Единственный спутник сатурна обладающий плотной атмосферой. Далекий спутник Титан: сюрприз или очередная загадка Солнечной системы

наделяют QRIO достаточной свободой движений и хорошей координацией. Например, робот может быстро передвигаться, брать предметы, подниматься по лестнице, танцевать и держать равновесие, стоя на одной ноге.

QRIO

Робот знает 60000 слов на разных языках мира, умеет распознавать лица, слушаться команд и, как утверждают разработчики, задавать «умные» вопросы в зависимости от ситуации.

За движения и интеллект QRIO отвечают три встроенных компьютера на базе RISC R5000 с 64 Мб оперативной памяти. В качестве операционной системы используется Aperios. Также робот оснащён стереообъективами, семью микрофонами и 36 датчиками движения, семь из которых отвечают за безопасность.

В 2005 году QRIO был внесён в "Книгу рекордов Гиннесса" как наиболее быстро передвигающийся робот-гуманоид. Он позиционируется как первый двуногий робот, умеющий бегать (под бегом подразумевается возможность перемещения, когда обе ноги робота не соприкасаются с землёй). QRIO умеет бегать со скоростью 23 сантиметра в секунду.

Неизвестно, сколько сейчас существует прототипов QRIO, однако когда-то были замечены 10 роботов, танцующих одновременно. Эта информация была подтверждена представителями Sony 22 января 2006 года в Музее науки в Бостоне. Также представители Sony рассказали о том, что существуют прототипы четвёртого поколения (без третьей камеры на лбу, и с улучшенной координацией движений).

Видео, на котором танцуют 4 робота QRIO:

Внутренней батареи QRIO четвёртого поколения хватает примерно на 1 час непрерывной работы.
QRIO - это следующий шаг компании Sony в области развлекательных роботов после созданного ей AIBO. На данный момент роботы находятся на стадии тестирования и речи об их продаже пока не идёт.

Aibo (яп. 愛慕 айбо означает «любовь», «привязанность», а также может значить «товарищ»; ещё существует аббревиатура англ. A rtificial I ntelligence RoBO t ) - собака-робот, разработанная компанией Sony. Она имеет множество модификаций, первая модель была выпущена в 1999 году. AIBO умеет ходить, «видеть» окружающие его предметы с помощью видеокамеры и инфракрасных датчиков расстояния, распознавать команды и лица. Робот является полностью автономным: он может учиться и развиваться, основываясь на побуждениях своего хозяина, обстановки, или другого AIBO. Несмотря на это, он поддаётся настройкам с помощью специальных программ. Существует программное обеспечение имитирующее «взрослую собаку», которая сразу использует все свои функции и программное обеспечение имитирующее «щенка», который раскрывает свои возможности постепенно.


Две собачки AIBO разных моделей - ERS-210 (слева) и ERS-111 (справа)

«Настроение» AIBO может меняться в зависимости от окружающей обстановки, и влиять на поведение. Инстинкты позволяют AIBO двигаться, играть с его игрушками, удовлетворять своё любопытство, играть и общаться с хозяином, самостоятельно подзаряжаться и просыпаться после сна. Разработчики утверждают, что у AIBO есть шесть чувств: счастье, грусть, страх, антипатия, удивление, и гнев.

Модельный ряд Aibo:

  • ERS110-ERS111 (1999) - включал способность учиться от окружающей среды и выражать эмоции
  • ERS210 (2000) - добавились функции распознавания лиц и голоса, датчики прикосновения
  • ERS311-ERS312 (2001) - более дружелюбная внешность
  • ERS220 (2001) - новый hi-tech дизайн и улучшенные сенсоры
  • ERS-7 (2003) - беспроводное соединение с интернет и улучшенные возможности по взаимодействию

В настоящее время разработка QRIO и AIBO приостановленна.

Аналогичный робот Asimo был разработан компанией Honda.

