Определить тип взаимного расположения плоскостей. Плоскость в пространстве – необходимые сведения

Пусть даны две плоскости

Первая плоскость имеет нормальный вектор (А 1 ;В 1 ;С 1), вторая плоскость (А 2 ;В 2 ;С 2).

Если плоскости параллельны, то векторы и коллинеарны, т.е. = l для некоторого числа l. Поэтому

─ условие параллельности плоскости.

Условие совпадения плоскостей:

,

так как в этом случае умножая второе уравнение на l = , получим первое уравнение.

Если условие параллельности не выполняется, то плоскости пересекаются. В частности, если плоскости перпендикулярны, то перпендикулярны и векторы , . Поэтому их скалярное произведение равно 0, т.е. = 0, или

А 1 А 2 + В 1 В 2 + С 1 С 2 = 0.

Это необходимое и достаточное условие перпендикулярности плоскостей.

Угол между двумя плоскостями.

Угол между двумя плоскостями

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

это угол между их нормальными векторами и , поэтому

cosj = =
.

Прямая в пространстве.

Векторно-параметрическое уравнение прямой.

Определение. Направляющим вектором прямой называется любой вектор, лежащий на прямой или параллельный ей.

Составим уравнение прямой, проходящей через точку М 0 (х 0 ;у 0 ;z 0) и имеющей направляющий вектор = (а 1 ;а 2 ;а 3).

Отложим из точки М 0 вектор . Пусть М(х;у;z) ─ произвольная точка данной прямой, а ─ её радиус- вектор точки М 0 . Тогда , , поэтому . Это уравнение называется векторно-параметрическим уравнением прямой.

Параметрические уравнения прямой.

В векторно-параметрическом уравнении прямой перейдёт к координатным соотношениям (х;у;z) = (х 0 ;у 0 ;z 0) + (а 1 ;а 2 ;а 3)t. Отсюда получаем параметрические уравнения прямой

х = х 0 + а 1 t,

у = у 0 +а 2 t, (4)

Канонические уравнения прямой.

Из уравнений (4) выразим t:

t = , t = , t = ,

откуда получаем канонические уравнения прямой

= = (5)

Уравнение прямой, проходящей через две данные точки.

Пусть даны две точки М 1 (х 1 ;у 1 ;z 1) и М 2 (х 2 ;у 2 ;z 2). В качестве направляющего вектора прямой можно взять вектор = (х 2 – х 1 ;у 2 – у 1 ;z 2 – z 1). Поскольку прямая проходит через точка М 1 (х 1 ;у 1 ;z 1), то её канонические уравнения в соответствии с (5) запишутся в виде

(6)

Угол между двумя прямыми.

Рассмотрим две прямые с направляющими векторами = (а 1 ;а 2 ;а 3) и .

Угол между прямыми равен углу между их направляющими векторами, поэтому

cosj = =
(7)

Условие перпендикулярности прямых:

а 1 в 1 + а 2 в 2 + а 3 в 3 = 0.

Условие параллельности прямых:

l,

. (8)

Взаимное расположение прямых в пространстве.

Пусть даны две прямые
и
.

Очевидно, что прямые лежат в одной плоскости тогда и только тогда, когда векторы , и компланарны, т.е.

= 0 (9)

Если в (9) первые две строки пропорциональны, то прямые параллельны. Если все три строки пропорциональны, то прямые совпадают. Если условие (9) выполнено и первые две строки не пропорциональны, то прямые пересекаются.

Если же
¹ 0, то прямые являются скрещивающимися.

Задачи на прямую и плоскость в пространстве.

Прямая как пересечение двух плоскостей.

Пусть заданы две плоскости

А 1 х + В 1 у +С 1 z + D 1 = 0,

А 2 х + В 2 у +С 2 z + D 2 = 0

Если плоскости не являются параллельными, то нарушается условие

.

Пусть, например ¹ .

