Как найти период колебаний зная частоту. Период колебаний

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

В котором он находился в первоначальный момент, выбранный произвольно).

В принципе совпадает с математическим понятием периода функции , но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T (хотя могут применяться и другие, наиболее часто это \tau, иногда \Theta и т. д.).

T = \frac{1}{\nu},\ \ \ \nu = \frac{1}{T}.

Для волновых процессов период связан кроме того очевидным образом с длиной волны \lambda

v = \lambda \nu, \ \ \ T = \frac{\lambda}{v},

где v - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры , осциллографы . Также применяются биения , метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Периоды колебаний в природе

Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

Периоды колебаний слышимого человеком звука находятся в диапазоне

От 5·10 −5 до 0,2

(четкие границы его несколько условны).

Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

От 1,1·10 −15 до 2,3·10 −15 .

Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

Периоды колебаний простейших физических систем

Пружинный маятник

Математический маятник

T=2\pi \sqrt{\frac{l}{g}}

где l - длина подвеса (к примеру, нити), g - ускорение свободного падения .

Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

Физический маятник

T=2\pi \sqrt{\frac{J}{mgl}}

Крутильный маятник

T = 2 \pi \sqrt{\frac{I}{K}}

Эту формулу вывел в 1853 году английский физик У. Томсон .

Напишите отзыв о статье "Период колебаний"

Примечания

Ссылки

  • - статья из Большой советской энциклопедии

Отрывок, характеризующий Период колебаний

Ростов молчал.
– А вы что ж? тоже позавтракать? Порядочно кормят, – продолжал Телянин. – Давайте же.
Он протянул руку и взялся за кошелек. Ростов выпустил его. Телянин взял кошелек и стал опускать его в карман рейтуз, и брови его небрежно поднялись, а рот слегка раскрылся, как будто он говорил: «да, да, кладу в карман свой кошелек, и это очень просто, и никому до этого дела нет».
– Ну, что, юноша? – сказал он, вздохнув и из под приподнятых бровей взглянув в глаза Ростова. Какой то свет глаз с быстротою электрической искры перебежал из глаз Телянина в глаза Ростова и обратно, обратно и обратно, всё в одно мгновение.
– Подите сюда, – проговорил Ростов, хватая Телянина за руку. Он почти притащил его к окну. – Это деньги Денисова, вы их взяли… – прошептал он ему над ухом.
– Что?… Что?… Как вы смеете? Что?… – проговорил Телянин.
Но эти слова звучали жалобным, отчаянным криком и мольбой о прощении. Как только Ростов услыхал этот звук голоса, с души его свалился огромный камень сомнения. Он почувствовал радость и в то же мгновение ему стало жалко несчастного, стоявшего перед ним человека; но надо было до конца довести начатое дело.
– Здесь люди Бог знает что могут подумать, – бормотал Телянин, схватывая фуражку и направляясь в небольшую пустую комнату, – надо объясниться…
– Я это знаю, и я это докажу, – сказал Ростов.
– Я…
Испуганное, бледное лицо Телянина начало дрожать всеми мускулами; глаза всё так же бегали, но где то внизу, не поднимаясь до лица Ростова, и послышались всхлипыванья.
– Граф!… не губите молодого человека… вот эти несчастные деньги, возьмите их… – Он бросил их на стол. – У меня отец старик, мать!…
Ростов взял деньги, избегая взгляда Телянина, и, не говоря ни слова, пошел из комнаты. Но у двери он остановился и вернулся назад. – Боже мой, – сказал он со слезами на глазах, – как вы могли это сделать?
– Граф, – сказал Телянин, приближаясь к юнкеру.
– Не трогайте меня, – проговорил Ростов, отстраняясь. – Ежели вам нужда, возьмите эти деньги. – Он швырнул ему кошелек и выбежал из трактира.