Asimo (сокращение от англ. A dvanced S tep in I nnovative MO bility; прогрессивныйшаг в инновационной мобильности ) - робот- . Создан корпорацией Хонда, в Центре Фундаментальных Технических Исследований Вако (Япония). Рост 130 см, масса 54 кг. Способен передвигаться со скоростью быстро идущего человека - до 6 км/ч.

Согласно неофициальной версии, своё имя ASIMO получил в честь Айзека Азимова , знаменитого автора Трёх Законов Роботехники . В японском языке имя робота произносится как «Асимо» и созвучно со словосочетанием «А также ноги».

По информации 2007 года - в мире существует 46 экземпляров АСИМО. Стоимость производства каждого из них не превышает одного миллиона долларов, а некоторых роботов можно даже взять в аренду, за $166 000 в год (около $14 000 в месяц).

Представители Хонда говорят, что это правило - только аренда, но не продажа - иногда доставляет им проблемы. Например, во время демонстрации АСИМО некому арабскому шейху, инженерам было весьма непросто объяснить, что робот не продаётся в принципе - ни за какие деньги.

ASIMO способен различать людей по специальным карточкам, которые носятся на груди. Асимо умеет ходить по лестнице.

Экспериментальные модели:

  • Honda E0, представлен в 1986
  • Honda E1, представлен в 1987
  • Honda E2, представлен в 1987
  • Honda E3, представлен в 1987
  • Honda E4, представлен в 1991
  • Honda E5, представлен в 1991
  • Honda E6, представлен в 1991

Прототипы гуманоидов:

  • P1, представлен в 1993
  • P2, представлен в 1996
  • P3, представленный в 1997
  • P4, представленный в 2010

  • АСИМО, представлен в 2000
  • АСИМО для сдачи в аренду, представлен в 2001
  • АСИМО, с расширенной технологией распознавания, представлен в 2002
  • АСИМО следующего поколения, представлен в 2004
  • АСИМО, представлен в 2005 году
  • АСИМО, выпущенный в 2010 году

Короткое демо-видео развития моделей робота АСИМО:

А на этом видео АСИМО не справляется с подъёмом по ступенькам (примечание: на YouTube это видео датируется, в частности, 2006 годом):

Распознавание движущихся объектов

У АСИМО в голову встроена видеокамера. С её помощью АСИМО может следить за перемещениями большого числа объектов, определяя дистанцию до них и направление. Практические применения этой функции следующие: способность следить за перемещениями людей (поворачивая камеру), способность следовать за человеком и способность «приветствовать» человека, когда он войдёт в пределы досягаемости.

Распознавание жестов

АСИМО умеет также верно истолковывать движения рук, распознавая тем самым жесты. Вследствие этого можно отдавать АСИМО команды не только голосом, но и руками. Например, АСИМО понимает, когда собеседник собирается пожать ему руку, а когда машет рукой, говоря «До свидания». АСИМО может также распознавать указующие жесты, типа «иди вон туда».

Распознавание окружения

АСИМО умеет распознавать предметы и поверхности, благодаря чему может действовать безопасно для себя и для окружающих. Например, АСИМО владеет понятием «ступенька» и не будет падать с лестницы, если его не столкнуть. Кроме того, АСИМО умеет двигаться, обходя людей, вставших у него на пути.

Различение звуков

Различение звуков происходит благодаря системе HARK, в которой используется массив из восьми микрофонов, расположенных на голове и теле андроида. Она обнаруживает, откуда пришёл звук, и отделяет каждый голос от внешнего шума. При этом ей не задаётся количество источников звука и их местоположение. На данный момент HARK, способна надёжно (70-80% точности) распознавать три речевых потока, то есть ASIMO способен улавливать и воспринимать речь сразу трёх человек, что обычному человеку недоступно. Робот умеет откликаться на собственное имя, поворачивать голову к людям, с которыми говорит, а также оборачиваться на неожиданные и тревожные звуки - такие, например, как звук падающей мебели.

