кристалла Na Cl ,в котором расстояния между ионами одинаковы по трем направлениям,в других направлениях свойства кристаллов сильно отличаются. Происходит это не только потому,что в других направлениях между атомами расстояния другие,но и вследствие иного рспределения сил связи между атомами. Рассмотрим,для примера,направление обьемной диагонали в кристалле NaCl. Перпендикулярно ей чередуются плоскости,образующие грани октаэдра. Каждая из этих плоскостей состоит только из одного типа ионов,из Na+или Cl-. Силы притяжения,возникающие между такими плоскостями,в пять раз больше,чем силы между плоскостями,параллельными граням куба,в каждой из которых лежат и те и другие ионы,и Na+,и Cl-. Вот почему кристалл Na Cl гораздо легче расколоть по плоскостям куба,чем по плоскостям октаэдра. Поэтому он и кристаллизуется,образуя кубы.

Симметрия внешней формы и симметрия физических свойств вызваны симметрией внутреннего строения кристалла,то есть расположением атомов(ионов) в твердом теле.

Кубическая форма у NaCl вызвана правильным расположением в пространстве ионов Na+ и Cl-.

Глава 4. Практическая работа ”Выращивание кристалла поваренной соли “.

Цель работы:наблюдение за процессом роста кристалла хлористого натрия и сравнение полученных кристаллов с моделями кристаллических решеток,проверить анизотропию прочности путем раскалывания.

Ход работы:

Чтобы вырастить кристаллы в домашних условиях,нужно приготовить перенасыщенный раствор соли. В качестве исходного вещества выбрали соль,которые использует человек очень часто, это поваренная соль.

Налила в стакан горячей воды и посыпала в него поваренную соль,все время помешивая. Сыпала до тех пор,пока соль не перестала растворяться и на дне образовался осадок,не исчезающий при помешивании. Затем взяла кусочек тонкой проволоки и обмотала его шерстяной ниткой. На стакан сверху положила палочку и к ней подвесила обмотанную проволочку на нитке. Рассол постепенно остыл,потом вода из него начала испаряться. Через три дня (можно дольше) вытянула проволочку. Соль осела на шерстинках маленькими правильными кубиками.

Нужно периодически измерять размеры некоторых граней. Грани кристалликов изменяют свои размеры,они растут,углы между соответственными гранями остаются постоянными.

Сравнили формы полученных кристаллов с формами моделей кристаллических решеток. У поваренной соли NaCl грани должны иметь форму квадратов,а кристаллы –кубов. Выращенный кристалл соответствует этим требования

Выбрала наиболее удобный, приемлемый способ выращивания кристаллов в домашних условиях и вырастила кристаллы поваренной соли. По мере роста кристаллов проводила наблюдение. Сравнила формы полученных кристаллов с формами их кристаллических решеток,они соответствуют формам кристаллам-кубам.

Силы притяжения,возникающие между плоскостями состоящие только из одного типа ионов Na+ или Cl-(образующие грани октаэдра) в пять раз больше чем между плоскостями параллельными граням куба,в каждом из которых лежат и те и другие ионы, и Na+,и Cl-. Вот почему кристалл Na Cl гораздо легче расколоть по плоскостям куба,чем по плоскостям октаэдра. Поэтому он и кристаллизуется,образуя кубы. Кристалл фактически состоит из ионов противоположных знаков.

Заключение

Монокристаллы - твердые тела,частицы которых образуют единую кристаллическую решетку.

Внешняя форма монокристаллов одного вида может быть различной,но углы между соответствующими гранями у них остаются постоянными. Это закон постоянства углов сформулировал французский естествоиспытатель Ж. Б. Роме де Лиля. Он сделал важный вывод: правильная форма кристаллов связана с закономерным размещением частиц, образующих кристалл. Монокристаллами являются большинство минералов. Однако крупные природные монокристаллы встречаются довольно редко. В настоящее время многие монокристаллы выращиваются искусственно.