Найдём уравнение прямой, по которой пересекаются плоскости.

В качестве направляющего вектора искомой прямой можно взять вектор

= × = =
.

Чтобы найти точку, принадлежащую искомой прямой, фиксируем некоторое значение

z = z 0 и решая систему


,

получаем значения х = х 0 , у = у 0 . Итак, искомая точка М(х 0 ;у 0 ;z 0).

Искомое уравнение

.

Взаимное расположение прямой и плоскости.

Пусть задана прямая х = х 0 + а 1 t, y = y 0 + a 2 t, z = z 0 + a 3 t

и плоскость

А 1 х + В 1 у +С 1 z + D 1 = 0.

Чтобы найти общие точки прямой и плоскости, необходимо решить систему их уравнений

А 1 (х 0 + а 1 t) + B 1 (y 0 + a 2 t) + C 1 (z 0 + a 3 t) + D 1 = 0,

(A 1 a 1 + B 1 a 2 + C 1 a 3)t + (A 1 x 0 + B 1 y 0 + C 1 z 0 + D 1) = 0.

Если А 1 а 1 + В 1 а 2 + С 1 а 3 ¹ 0, то система имеет единственное решение

t = t 0 = -
.

В этом случае прямая и плоскость пересекаются в единственной точке М 1 (х 1 ;у 1 ;z 1), где

х 1 = х 0 + а 1 t 0 , y 1 = y 0 + a 2 t 0 , z 1 = z 0 + a 3 t 0 .

Если А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 ¹ 0, то прямая и плоскость не имеет общих точек, т.е. параллельны.

Если же А 1 а 1 + В 1 а 2 + С 1 а 3 = 0, А 1 x 0 + В 1 y 0 + С 1 z 0 + D 1 = 0, то прямая принадлежит плоскости.

Угол между прямой и плоскостью.

Взаимное расположение плоскостей в пространстве

При взаимном расположении двух плоскостей в пространстве возможен один из двух взаимно исключающих случаев.

1. Две плоскости имеют общую точку. Тогда по аксиоме пересечения двух плоскостей они имеют общую прямую. Аксиома R5 гласит: если две плоскости имеют общую точку, то пересечение этих плоскостей есть их общая прямая. Из этой аксиомы следует, что у плоскостей Такие плоскости называются пересекающимися.

Две плоскости не имеют общей точки.

3. Две плоскости совпадают

3. Векторы на плоскости и в пространстве

Вектор -- это направленный отрезок. Его длиной считают длину отрезка. Если даны две точки M1 (x1, y1, z1) и M2 (x2, y2, z2), то вектор

Если даны два вектора и то,

1. Длины векторов

2. Сумма векторов:

3. Суммой двух векторов a и b является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки их приложения (правило параллелограмма); или вектор, соединяющий начало первого вектора с концом последнего -- по правилу треугольника. Суммой трех векторов a, b, c называется диагональ параллелепипеда, построенного на этих векторах(правило параллелепипеда).

Рассмотрим:

  • 1. Начало координат -- в точке A;
  • 2. Сторона куба -- единичный отрезок.
  • 3. Ось ОХ направляем по ребру AB, ОY -- по ребру AD, а ось OZ -- по ребру AA1.

Для нижней плоскости куба

Опр. Две плоскости в пространстве называются параллельными, если они не пересекаются, в противном случаи они пересекаются.

Теорема1: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Доказательство:

Пусть и - данные плоскости, а1 и а2 - прямые в плоскости, пересекающиеся в точке А, в1 и в2 - соответственно параллельные им прямые в

плоскости. Допустим, что плоскости и не параллельны, т.е. пересекаются по некоторой прямой с. По теореме прямые а1 и а2, как параллельные прямым в1и в2, параллельны плоскости, и поэтому они не

пересекают лежащую в этой плоскости прямую с. Таким образом, в плоскости через точку А проходят две прямые (а1 и а2) , параллельные прямой с. Но это невозможно по аксиоме параллельных. Мы пришли к противоречию ЧТД.