Узнавание лиц

АСИМО способен узнавать знакомые лица, даже во время движения. То есть, когда движется сам АСИМО, движется лицо человека, или движутся оба объекта. Робот может отличать примерно десять разных лиц. Как только АСИМО узнаёт кого-нибудь, он тут же обращается к узнанному по имени.

АСИМО умеет пользоваться интернетом и локальными сетями. После подключения к локальной сети дома, АСИМО сможет разговаривать с посетителями через домофон, а потом докладывать хозяину, кто пришёл. После того как хозяин согласится принять гостей, АСИМО сумеет открыть дверь и довести посетителя до нужного места.

Характеристики:

ASIMO
(2000)
next-gen ASIMO
(2004)
next-gen ASIMO
(2005)
new ASIMO
(2010)
Масса 52 кг 54 кг 80 кг
Высота 120 см 130 см 160 см
Ширина 45 см 45 см
Глубина 44 см 37 см
Скорость ходьбы 1,6 км/ч 2,5 км/ч 2,7 км/ч
1,6 км/ч (при переносе груза до 1 кг)
Скорость бега - 3 км/ч 6 км/ч (по прямой)
5 км/ч (с поворотами)
Отрыв от земли - 0,05 с 0,08 с
Батареи Никель-гидридные батареи
38,4 В / 10 А·ч / 7,7 кг
цикл зарядки 4 часа
Литий-ионные батареи
51,8 В / 6 кг
цикл зарядки 3 часа
Время работы 30 мин от 40 мин до 1 часа (в режиме ходьбы)
Степеней свободы 26 30 34

Toyota тоже разработала себе робота-гуманоида, предназначение которого не отличается от роботов Sony и Honda - то есть, развлечение, создание "человекопомощника" и т.п. Всего у Toyota есть 5 роботов, наименование которых Версия-1, Версия-2, ... . Своего первого робота, который играл на трубе , компания показала людям на международной выставке EXPO-2005 в Японии.

В июле 2009 года компания Тойотa показала видео со своим роботом-гуманоидом, где он показывает свои беговые способности:


Особый интерес для исследователей Солнечной системы представляет самый большой спутник Сатурна Титан. Он принадлежит к числу крупнейших спутников планет. По данным "Вояджеров", диаметр Титана равен 5150 км. По своим размерам и массе он немного уступает только спутнику Юпитера Ганимеду и примерно в 2 раза превосходит нашу Луну.

Титан - единственный из спутников, обладающий плотной атмосферой. Еще из наземных наблюдений было известно, что в его атмосфере присутствует метан. Спектральные наблюдения, выполненные "Вояджером-1", подтвердили наличие метана, но одновременно показали, что его содержание в атмосфере невелико - около 1%, тогда как на 85 % атмосфера состоит из азота (в основном молекулярного) и на 12% - из инертного аргона. В небольших количествах обнаружен цианистый водород (НСМ) - синильная кислота (очень сильный яд), а также молекулярный водород.

Атмосферное давление у поверхности Титана примерно в 1,5 раза превышает атмосферное давление на поверхности Земли; температура составляет около -180 °С. Это близко к так называемой тройной точке метана, то есть температуре, при которой он может находиться одновременно в твердом, жидком и газообразном состоянии.

Вероятно, атмосфера Титана имеет сходство с первичными газовыми оболочками, какие имели Венера, Земля и Марс на заре своего существования. Но в отличие от этих планет на Титане температуры настолько низкие, что атмосфера могла сохраниться в своем первозданном виде. Следовательно, ее изучение могло бы пролить свет на проблему развития планетных атмосфер. Не исключено, что в тех физических условиях, которые сложились на Титане, метан играет там ту же роль, что и вода на Земле. А это значит, что под азотным небом Титана с метановых ледников могут течь метановые реки, а из облаков выпадать метановые дожди. Мир этого спутника Сатурна, видимо, исключительно своеобразный.

