Как из одноатомного спирта получить двухатомный. Химические свойства этиленгликоля, характеристика

Производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH .

Все спирты делятся на одноатомные и многоатомные

Одноатомные спирты

Одноатомные спирты - спирты, у которых имеется одна гидроксильная группа .
Бывают первичные, вторичные и третичные спирты:

У первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных - у второго, и т.д.

Свойства спиртов , которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному.

Сравнивая относительную молекулярную массу спиртов (Mr) c относительными атомными массами углеводородов, можно заметить, что спирты имеют более высокую температуру кипения. Это объясняется наличием водородной связи между атомом H в группе ОН одной молекулы и атомом O в группе -ОН другой молекулы.

При растворении спирта в воде образуются водородные связи между молекулами спирта и воды. Этим объясняется уменьшение объёма раствора (он всегда будет меньше, чем сумма объёмов воды и спирта по отдельности).

Наиболее ярким представителем химических соединений этого класса является этиловый спирт . Его химическая формула C 2 H 5 -OH. Концентрированный этиловый спирт (он же - винный спирт или этанол ) получают из разбавленных его растворов путём перегонки; действует опьяняюще, а в больших доза - это сильный яд, который разрушает живые ткани печени и клетки мозга.

Муравьиный спирт (метиловый)

При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата. Ещё один не менее известный представитель этого класса - метиловый спирт (его ещё называют - древесный или метанол ). В отличии от этанола метанол смертельно опасен даже в самых малых дозах! Сначала он вызывает слепоту, затем просто "убивает"!

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Двухатомными спиртами называются спирты ,содержащие две гидроксильные группы (группа ОН); спирты содержащие три гидроксильные группы - трёхатомные спирты . В их молекулах две или три гидроксильные группы никогда не оказываются присоединёнными к одному и тому же атому углерода.

Многоатомный спирт - глицерин

Двухатомные спирты ещё называют гликолями , так как они обладают сладким вкусом, - это характерно для всех многоатомных спиртов

Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты .

Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:

C 2 H 12 O 6 => C 2 H 5 -OH + CO 2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза , получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы . Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты

CH 2 =CH 2 + KOH => C 2 H 5 -OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Кстати, глицерин входит в состав многих косметических средств как консервант и как средство, предотвращающее замерзание и высыхание!

Свойства спиртов

1) Горение : Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:

C 2 H 5 -OH + 3O 2 -->2CO 2 + 3H 2 O

При их горении выделяется много теплоты, которую часто используют в лабораториях (лабораторные горелки). Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами

C 2 H 5 -OH + 2Na --> 2C 2 H 5 -ONa + H 2

При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами!

3) Реакция с галогеноводородом
C 2 H 5 -OH + HBr --> CH 3 -CH 2 -Br + H 2 O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H 2 SO 4)

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит . В процессе реакции образуется непредельный углеводород и вода.
Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Эта реакция является межмолекулярной реакцией дегидратации . Например, так:

В процессе реакции происходит образование простого эфира и воды.

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO 4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.

Что касается многоатомных спиртов , то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты , при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.

Взаимодействуют с азотной кислотой:

С точки зрения практического применения наибольший интерес представляет реакция с азотной кислотой. Образующийся нитроглицерин и динитроэтиленгликоль используют в качестве взрывчатых веществ, а тринитроглицерин - ещё и в медицине, как сосудорасширяющее средство.

Этиленгликоль

Этиленгликоль - типичный представитель многоатомных спиртов . Его химическая формула CH 2 OH - CH 2 OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.


Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы ). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Все мы видели глицерин . Он продаётся в аптеках в тёмных пузырьках и представляет собой вязкую бесцветную жидкость, сладковатую на вкус. - это трёхатомный спирт . Он очень хорошо растворим в воде, кипит при температуре 220 0 C.

Химические свойства глицерина во многом сходны со свойствами одноатомных спиртов, но глицерин может реагировать с гидроксидами металлов (например, гидроксидом меди Cu(OH) 2), при этом образуются глицераты металлов - химические соединения, подобные солям.