Вечером того же дня на квартире Денисова шел оживленный разговор офицеров эскадрона.
– А я говорю вам, Ростов, что вам надо извиниться перед полковым командиром, – говорил, обращаясь к пунцово красному, взволнованному Ростову, высокий штаб ротмистр, с седеющими волосами, огромными усами и крупными чертами морщинистого лица.
Штаб ротмистр Кирстен был два раза разжалован в солдаты зa дела чести и два раза выслуживался.
– Я никому не позволю себе говорить, что я лгу! – вскрикнул Ростов. – Он сказал мне, что я лгу, а я сказал ему, что он лжет. Так с тем и останется. На дежурство может меня назначать хоть каждый день и под арест сажать, а извиняться меня никто не заставит, потому что ежели он, как полковой командир, считает недостойным себя дать мне удовлетворение, так…
– Да вы постойте, батюшка; вы послушайте меня, – перебил штаб ротмистр своим басистым голосом, спокойно разглаживая свои длинные усы. – Вы при других офицерах говорите полковому командиру, что офицер украл…
– Я не виноват, что разговор зашел при других офицерах. Может быть, не надо было говорить при них, да я не дипломат. Я затем в гусары и пошел, думал, что здесь не нужно тонкостей, а он мне говорит, что я лгу… так пусть даст мне удовлетворение…
– Это всё хорошо, никто не думает, что вы трус, да не в том дело. Спросите у Денисова, похоже это на что нибудь, чтобы юнкер требовал удовлетворения у полкового командира?
Денисов, закусив ус, с мрачным видом слушал разговор, видимо не желая вступаться в него. На вопрос штаб ротмистра он отрицательно покачал головой.
– Вы при офицерах говорите полковому командиру про эту пакость, – продолжал штаб ротмистр. – Богданыч (Богданычем называли полкового командира) вас осадил.
– Не осадил, а сказал, что я неправду говорю.
– Ну да, и вы наговорили ему глупостей, и надо извиниться.
– Ни за что! – крикнул Ростов.
– Не думал я этого от вас, – серьезно и строго сказал штаб ротмистр. – Вы не хотите извиниться, а вы, батюшка, не только перед ним, а перед всем полком, перед всеми нами, вы кругом виноваты. А вот как: кабы вы подумали да посоветовались, как обойтись с этим делом, а то вы прямо, да при офицерах, и бухнули. Что теперь делать полковому командиру? Надо отдать под суд офицера и замарать весь полк? Из за одного негодяя весь полк осрамить? Так, что ли, по вашему? А по нашему, не так. И Богданыч молодец, он вам сказал, что вы неправду говорите. Неприятно, да что делать, батюшка, сами наскочили. А теперь, как дело хотят замять, так вы из за фанаберии какой то не хотите извиниться, а хотите всё рассказать. Вам обидно, что вы подежурите, да что вам извиниться перед старым и честным офицером! Какой бы там ни был Богданыч, а всё честный и храбрый, старый полковник, так вам обидно; а замарать полк вам ничего? – Голос штаб ротмистра начинал дрожать. – Вы, батюшка, в полку без году неделя; нынче здесь, завтра перешли куда в адъютантики; вам наплевать, что говорить будут: «между павлоградскими офицерами воры!» А нам не всё равно. Так, что ли, Денисов? Не всё равно?
Денисов всё молчал и не шевелился, изредка взглядывая своими блестящими, черными глазами на Ростова.
– Вам своя фанаберия дорога, извиниться не хочется, – продолжал штаб ротмистр, – а нам, старикам, как мы выросли, да и умереть, Бог даст, приведется в полку, так нам честь полка дорога, и Богданыч это знает. Ох, как дорога, батюшка! А это нехорошо, нехорошо! Там обижайтесь или нет, а я всегда правду матку скажу. Нехорошо!
И штаб ротмистр встал и отвернулся от Ростова.
– Пг"авда, чог"т возьми! – закричал, вскакивая, Денисов. – Ну, Г"остов! Ну!
Ростов, краснея и бледнея, смотрел то на одного, то на другого офицера.
– Нет, господа, нет… вы не думайте… я очень понимаю, вы напрасно обо мне думаете так… я… для меня… я за честь полка.да что? это на деле я покажу, и для меня честь знамени…ну, всё равно, правда, я виноват!.. – Слезы стояли у него в глазах. – Я виноват, кругом виноват!… Ну, что вам еще?…
– Вот это так, граф, – поворачиваясь, крикнул штаб ротмистр, ударяя его большою рукою по плечу.
– Я тебе говог"ю, – закричал Денисов, – он малый славный.
– Так то лучше, граф, – повторил штаб ротмистр, как будто за его признание начиная величать его титулом. – Подите и извинитесь, ваше сиятельство, да с.
– Господа, всё сделаю, никто от меня слова не услышит, – умоляющим голосом проговорил Ростов, – но извиняться не могу, ей Богу, не могу, как хотите! Как я буду извиняться, точно маленький, прощенья просить?
Денисов засмеялся.
– Вам же хуже. Богданыч злопамятен, поплатитесь за упрямство, – сказал Кирстен.
– Ей Богу, не упрямство! Я не могу вам описать, какое чувство, не могу…
– Ну, ваша воля, – сказал штаб ротмистр. – Что ж, мерзавец то этот куда делся? – спросил он у Денисова.
– Сказался больным, завтг"а велено пг"иказом исключить, – проговорил Денисов.
– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

Определение

Период - это минимальное время, за которое совершается одно полное колебательное движение.