Все спутники, кроме огромного Титана, превосходящего по размерам Меркурий и имеющего атмосферу, сложены в основном изо льда (с некоторой примесью скальных пород у Мимаса, Дионы и Реи). Уникальным по яркости является Энцелад - он отражает свет, почти как свежевыпавший снег. Темнее всего поверхность Фебы, которая поэтому почти не видна. Необычна поверхность Япета: его передняя (по ходу движения) полусфера сильно отличается по отражательной способности от задней.

Из всех больших спутников Сатурна только Гиперион имеет неправильную форму, возможно, из-за произошедшего некогда столкновения с массивным телом, например, с гигантским ледяным метеоритом. Поверхность Гипериона сильно загрязнена. Поверхности многих спутников в значительной степени кратерированы. Так, на поверхности Дионы обнаружен крупнейший десятикилометровый кратер; на поверхности Мимаса лежит кратер, вал которого так высок, что это явственно заметно даже на фотографиях. Кроме кратеров, на поверхностях ряда спутников существуют разломы, борозды, впадины. Наибольшая тектоническая и вулканическая деятельность обнаружена у Энцелада.

Теперь каждый человек знает, что утечка нефти, будь то в почву, реку или океан, угрожает всему живому. И стоит только этому случиться, как в район экологического бедствия срочно отправляются специальные команды для ликвидации очага загрязнения. Но то, с чем мы боремся на Земле, на другой планете может составлять обычную природную среду, а возможно, и среду обитания. Ведь в необъятной Вселенной планетные миры могут быть совсем не похожи один на другой. Многообразны могут быть и формы жизни на них. И с чем только не повстречаются там будущие космические путешественники! Но такое трудно вообразить даже отчаянным фантазерам: нефтяные моря на планете! Оказывается, могут быть и такие планеты, материки которых омываются нефтяными морями. И не где-то в глубинах Галактики, а в нашей же Солнечной системе. Таким экзотическим небесным телом может быть спутник Сатурна Титан.

К сожалению, поверхность Титана не смогли увидеть даже "Вояджеры" из-за густой дымки. А наземная радиолокация поверхности Титана указывала якобы на то, что там плещется углеводородный (нефтяной!) океан...

В 2005 году спускаемый зонд КА "Кассини" впервые совершил посадку на Титан. Научное предвидение ученых во многом оправдалось. Титан - это действительно удивительный мир углеводородов - мир метана, где метан можно встретить буквально на каждом шагу. И хотя глобального нефтяного океана на Титане не оказалось, наличие естественных углеводородных бассейнов не исключено.

Титан - крупнейший спутник Сатурна и второй, после Ганимеда, в Солнечной системе. Впрочем, если измерять Титан вместе с его атмосферой, то он оказывается больше Ганимеда. По всем своим параметрам Титан наиболее близок к нормальным планетам: размером он превосходит Меркурий, его плотная атмосфера толще, чем у Земли, а поверхность - в географическом смысле - почти такая же живая, как у нашей планеты.

Наземные наблюдения еще до начала космической эры показали, что Титан имеет плотную атмосферу; по сути, это единственная планета-спутник с полноценной атмосферой. Пролетая в 1981 г. через систему Сатурна, «Вояджер-2» обнаружил, что основной компонент атмосферы Титана - азот (N 2); в ней присутствуют также метан (CH 4) и другие углеводороды. Данные космического телескопа «Хаббл» и наземных телескопов позволили в 1995 г. заподозрить существование на поверхности Титана значительных площадей, покрытых жидким метаном. Но подтвердилось существование этих углеводородных озер лишь после того, как к интенсивным исследованиям приступил первый искусственный спутник Сатурна - «Кассини», с борта которого 14 января 2005 г. на поверхность Титана опустился зонд «Гюйгенс». Экспедиция «Кассини - Гюйгенс», организованная NASA, ESA (Европейским космическим агентством) и ASI (Итальянским космическим агентством), началась 15 октября 1997 г., но лишь в середине 2004 г. аппарат прибыл в систему Сатурна и приступил к работе (см. с. 16 цветной вкладки).