Реакция с гидроксидом меди - типовая для глицерина. В процессе химической реакции образуетс ярко-синий раствор глицерата меди

Эмульгаторы

Эмульгаторы - это высшие спирты , эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами , образуют стойкие эмульсии. Кстати, все косметические средства также являются эмульсиями! В качестве эмульгаторов часто используют вещества, представляющие собой искусственный воск (пентол, сорбитанолеат), а также триэтаноламин, лицетин.

Растворители

Растворители - это вещества, используемые в основном для приготовления лаков для волос и ногтей. Они представлены в небольшой номенклатуре, так как большинство таких веществ легко воспламенимо и вредно для организма человека. Наиболее распространённым представителем растворителей является ацетон , а также амилацетат, бутилацетат, изобутилат.

Есть также вещества, называемые разбавители . Они, в основном применяются вместе с растворителями для приготовления различных лаков .

Определение и номенклатура двухатомных спиртов

Органические соединения, содержащие две гидроксильные группы ($-OH-$) называются двухатомными спиртами или диолами.

Общая формула двухатомных спиртов $CnH_{2n}(OH)_2$.

При обозначении двухатомных спиртов, согласно номенклатуре ИЮПАК, к окончанию -ол добавляют приставку ди-, то есть двухатомный спирт имеет окончание «диол». Цифры указывают, к каким углеродным атомам присоединены гидроксильные группы, например:

Рисунок 1.

1,2-пропандиол транс-1,2-циклогександиол 1-циклогексил-1,4-пентадиол

В систематической номенклатуре существует дифференциация между 1,2-, 1,3-, 1,4- и т.д. диолами.

Если соединение содержит гидроксильные группы у соседних (вициеальных) атомов углерода, то двухатомные спирты называют гликолями.

В названиях гликолей отображается способ их получения путем гидроксилирования алкенов, например:

Рисунок 2.

Существование стойких двухатомных спиртов возможно, начиная с этана, которому соответствует один диол - этиленгликоль. Для пропана возможно существование двух спиртов: 1,2- и 1,3- пропандиолов.

Из спиртов, соответствующих нормальному бутану, возможно существование следующих соединений:

  • обе гидроксогруппы находятся рядом - одна в группе $CH_3$, другая в группе $CH_2$;
  • оба гидроксила расположены в соседних $CH_2$ группах;
  • гидроксогруппы примыкают к несоседним атомам углерода, в группах $CH_3$ и $CH_2$;
  • оба гидроксила расположены в группах $CH_3$.

Изобутану соответствуют следующие диолы:

  • гидроксогруппы находятся рядом - в группах $CH_3$ и $CH$;
  • оба гидроксила расположены в группах $CH_3$:

Рисунок 3.

Двухатомные спирты можно классифицировать на основании того, какие спиртовые группы входят с состав их частицы:

  1. Двупервичные гликоли. Этиленгликоль содержит две первичные спиртовые группы.
  2. Двувторичные гликоли. Содержат две вторичные спиртовые группы.
  3. Двутретичные гликоли. Содержат три вторичные спиртовые группы.
  4. Смешанные гликоли: первично - вторичные, первично - третичные, вторично - третичные.

Например: изопентану соответствует вторично-третичный гликоль

Рисунок 4.

Гексану (тетраметил-этану) соответствует двутретичный гликоль:

Рисунок 5.

Если в двухатомном спирте оба гидроксила расположены у соседних атомов углерода, то это $\alpha$-гликоли. $\beta$-гликоли появляются, когда гидроксогруппы разъединены одним углеродным атомом. У диолов $\gamma$-ряда гидроксилы расположены через два углеродных атома. При большем отдалении друг от друга гидроксилов появляются диолы $\delta$- и $\varepsilon$-ряда.

Геминальные диолы

В свободном состоянии могут существовать только такие диолы, которые произошли из углеводородов в результате замены гидроксильными группами двух атомов водорода, находящихся при двух разных углеродных атомах. Когда гидроксогруппы замещают два атома водорода при одном и том же атоме углерода, возникают нестойкие соединения - геминальные диолы или гем-диолы.