Перпендикулярные плоскости: Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым.

Теорема2: Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Доказательство:

Пусть - плоскость, в -перпендикулярная ей прямая, - плоскость, проходящая через прямую в, с - прямая, по которой пересекаются плоскости и. Докажем, что плоскости и перпендикулярны. Проведем в плоскости через точку пересечения прямой в с плоскостью прямую а,

перпендикулярную прямой с. Проведем через прямые а и в плоскость. Она перпендикулярна прямой с, т.к. прямая с перпендикулярна прямым а и в. Т. к. прямые а и в перпендикулярны, то плоскости и перпендикулярны. ч.т.д.

42. Нормальное уравнение плоскости и его свойства

    Нормальное (нормированное) уравнение плоскости

в векторной форме:

где - единичный вектор,- расстояние П. от начала координат. Уравнение (2) может быть получено из уравнения (1) умножением на нормирующий множитель

(знаки ипротивоположны).

43. Уравнения прямой линии в пространстве: Общие уравнения, каноничекие и параметрические уравнения.

Канонические уравнения:

Выведем уравнение прямой, проходящей через данную точку и параллельную данному направляющему вектору. Заметим, что точкалежит на этой прямой тогда и только тогда, когда векторыиколлинеарны. Это означает, что координаты этих векторов пропорциональны:

Эти уравнения называют каноническими. Заметим, что одна или две координаты направляющего вектора могут оказаться равными нулю. Но мы воспринимаем это как пропорцию: мы понимаем как равенство.

Общие уравнения:

(A1x+B1y+C1z+D1=0

(A2x+B2y+C2z+D2=0

Где коэффиценты А1-С1 не пропорциональны A2-C2,что равносильно ее заданию как линии пересечения плоскостей

Параметрические:

Откладывая от точки векторыдля различных значений, коллинеарные направляющему вектору, мы будем получать на конце отложенных векторов различные точки нашей прямой. Из равенстваследует:

Переменную величину называют параметром. Поскольку для любой точки прямой найдется соответствующее значение параметра и поскольку различным значениям параметра соответствуют различные точки прямой, то существует взаимно однозначное соответствие между значениями параметра и точками прямой. Когда параметрпробегает все действительные числа отдо, соответствующая точкапробегает всю прямую.

44. Понятие линейного пространства. Аксиомы. Примеры линейных пространств

Пример линейного пространства – множество всех геометрических векторов.

Линейное , иливекторное пространство надполемP - этонепустое множествоL , на котором введеныоперации

сложения, то есть каждой паре элементов множества ставится в соответствие элемент того же множества, обозначаемыйи

умножения на скаляр(то есть элемент поляP ), то есть любому элементу и любому элементуставится в соответствие элемент из, обозначаемый.

При этом на операции накладываются следующие условия:

Для любых (коммутативность сложения );

Для любых (ассоциативность сложения );

существует такой элемент , чтодля любого(существование нейтрального элемента относительно сложения ), в частности L не пусто;

для любого существует такой элемент, что(существование противоположного элемента ).

(ассоциативность умножения на скаляр );

(умножение на нейтральный (по умножению) элемент поля P сохраняет вектор ).

(дистрибутивность умножения на вектор относительно сложения скаляров );

(дистрибутивность умножения на скаляр относительно сложения векторов ).

Элементы множества L называютвекторами , а элементы поляP -скалярами . Свойства 1-4 совпадают с аксиомами абелевой группы.

Простейшие свойства

Векторное пространство является абелевой группойпо сложению.

Нейтральный элемент является единственным, что вытекает из групповых свойств.

для любого .

Для любого противоположный элементявляется единственным, что вытекает из групповых свойств.

для любого .

для любых и.

для любого .

Элементы линейного пространства называются векторами. Пространство называется действительным, если в нем оперция умножения векторов на число определена только для действительных числе, и комплексным, если эта оперкция определана только для комплексных чисел.