Титан без малого вдвое массивнее Луны и наполовину больше нее. Поэтому на его поверхности сила тяжести почти лунная: она в 7 раз меньше земной (на Луне - в 6 раз). Вторая космическая скорость на поверхности Титана - 2,6 км/с, на Луне - 2,4 км/с, однако взлетать с Титана будет намного сложнее, чем с Луны: помешает плотная атмосфера. Состав атмосферы Титана известен теперь детально: у поверхности 95% азота и около 5% метана, а в стратосфере 98,4% азота и 1,4% метана. Давление у поверхности в 1,45 раза выше нормального атмосферного давления на Земле. Но если вспомнить, что сила тяжести там в 7 раз меньше, чем у нас, то ясно, что масса газового столба над единицей поверхности Титана в 10 раз больше, чем на Земле. Поскольку размер Титана в 2,5 раза меньше земного, площадь его поверхности меньше земной примерно в 6 раз, а значит, полная масса атмосферы Титана в 1,5 раза больше массы земной атмосферы! Вероятно, поэтому на поверхности Титана очень мало метеоритных кратеров: мелкие метеориты тормозятся и разрушаются в атмосфере, а следы падения крупных быстро уничтожаются дождями и ветром.


Мощная и чрезвычайно протяженная атмосфера Титана облегчила посадку на него космического аппарата. Отделившись от «Кассини», зонд «Гюйгенс» три недели двигался в сторону Титана в дремлющем состоянии, а затем стал готовиться к спуску. Посадка «Гюйгенса» на Титан - уникальная операция; вот ее основные этапы (часы:минуты по среднеевропейскому времени):

06:51 - включается электропитание приборов.

11:13 - начало входа в атмосферу на высоте 1270 км со скоростью 6 км/с. Торможение осуществляется лобовым теплозащитным экраном.

11:17 - высота 180 км, скорость 400 м/с, раскрыт вытяжной парашют диаметром 3 м. Через 2,5 секунды он вытягивает основной парашют диаметром 8,3 м.

11:18 - высота 160 км. Сброшен лобовой экран. Начали исследовать атмосферу газовый хроматограф и масс-спектрометр. Производится сбор и испарение аэрозолей. Камера передает панораму облаков.

11:32 - высота 125 км. Сброшен основной парашют и раскрыт тормозной диаметром 3 м, чтобы ускорить падение и успеть приземлиться до полной разрядки батарей (заряд 1,8 кВт ч). Расстояние до «Кассини» 60 тыс. км.

11:49 - высота 60 км. Включен радар-альтиметр; до этого работой управлял таймер. Камера начинает снимать панораму поверхности. Измеряется скорость ветра (по доплер-эффекту передатчика), температура и давление воздуха, электрическое поле (проверяется наличие молний). На высоте нескольких сотен метров от поверхности включена белая лампа для спектрального анализа поверхности. Сонар и радар измеряют неровности грунта. Спуск «Гюйгенса» в атмосфере Титана занял около 2,5 часа.

13:34 - касание грунта со скоростью 4,5 м/с. Работают камера, микрофон, акселерометры и сонар для измерения глубины жидкости, если бы посадка произошла в море. Но грунт под аппаратом оказался на дежным, по механическим свойствам похожим на мокрый песок или глину. Аппарат при ударе углубился в грунт примерно на 15 см. В течение 2 часов он передал данные с поверхности со скоростью 8 кбит/с.

15:44 - «Кассини» уходит за горизонт Конец передачи данных. «Кассини» разворачивается антенной к Земле и начинает трансляцию записанных с «Гюйгенса» данных.