Геминальные диолы - двухатомные спирты, содержащие обе гидроксильные группы у одного атома углерода. Это нестабильные соединения, легко разлагаются с отщеплением воды и образованием карбонильного соединения:

Рисунок 6.

Равновесие смещено в сторону образования кетона, поэтому геминальные диолы также называют гидратами альдегидов или кетонов.

Простейшим представителем геминальных диолов является метиленгликоль. Это соединение сравнительно устойчивое в водных растворах. Однако попытки его выделения приводят к появлению продукта дегидратации - формальдегиду:

$HO-CH_2-OH \leftrightarrow H_2C=O + H_2O$

Например: Не может существовать в свободном состоянии двухатомный спирт, соответствующий этану, если обе гидроксильные группы находятся при одном атоме углерода. Сразу выделяется вода и образуется уксусный альдегид:

Рисунок 7.

Два двухатомных спирта, отвечающих пропану, также не способны к самостоятельному существованию, так как будут выделять воду за счет гидроксилов, расположенных при одном углеродном атоме. При этом будут образовываться, в одном случае - пропионовый альдегид, в другом - ацетон:

Рисунок 8.

Незначительное количество гем-диолов могут существовать не в растворенном состоянии. Это соединения, которые содержат сильные электроноакцепторные заместители, например хлоральгидрат и гидрат гексафотрацетон

Рисунок 9.

Физические свойства гликолей

Для гликолей характерны следующие физические свойства:

  • низшие гликоли - бесцветные прозрачные жидкости, имеющие сладковатый вкус;
  • высокая температура кипения и плавления (tкип этиленгликоля 197$^\circ$С);
  • высокие плотность и вязкость;
  • хорошая растворимость в воде, этиловом спирте;
  • плохая растворимость в неполярных растворителях (например, в эфирах и углеводородах).

Общая закономерность: с увеличением молекулярной массы двухатомных спиртов растет температура кипения. При этом растворимость в воде уменьшается. Низшие спирты смешиваются с водой в любых соотношениях. У высших диолов растворимость в эфире больше, а в воде - меньше.

Для многих веществ двухатомные спирты выступают в роли хороших растворителей (исключение - ароматические и высшие предельные углеводороды).

Восстановление спиртов до углеводородов осуществляется при взаимодействии их с йодистоводородной кислотой в присутствии красного фосфора, который служит для регенерации йодистоводородной кислоты.

HOCH 2 (CHOH) 4 CH 2 OH + 12HJ → CH 3 (CH 2) 4 CH 3 + 6J 2 + 6H 2 O

Сорбит н-Гексан

2P + 3J 2 = 2PJ 3 PJ 3 + 3H 2 O = 3HJ + H 3 PO 3

    1. Взаимодействие с щелочными и щелчноземельными металлами.

Подобно воде спирты реагируют со щелочными и щелочноземельными металлами, а также с магнием с образованием алкоголятов и водорода.

2 (CH 3) 3 CОН + 2К → 2 (CH 3) 3 CОK + H 2

2 СН 3 ОН + Mg → (CH 3 O) 2 Mg + Н 2

Алкоголяты щелочных металлов применяются в качестве оснований в реакциях отщепления из алкилгалогенидов, приводящих к образованию алкенов.

Реакции спиртов с карбонильными соединениями, альдегидами и кетонами, а также с кислотами - этерификация кислот с образованием сложных эфиров, обычно рассматривается при изложении свойств карбонильных соединений и кислот, соответственно, и поэтому не будет рассматриваться в этом разделе.

2.15. Двухатомные спирты

Геминальные диолы – 1,1-диолы, содержащие две ОН-группы у одного и того же атома углерода, нестабильны и разлагаются с отщеплением воды и образованием карбонильного соединения:

Равновесие в этом процессе смещено в сторону образования кетона или альдегида, поэтому сами геминальные диолы обычно называют гид­ратами кетонов или альдегидов, если вместо одного из радикалов находится водород. Вицинальные диолы – 1,2 –диолы, содержащие две ОН-группы у соедних атомов углерода, представляют собой устойчивые соединения. Здесь и далее термин 1,2-диолы будет использоваться для двухатомных спиртов, содержащих гидроксильные группы у соседних атомов углерода.