45. Базис и размерност линейного прорстранства, связь между ними.

Конечная сумма вида

называется линейной комбинацией элементов с коэффициентами.

Линейная комбинация называется нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.

Элементы называются линейно зависимыми, если существует их нетривиальная линейная комбинация, равная θ. В противном случае эти элементы называются линейно независимыми.

Бесконечное подмножество векторов из L называется линейно зависимым, если линейно зависимо его некоторое конечное подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.

Число элементов (мощность) максимального линейно независимого подмножества пространства не зависит от выбора этого подмножества и называется рангом, или размерностью, пространства, а само это подмножество - базисом(базисом Га́меля или линейным базисом). Элементы базиса также называют базисными векторами. Свойства базиса:

Любые n линейно независимых элементов n-мерного пространства образуют базис этого пространства.

Любой вектор можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:

46. Координты вектора в данном базисе. Линейные операции с векторами в координатной форме

п.4. Линейные операции с векторами в координатной форме записи.

Пусть – базиспространстваи– два его произвольных вектора. Пустьи–записьэтихвектороввкоординатнойформе. Пусть, далее,– произвольное действительное число. В этих обозначениях имеет место следующая теорема.

Теорема. (О линейных операциях с векторами в координатнойформе.)

Пусть Ln – произвольное n-мерное пространство, B = (e1,….,en) - фиксированный базис в нем. Тогда всякому вектору x пренадлежащему Ln взаимно однозначно соответствует столбец его координат в этом базисе.

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .

В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.

Конец работы -

Эта тема принадлежит разделу:

Начертательная геометрия. Конспект лекций лекция. Сведения о проекциях

Лекция сведения о проекциях понятие проекций чтение чертежа.. центральная проекция.. представление о центральной проекции можно получить если изучить изображение которое дает человеческий глаз..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие проекций
Начертательной геометрией называют науку, которая является теоретическим фундаментом черчения. В данной науке изучаются способы изображения на плоскости различных тел и их элементо

Параллельная проекция
Параллельная проекция – это такой вид проекции, при построении которого используются параллельные проецирующиеся лучи. При построении параллельных проекций нужно задать на

Проекции точки на две плоскости проекций
Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоск

Отсутствие оси проекций
Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между пр

Проекции точки на три плоскости проекций
Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, ког

Координаты точки
Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами. Каждой координате соответствует расстояние точки от какой-нибудь плоскости пр

Проекции прямой
Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной

Следы прямой
След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20). Горизонтальным следом прямой называется некоторая точка H

Различные положения прямой
Прямую называют прямой общего положения, если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпенд

Взаимное расположение двух прямых
Возможны три случая расположения прямых в пространстве: 1) прямые пресекаются, т. е. имеют общую точку; 2) прямые параллельны, т. е. не имеют общей точки, но лежат в одной плоскос

Перпендикулярные прямые
Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения. Приведем доказательство для

Определение положения плоскости
Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции

Следы плоскости
След плоскости Р – это линия пересечения ее с данной плоскостью или поверхностью (рис. 36). Линию пересечения плоскости Р с горизонтальной плоскостью называю

Горизонтали и фронтали плоскости
Среди прямых, которые лежат в некоторой плоскости, можно выделить два класса прямых, играющих большую роль при решении всевозможных задач. Это прямые, которые называют горизонталями

Построение следов плоскости
Рассмотрим построение следов плоскости Р, которая задана парой пересекающихся прямых I и II (рис. 45). Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах

Различные положения плоскости
Плоскостью общего положения называется плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны

Прямая, параллельная плоскости
Может быть несколько положений прямой относительно некоторой плоскости. 1. Прямая лежит в некоторой плоскости. 2. Прямая параллельна некоторой плоскости. 3. Прямая пересе

Прямая, пересекающая плоскость
Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).