Зонд опустился немного южнее экватора, на краю ледяных холмов в середине огромного песчаного моря. На фото окружающего ландшафта вдали видна пара длинных дюн, но само место посадки больше похоже на русло потока, заваленное булыжниками поверх песка. Температура у поверхности Титана очень низкая: -180°C. Эта температура близка к тройной точке метана, подобно тому, как температура земной поверхности близка к тройной точке воды. При такой температуре сосуществуют газовое, жидкое и твердое состояния вещества. Подобно тому, как в природе Земли происходит круговорот воды, на Титане должен происходить круговорот метана. Фактически метан (в смеси с этаном и другими углеводородами) там играет ту же роль, что вода на Земле: он испаряется из озер, образует облака, выпадает в виде осадков, прокладывает русла по долинам и вновь стекает в озера.


Изучение снимков показывает, что ландшафт Титана частично сформирован ливнями и быстрым течением жидкости по поверхности. Но, в отличие от Земли, этот гидрологический цикл на Титане доведен до экстремального состояния. На Земле солнечного тепла достаточно для испарения примерно одного метра воды в год. Но атмосфера может удержать только пару сантиметров осажденной влаги до конденсации облаков и выпадения дождя, поэтому для земной погоды характерны легкие дожди, выливающие по нескольку сантиметров воды с промежутком в неделю или две. На Титане недостаток солнечного тепла приводит к испарению всего лишь около 1 см жидкого метана в год, а его мощная атмосфера способна удержать в газообразном виде количество метана, соответствующее примерно 10 м осажденной жидкости. Поэтому для Титана должны быть характерны редкие проливные дожди, рождающие бурные потоки, а в промежутках между этими потопами - вековые периоды засухи. Вполне вероятно, что на месте посадки «Гюйгенса» некоторое время назад тоже было половодье. Специалисты по климату считают, что мощные погодные циклы Титана - это экстремальная версия того, что может случиться на Земле в результате глобального потепления. По мере нагрева земной тропосферы она сможет удерживать все больше влаги, поэтому ураганы и засухи у нас станут более интенсивными.

Итак, Титан - это замерзший вариант Земли, где метан вместо воды, вода вместо камня, а погодные циклы длятся столетиями. Весьма вероятно, что атмосфера Титана напоминает атмосферу юной Земли в период зарождения на ней жизни. Более того: средняя плотность Титана (1,88 г/см³) указывает, что он наполовину состоит из камня (ядро), наполовину из воды (мантия и кора) и покрыт углеводородами. Математические модели предсказывают, что толщина ледяной коры составляет около 50 км, а ниже лежит океан жидкой воды, возможно, с аммиаком. Глубина этого «нашатырного» океана должна достигать сотен километров. Некоторые ученые полагают, что там может быть жизнь.


Запланировано, что работа аппарата «Кассини» продолжится до 2017 г. С июля 2004 г. по сентябрь 2010 г. он совершил 72 пролета вблизи Титана, передавая радиолокационные изображения его поверхности и снимки в ИК-диапазоне. Когда исследователей заинтересовал источник смога в атмосфере Титана, «Кассини», пролетая сквозь верхние слои его атмосферы, на высоте около 1000 км, собрал и проанализировал образцы этого тумана. Ученые ожидали, что туман состоит из легких углеводородов, таких как этан с молекулярной массой 30. Но «Кассини» обнаружил неожиданное обилие тяжелых органических молекул, включая бензол, антрацен и макромолекулы с массой 2000 и более. Эти вещества формируются из атмосферного метана под действием солнечного света. Вероятно, они постепенно конденсируются в более крупные частицы и опускаются на поверхность, но детали этого процесса не ясны.

Как видим, замечательная маленькая планета Титан становится все интереснее. Принципиальных трудностей при исследовании Титана не предвидится. Для экспедиций к нему уже разрабатываются «титаноходы», а также плавающие и летающие зонды. Увлекательное занятие для космических инженеров!