2.16. Получение диолов

Одним из наиболее простых методов получения 1,2-диолов является гидроксилирование алкенов при действии перманганата калия. Поскольку перманганат калия является сильным окислителем, способным не только гидроксилировать двойную связь, но и расщеплять образующийся вицинальный диол, необходим тщательный контроль условий реакции. Оптимальные результаты достигаются при проведении реакции в слабощелочной среде (рН≈8) при низкой температуре разбавленным водным раствором KmnO 4 .

Другие возможные методы получения могут включать гидролиз вициналь-ных дигалогенидов:

2.17. Свойства диолов

Для диолов характерны те же реакции, что и для одноатом­ных спиртов. Кроме того 1,2-диолы проявляют некоторые спе­цифические свойства, обусловленные наличием двух соседних гидроксильных групп. Они будут рассмотрены в этом разделе.

Дегидратация 1,2-диолов может протекать по двум направлениям: 1) образование диенов; 2) образование циклических эфиров. Обе эти реакции катализируются кислотами. Дегидратация двутретичных или двувторичных 1,2-диолов легко протекает при нагревании их с концентрированной HBr.

Образование циклических эфиров или циклодегидратация 1,2-диолов приводит к образованию 1,4-диоксана, если 1,2-диолом является 1,2-этанди- ол (этиленгликоль); в этом случае шестичленный цикл образуется из двух молей 1,2-этандиола.

1,4- и 1,5-диолы циклизуются в этих условиях с образованием пяти- и шести-членных циклов:

Качественной реакцией на 1,2-диолы является проба с гидроксидом меди в щелочной среде. При этом наблюдается растворение гидроксида меди и получается раствор, окрашенный в глубокий синий цвет, вследствие образо- вания хелатного комплекса Cu(II).

2.18. ТРЁХАТОМНЫЕ СПИРТЫ

Важнейшим из трёхатомных спиртов является глицерин – пропантриол-1,2,3, который входит в состав липидов в виде сложных эфиров с высшими насыщенными и ненасыщенными кислотами.

Глицерин

первичная спиртовая группа глицерина (CH 2 OH) активнее чем вторичная спиртовая группа (CHOH) и при действии таких реагентов как хлористый водород или азотная кислота может быть селективно превращена в хлорид или кислоту, соответственно.

Дегидратация глицерина даёт простейший ненасыщенный альдегид – акролеин (пропеналь):

Также как этиленгликоль глицерин даёт качественную реакцию, характер-ную для 1,2-диолов, с гидроксидом меди в щелочной среде

2.19. ПРОСТЫЕ ЭФИРЫ

НОМЕНКЛАТУРА ПРОСТЫХ ЭФИРОВ

По номенклатуре IUPAC эфиры рассматривают как алкоксиалканы. Родоначальную структуру определяет наиболее длинная алкильная группа:

ПОЛУЧЕНИЕ ПРОСТЫХ ЭФИРОВ

Существует два общих метода получения простых эфиров: межмолекулярная дегидратация спиртов и нуклеофильное замещение галогена в алкилгалогенидах при действии алкоголятов щелочных металлов (реакция Вильямсона). Оба этих способа были описаны выше.

2.20. СВОЙСТВА ПРОСТЫХ ЭФИРОВ

В химическом отношении простые эфиры характеризуют­ся высокой инертностью по отношению ко многим реаген­там, особенно основной природы. Они не расщепляются металлоорганичскими соединениями, гидридами и амидами щелочных металлов, а также комплексными гидридами бора и алюминия. Поэтому такие соединения, как диэтиловый эфир, тетрагидрофуран, диметоксиэтан, диметиловый эфир диэтиленгликоля, диоксан и другие широко используются как растворители в реакциях с приведенными выше соединениями.

Эфиры образуют очень прочные комплексы с кислотами Льюиса - BF 3 , АlВr 3 , SbCl 5 , SbF 5 , и т.д. состава 1:1, в которых они выступают в качестве оснований Льюиса

По отношению к сильным кислотам эфиры проявляют свойства оснований (в данном случае оснований Бренстеда) и об­разуют соли диалкилоксония

Гликоли. Гидроксильные группы в гликолях содержатся у различных атомов углерода. Гликоли с двумя гидроксилами у одного углеродного атома нестойки. Они отщепляют воду с образованием альдегидов или кетонов.