Кристаллы характеризуются наличием значительных сил межмолекулярного взаимодействия. Силы взаимодействия между атомами в кристаллах по разным направлениям неодинаковы Силы притяжения,возникающие между плоскостями образующие грани октаэдра в кристаллах поваренной соли состоящих из ионов одного типа,в пять раз больше,чем силы между плоскостями,параллельными граням куба,в каждой из которых лежат и те и другие ионы,и Na+,и Cl-. В этом можно проследить действие закона анизотропии. Суть его в том, что многие свойства твердых тел зависят от направления,в котором эти свойства измеряются. Мы исследовали анизотропию прочности на поваренной соли. Если кристаллы поваренной соли,имеющие кубическую форму,раскалывать,то мелкие осколки будут иметь преимущественно форму прямоугольных параллелепипедов. Это значит,что в направлениях, параллельных граням,прочность кристалла поваренной соли гораздо меньше,чем в диагональных и других направлениях. Исследовать другие физические свойства мы не смогли из-за ограниченности приборов и материалов. Например,теплопровдность кристалла,измеренная в различных направлениях,может оказаться неодинаковой. Она будет одинаковой лишь в параллельных и симметричных направлениях. То же можно сказать об электропроводности,твердости, и других свойствах. Иначе говоря,симметрия внешней формы сопровождается и симметрией физических свойств кристаллов.

АНИЗОТРОПИЯ (anisotropia ; греческий anisos - неравный и tropos - направление) - неоднородность некоторых физических свойств вещества по различным направлениям.

Различают анизотропию оптическую, механическую и электрическую.

Оптическая анизотропия на уровне макромолекул наиболее отчетливо проявляется в дихроизме и гипохромном эффекте белков и нуклеиновых кислот. В основе оптической анизотропии макромолекул лежит упаковка их в упорядоченную спиральную конфигурацию. Характерной оптической анизотропией обладают мышечные волокна, внутри которых с помощью метода двойного лучепреломления (см.) выявляются так наз. анизотропные диски.

Механическая анизотропия характерна для элементов опорно-двигательного аппарата, в частности кости (см. Кость), и выражается в различной механической прочности костной ткани в продольном и поперечном направлениях. Механическую анизотропию кости можно наблюдать визуально с помощью прозрачной объемной пластмассовой модели при приложении к ней механического напряжения, сравнимого по величине и направлению с действующим на кость фактором в условиях организма (метод фотоупругости).

Электрическая анизотропия живых тканей определяется пассивными электрическими свойствами (электрическим сопротивлением и электрической емкостью) клеточных мембран. Наличие электрической анизотропии иллюстрируется тем фактом, что удельный электрический импеданс (см.) живой мышцы, измеренный в продольном направлении, значительно меньше поперечного. Объяснение заключается в том, что электрический ток пересекает различное количество мембран на единицу длины в зависимости от направления (продольного или поперечного). Электрическая анизотропия тканей используется в методе вектор-электрокардиографии.

Анизотропные свойства живых систем характерны для всех уровней структурной организации от биомакромолекул до целого организма.

Анизотропия может быть также естественной или искусственной. Естественную анизотропию обнаруживают некоторые структуры нормальных животных тканей(мышечные,коллагеновые,эластические волокна, кость,фибрин, холестерин и др.), дающие при исследовании в поляризованном свете двойное лучепреломление. Ряд веществ, появляющихся в патологических условиях (гиалин, амилоид и др.), также обладает свойством анизотропии и дихроизма.

Искусственная анизотропия возникает вследствие механических деформаций, химических воздействий и т. д.

Особое место в патологии занимает так называемое анизотропное ожирение - отложения в тканях холестерина или его соединений в результате нарушения липоидного (холестеринового) обмена. Вокруг таких отложений в соединительной ткани возникает специфическая реакция, подобная реакции на инородное тело.

В. В. Серов; В. Ф. Антонов (биофиз.).