Обозначают период буквой $T$.

где $\Delta t$ - время колебаний; $N$ - число полных колебаний.

Уравнение колебаний пружинного маятника

Рассмотрим простейшую колебательную систему, в которой можно реализовать механические колебания. Это груз массы $m$, подвешенный на пружине, коэффициент упругости которой равен $k\ $(рис.1). Рассмотри вертикальное движение груза, которое обусловлено действием силы тяжести и силы упругости пружины. В состоянии равновесия такой системы, сила упругости равна по величине силе тяжести. Колебания пружинного маятника возникают, когда систему выводят из состояния равновесия, например, слегка дополнительно растянув пружину, после этого маятник предоставляют самому себе.

Допустим, что масса пружины мала в сравнении с массой груза, при описании колебаний ее учитывать не будем. Началом отсчета будем считать точку на оси координат (X), которая совпадает с положением равновесия груза. В этом положении пружина уже имеет удлинение, которое обозначим $b$. Растяжение пружины происходит из-за действия на груз силы тяжести, следовательно:

Если груз смещают дополнительно, но закон Гука еще выполняется, то сила упругости пружины становится равна:

Ускорение груза запишем, помня, что движение происходит по оси X, как:

Второй закон Ньютона для груза принимает вид:

Учтем равенство (2), формулу (5) преобразуем к виду:

Если ввести обозначение: ${\omega }^2_0=\frac{k}{m}$, то уравнение колебаний запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(7\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решением уравнения (7) (это проверяется непосредственной подстановкой) является функция:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Формулы периода колебаний пружинного маятника

Мы получили, что колебания пружинного маятника описывается функцией косинус или синус. Это периодические функции, значит, смещение $x$ будет принимать равные значения через определенные одинаковые промежутки времени, которые называют периодом колебаний. Обозначают период буквой T.

Еще одной величиной, характеризующей колебания является величина обратная периоду колебаний, ее называют частотой ($\nu $):

Период связан с циклической частотой колебаний как:

Выше мы получали для пружинного маятника ${\omega }_0=\sqrt{\frac{k}{m}}$, следовательно, период колебаний пружинного маятника равен:

Формула периода колебаний пружинного маятника (11) показывает, что $T$ зависит от массы груза, прикрепленного к пружине и коэффициента упругости пружины, но не зависит от амплитуды колебаний (A). Данное свойство колебаний называют изохронностью. Изохронность выполняется до тех пор, пока справедлив закон Гука. При больших растяжениях пружины закон Гука нарушается, появляется зависимость колебаний от амплитуды. Подчеркнем, что формула (11) для вычисления периода колебаний пружинного маятника справедлива при малых колебаниях.

Примеры задач на период колебаний

Пример 1

Задание. Пружинный маятник совершил 50 полных колебаний за время равное 10 с. Каков период колебаний маятника? Чему равна частота этих колебаний?

Решение. Так как период - это минимальное время необходимое маятнику для совершения одного полного колебания, то найдем его как:

Вычислим период:

Частота - величина обратная периоду, следовательно:

\[\nu =\frac{1}{T}\left(1.2\right).\]

Вычислим частоту колебаний:

\[\nu =\frac{1}{0,2}=5\ \left(Гц\right).\]

Ответ. $1)\ T=0,2$ с; 2) 5Гц

Пример 2

Задание. Две пружины, имеющие коэффициенты упругости $k_1$ и $k_2$ соединены параллельно (рис.2), к системе присоединен груз массы $M$. Каков период колебаний полученного пружинного маятника, если массами пружин можно пренебречь, сила упругости, действующая на груз, подчиняется закону Гука?

Решение. Воспользуемся формулой для вычисления периода колебаний пружинного маятника:

При параллельном соединении пружин результирующая жесткость системы находится как:

Это означают, что вместо $k$ в формулу для вычисления периода пружинного маятника подставим правую часть выражения (2.2), имеем:

Ответ. $T=2\pi \sqrt{\frac{M}{k_1{+k}_2}}$