Изомерия гликолей определяется взаимным расположением гидроксильных групп и изомерией углеродного скелета. В зависимости от взаимного расположения групп OH– различают α-, β-, γ-, δ-, … гликоли. В зависимости от характера углеродных атомов, несущих гидроксилы, гликоли могут быть первично-вторичными, первично-третичными, двупервичными, двувторичными и т.д.

Названия гликолей могут даваться двумя способами. По номенклатуре ИЮПАК к названию основной углеродной цепи добавляют суффикс –диол иуказывают номера углеродных атомов самой длинной углеродной цепи, несущих гидроксильные группы. Названия α- гликолей могут производиться от названия соответствующего этиленового углерода с добавлением слова гликоль . Классификация и названия гликолей даны ниже на примере бутандиолов:

Способы получения. В принципе, гликоли могут быть получены всеми обычными синтетическими методами получения спиртов.

Примером могут служить следующие реакции.

– Гидролиз дигалогенпроизводных насыщенных углеводо-родов и галогенгидринов:

– Гидратация α -окисей в кислой среде:

– Окисление олефинов перманганатом калия в разбавленном водном слабощелочном растворе (реакция Вагнера) или пероксидом водорода в присутствии катализаторов (CrO 3):

Физические свойства. Низшие гликоли хорошо растворимы в воде. Плотность их выше, чем у одноатомных спиртов. Соответственно выше и температуры кипения из-за значительной ассоциации молекул: например, этиленгликоль кипит при температуре 197,2 °C; пропиленгликоль – при температуре 189 °C и бутандиол-1,4 – при температуре 230 °C.

Химические свойства. Все сказанное ранее о свойствах соответствующих одноатомных спиртов приложимо и к гликолям. При этом следует помнить, что в реакцию может вступать как один гидроксил, так и сразу оба.– Окисление двупервичных гликолей дает альдегиды:

– При окислении α- гликолей йодной кислотой происходит разрыв связи между углеродными атомами, несущими гидроксилы, и образование соответствующих альдегидов или кетонов:

Метод имеет большое значение для установления строения α- гликолей.

–Результаты внутримолекулярного отщепления воды отгликолей в значительной мере зависят от типа гликоля .

Дегидратация α-гликолей протекает с образованием альдегидов или кетонов, γ-гликоли за счет атомов гидроксильных групп отщепляют воду с образованием гетероциклических соединений – тетрагидрофурана или его гомологов:

Первая реакция идёт через образование карбониевого иона с последующим перемещением атома водорода с его электронной парой:

При парофазной дегидратации над Al 2 O 3 α- двутретичных гликолей , называемых пинаконами, получаются диеновые углеводороды:

Межмолекулярная дегидратация приводит к образованию гидроксиэфиров или циклических простых эфиров:

Температура кипения диэтиленгликоля 245,5 °C. Его используют как растворитель для заполнения тормозных гидравлических систем, при отделке и крашении тканей.

Среди циклических простых эфиров наибольшее распространение как растворитель получил диоксан. Он получен впервые А.Е. Фаворским нагреванием этиленгликоля с серной кислотой:

Этиленгликоль – это вязкая бесцветная жидкость, сладковатая на вкус, t кип = 197,2 °C. В промышленных масштабах получается из этилена по трем схемам.

В смеси с водой этиленгликоль сильно понижает температуру её замерзания. Например, 60 %-ный водный раствор гликоля замерзает при температуре – 49 °C и с успехом применяется как антифриз . Большая гигроскопичность этиленгликоля используется для приготовления печатных красок. Большое количество этиленгликоля идёт на получение пленкообразующих материалов, лаков, красок, синтетических волокон (например, лавсана – полиэтилентерефталата), диоксана, диэтиленгликоля и других продуктов.