Призма и пирамида
Рассмотрим прямую призму, которая стоит на горизонтальной плоскости (рис. 56). Ее боковые гран

Цилиндр и конус
Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i, расположенной в одной плоскости с этой прямой. В случае, когда прямая m

Шар, тор и кольцо
Когда некоторая ось вращения I является диаметром окружности, то получается шаровая поверхность (рис. 66).

Линии, применяемые в черчении
В черчении применяют три основных типа линий (сплошные, штриховые и штрихпунктирные) различной толщины (рис. 76).

Расположение видов (проекций)
В черчении применяются шесть видов, которые изображены на рисунке 85. На рисунке показаны проекции буквы «Л».

Отступление от приведенных правил расположения видов
В некоторых случаях допускаются отступления от правил построения проекций. Среди этих случаев можно выделить следующие: частичные виды и виды, расположенные без проекционной связи с другими видами.

Число проекций, определяющих данное тело
Положение тел в пространстве, форма и размеры определяются обычно небольшим числом соответствующим образом подобранных точек. Если при изображении проекции какого-то тела обращать внимание

Вращение точки около оси, перпендикулярной плоскости проекций
На рисунке 91 дана ось вращения I, которая перпендикулярна горизонтальной плоскости, и произвольно расположенная в пространстве точка А. При вращении около оси I эта точка опис

Определение натуральной величины отрезка путем вращения
Отрезок, параллельный какой-нибудь плоскости проекций, проецируется на нее без искажения. Если повернуть отрезок таким образом, чтобы он стал параллельным одной из плоскостей проекций, то можно опр

Построение проекций фигуры сечения можно выполнить двояко
1. Можно найти точки встречи ребер многогранника с секущей плоскостью, после чего соединить проекции найденных точек. В результате этого получатся проекции искомого многоугольника. В этом случае це

Пирамида
На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р. На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью

Косые сечения
Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленит

Гипербола как сечение поверхности конуса фронтальной плоскостью
Пусть требуется построить сечение поверхности конуса, стоящего на горизонтальной плоскости, плоскостью Р, которая параллельна плоскости V. На рисунке 103 показана фронтальная

Сечение поверхности цилиндра
Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью: 1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основ

Сечение поверхности конуса
В общем случае круговая коническая поверхность включает в себя две совершенно одинаковые полости, которые имеют общую вершину (рис. 107в). Образующие одной полости представляют собой продолжение об

Сечение поверхности шара
Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций. В общем же случае мы б

Косые сечения
Пусть требуется построить натуральный вид сечения фронтально-проецирующей плоскостью тела. На рисунке 110а рассматривается тело, ограниченное тремя цилиндрическими поверхностями (1, 3 и 6), поверхн

Пирамида
Чтобы найти следы прямой на поверхности некоторого геометрического тела, нужно провести через прямую вспомогательную плоскость, затем найти сечение поверхности тела этой плоскостью. Искомыми будут

Цилиндрическая винтовая линия
Образование винтовой линии. Рассмотрим рисунок 113а на нем точка М двигается равномерно по некоторой окружности, которая представляет собой сечение круглого цилиндра плоскостью Р. Здесь эта плоскос

Два тела вращения
Метод проведения вспомогательных плоскостей применяется при построении линии пересечения поверхностей двух тел вращения. Суть этого метода заключается в следующем. Проводят вспомогательную плоскост

Сечения
Существуют некоторые определения и правила, которые относятся к сечениям. Сечение – это плоская фигура, которая была получена в результате пересечения данного тела некотор

Разрезы
Определения и правила, которые относятся к разрезам. Разрез – это такое условное изображение предмета, когда его часть, находящаяся между глазом наблюдателя и секущей плос

Частичный разрез или вырыв
Разрез называется полным, если изображаемый предмет рассекается целиком, остальные разрезы называются частичными, или вырывами. На рисунке 120 на виде слева и на плане сделаны полные разрезы. Приче