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты.Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:
C2H12O6 => C2H5-OH + CO2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза, получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы. Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты
CH2=CH2 + KOH => C2H5-OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Свойства спиртов

1) Горение: Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:
C2H5-OH + 3O2 -->2CO2 + 3H2O
При их горении выделяется много теплоты, которую часто используют в лабораториях Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами
C2H5-OH + 2Na --> 2C2H5-ONa + H2
При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь.

3) Реакция с галогеноводородом C2H5-OH + HBr --> CH3-CH2-Br + H2O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H2SO4)

Отщепление атома водорода от спирта может происходить в его же. Эта реакция является межмолекулярной реакцией дегидратации. Например, так:

В процессе реакции происходит образование простого эфира и воды.

5) реакция с карбоновыми кислотами:

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов. Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.
- a) для первичных спиртов

- б) для вторичных спиртов

- в) третичные спирты оксидом меди не окисляются!

Что касается многоатомных спиртов, то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты, при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.
Взаимодействуют с азотной кислотой:

Этиленгликоль - типичный представитель многоатомных спиртов. Его химическая формула CH2OH - CH2OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы). Раствор этиленгликоля замерзает при температуре -340C, что в холодное время года может заменить воду, например для охлаждения автомобилей.
При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Спирты, молекулы которых содержат две гидроксильные группы, называют двухатомными или гликолями. Общая формула двухатомных спиртов C n H 2n (OH) 2 . Двухатомные спирты образуют гомологический ряд, который можно легко написать, используя гомологический ряд насыщенных углеводородов, заменяя в их молекуле два атома водорода на гидроксильные группы.

Первым и наиболее важным представителем двухатомных спиртов является этиленгликоль НОСН 2 -СН 2 ОН (Т кип. =197 о С). Из него изготовляют антифриз.

Устойчивыми являются гликоли, в молекулах которых гидроксильные группы расположены возле разных углеродных атомов. Если две гидроксильные группы находятся возле одного углеродного атома, то такие двухатомные спирты неустойчивы, легко разлагаются, отщепляя за счет гидроксильных групп воду и превращаются в альдегиды или кетоны:

кетон


НОМЕНКЛАТУРА

В зависимости от взаимного положения гидроксильных групп различают α-гликоли (у них гидроксильные группы расположены возле соседних углеродных атомов, которые стоят рядом, в положении 1,2), β-гликоли (ОН-группы у них расположены в положении 1,3), γ-гликоли (ОН-группы – в положении 1,4), δ-гликоли (ОН-группы – в положении 1,5) и т.д.

Например: α-гликоль - CH 2 OH-CHOH-CH 2 -CH 3

β-гликоль - CH 2 OH-CH 2 -CHOH-CH 3

γ-гликоль - CH 2 OH-CH 2 -CH 2 -CH 2 OH

По рациональной номенклатуре название α-гликолей образуют от названия соответствующего этиленового углеводорода, к которому добавляют слово гликоль. Например, этиленгликоль, пропиленгликоль и т.д.

По систематической номенклатуре название гликолей образуются от названия насыщенного углеводорода, к которому прибавляют суффикс –диол, указывая номера углеродных атомов. Возле которых находятся гидроксильные группы. Например, этиленгликоль СН 2 -ОН-СН 2 ОН по номенклатуре ИЮПАК – этандиол-1,2, а пропиленгликоль СН 3 -СНОН-СН 2 ОН – пропандиол-1,2.

ИЗОМЕРИЯ

Изомерия двухатомных спиртов зависит от строения углеродной цепи:

положения гидроксильных групп в молекуле спирта, например, пропандиол-1,2 и пропандиол-1,3.



МЕТОДЫ ПОЛУЧЕНИЯ

Гликоли можно получить следующими методами:

1.Гидролиз дигалогенопроизводных насыщенных углеводородов:

2.Гидролиз галогеноспиртов:

3.Окисление этиленовых углеводородов перманганатом калия или надмуравьиной кислотой:

4.Гидратацией α-оксидов:

5.Бимолекулярным восстановлением карбонильных соединений:

ХИМИЧЕСКИЕ СВОЙСТВА

Химические свойства гликолей аналогичны свойствам одноатомных спиртов и определяется присутствием в их молекулах двух гидроксильных групп. Причем в реакциях могут принимать участие одна или обе гидроксильные группы. Однако вследствие взаимного влияния одной гидроксильной группы на другую (особенно у α-гликолей) кислотно-основные свойства гликолей несколько отличаются от аналогичных свойств одноатомных спиртов. В связи с тем, что гидроксил проявляет отрицательный индукционный эффект, одна гидроксильная группа оттягивает электронную плотность от другой аналогично тому, как это делает атом галогена в молекулах замещенных одноатомных спиртов. В результате такого влияния кислотные свойства двухатомных спиртов по сравнению с одноатомными повышаются:

Н-О СН 2 СН 2 О Н

Поэтому гликоли, в отличие от одноатомных спиртов, легко вступают в реакцию не только со щелочными металлами, но и со щелочами и даже с гидроксидами тяжелых металлов. Со щелочными металлами, щелочами гликоли образуют полные и неполные алкоголяты (гликоляты):

С гидроксидами некоторых тяжелых металлов, например с гидроксидом меди, гликоли образуют комплексные гликоляты. При этом нерастворимый в воде Cu(OH) 2 в гликоле легко растворяется:

Медь в этом комплексе образует с атомами кислорода две ковалентные связи и две – координационные. Реакция является качественной на двухатомные спирты.

Гликоли могут образовывать полные и неполные простые и сложные эфиры. Так, при взаимодействии неполного гликолята щелочного металла с галоидными алкилами получают неполные простые эфиры, а из полного гликолята – полный простой эфир:


Метил- и этилцеллозольвы применяют в качестве растворителя в производстве лаков, бездымного пороха (пироксилина), ацетатного шелка и т.д.

С органическими и минеральными кислотами двухатомные спирты образуют два ряда сложных эфиров:

Мононитрат этиленгликоля Динитрат этиленгликоля

Динитрат этиленгликоля – сильное взрывчатое вещество, которое используют вместо нитроглицерина.

Окисление гликолей осуществляется ступенчато, с участием одной или обеих гидроксильных групп одновременно с образованием следующих продуктов:


Двухатомные спирты вступают в реакцию дегидратации. Причем α-, β- и γ-гликоли, в зависимости от условий реакций, по-разному отщепляют воду. Отщепление воды от гликолей может осуществляться внутри- и межмолекулярно. Например:

Внутримолекулярное отщепление воды:


Тетрагидрофуран

Межмолекулярное отщепление воды.

В 1906 г. А. Е. Фаворский, перегоняя этиленгликоль с серной кислотой, получил циклический простой эфир-диоксан:

Диоксан – жидкость, которая кипит при 101 о С, смешивается с водой в любых соотношениях, применяется как растворитель и как полупродукт в некоторых синтезах.

При межмолекулярном отщеплении воды от гликолей могут образовываться оксиэфиры (спиртоэфиры), как, например, диэтиленгликоль:

Диэтиленгликоль

Диэтиленгликоль получают также взаимодействием этиленгликоля с оксидом этилена:

Диэтиленгликоль – жидкость с температурой кипения 245,5 о С; используется как растворитель, для заполнения гидравлических приборов, а также в текстильной промышленности.

Широкое применение как хороший растворитель нашел диметиловый эфир диэтиленгликоля (диглим) Н 3 С-О-СН 2 -СН 2 -О-СН 2 -СН 2 -О-СН 3 .

Этиленгликоль при нагревании с оксидом этилена в присутствии катализаторов образует вязкие жидкости – полиэтиленгликоли:

Полиэтиленгликоль

Полигликоли используются как компоненты разных синтетических моющих средств.

Широкое применение получили полиэфиры этиленгликоля с двухосновными кислотами, которые используются в производстве синтетических волокон, например лавсана (название „лавсан” образовано из начальных букв следующих слов – лаборатория высокомолекулярных соединений Академии наук):


С метанолом терефталиевая кислота образует диметиловый эфир (диметилтерефталат, Т кип. =140 о С), который далее путем переэтерификации превращается в этиленгликольтерефталат. При поликонденсации этиленгликольтерефталата образуется полиэтилентерефталат с молекулярной массой 15000-20000. Волокно лавсан не мнется, устойчиво к разным погодным условиям.