Основные законы геометрической оптики. Оптическая длина пути световой волны Геометрическая и оптическая длина пути светового излучения

Пусть в некоторой точке пространства О волна делится на две когерентные. Одна из них проходит путь S 1 в среде с показателем преломления n 1 , а вторая – путь S 2 в среде с показателем n 2 , после чего волны накладываются в точке Р. Если в данный момент времени t фазы волны в точке О одинаковы и равны j 1 =j 2 =wt , то в точке Р фазы волн будут равны соответственно

где v 1 и v 2 - фазовые скорости в средах. Разность фаз δ в точке Р будет равна

При этом v 1 =c /n 1 , v 2 =c /n 2 . Подставляя эти величины в (2), получим

Поскольку , где l 0 – длина волны света в вакууме, то

Оптической длиной пути L в данной среде называется произведение расстояния S , пройденного светом в среде, на абсолютный показатель преломления среды n :

L = S n .

Таким образом, из (3) следует, что изменение фазы определяется не просто расстоянием S , а оптической длиной пути L в данной среде. Если волна проходит несколько сред, то L=Σn i S i . Если среда является оптически неоднородной (n≠const), то .

Величину δ можно представить в виде:

где L 1 и L 2 – оптические длины пути в соответствующих средах.

Величину, равную разности оптических длин путей двух волн Δ опт = L 2 - L 1

называют оптической разностью хода . Тогда для δ имеем:

Сопоставление оптических длин пути двух интерферирующих волн позволяет предсказать результат их интерференции. В точках, для которых

будут наблюдаться максимумы (оптическая разность хода равна целому числу длин волн в вакууме). Порядок максимума m показывает, сколько длин волн в вакууме составляет оптическая разность хода интерферирующих волн. Если же для точек выполняется условие

Еще до установления природы света были известны следующие законы геометрической оптики (вопрос о природе света не рассматривался).

  • 1. Закон независимости световых лучей: эффект, производимый отдельным лучом, не зависит от того, действуют ли одновременно остальные лучи или они устранены.
  • 2. Закон прямолинейного распространения света: свет в однородной прозрачной среде распространяется прямолинейно.

Рис. 21.1.

  • 3. Закон отражения света: отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром, проведенным к границе раздела двух сред в точке падения; угол отражения /|" равен углу падения /, (рис. 21.1): i[ = i x .
  • 4. Закон преломления света (закон Снелля, 1621): падающий луч, преломленный луч и перпендикуляр

к поверхности раздела двух сред, проведенный в точке падения луча, лежат в одной плоскости; при преломлении света на границе раздела двух изотропных сред с показателями преломления п х и п 2 выполняется условие

Полное внутреннее отражение - это отражение светового луча от границы раздела двух прозрачных сред в случае его падения из оптически более плотной среды в оптически менее плотную среду под углом /, > / пр, для которого выполняется равенство

где « 21 - относительный показатель преломления (случай л, > п 2).

Наименьший угол падения / пр, при котором весь падающий свет полностью отражается в среду /, называется предельным углом полного отражения.

Явление полного отражения используется в световодах и призмах полного отражения (например, в биноклях).

Оптической длиной пути L между точками Ли В прозрачной среды называют расстояние, на которое свет (оптическое излучение) распространился бы в вакууме за то же время, за которое он проходит от А до В в среде. Так как скорость света в любой среде меньше его скорости в вакууме, то L всегда больше реально проходимого расстояния. В неоднородной среде

где п - показатель преломления среды; ds - бесконечно малый элемент траектории луча.

В однородной среде, где геометрическая длина пути света равна s, оптическая длина пути будет определяться как

Рис. 21.2. Пример таутохронных путей света (SMNS" > SABS")

Три последних закона геометрической оптики можно получить из принципа Ферма (ок. 1660): в любой среде свет распространяется по такому пути, для прохождения которого ему требуется минимальное время. В случае, когда это время является одинаковым для всех возможных путей, все пути света между двумя точками называются таутохронными (рис. 21.2).

Условию таутохронизма удовлетворяют, например, все пути лучей, проходящих через линзу и дающих изображение S" источника света S. Свет распространяется по путям неравной геометрической длины за одно и то же время (рис. 21.2). Именно то, что испущенные из точки S лучи одновременно и через наименьшее возможное время собираются в точке S", позволяет получить изображение источника S.

Оптическими системами называется совокупность оптических деталей (линз, призм, плоскопараллельных пластинок, зеркал и т.п.), скомбинированных для получения оптического изображения или для преобразования светового потока, идущего от источника света.

Различают следующие типы оптических систем в зависимости от положения предмета и его изображения: микроскоп (предмет расположен на конечном расстоянии, изображение - на бесконечности), телескоп (и предмет, и его изображение находятся в бесконечности), объектив (предмет расположен в бесконечности, а изображение - на конечном расстоянии), проекционная система (предмет и его изображение расположены на конечном расстоянии от оптической системы). Оптические системы находят применение в технологическом оборудовании для оптической локации, оптической связи и т.д.

Оптические микроскопы позволяют исследовать объекты, размеры которых меньше минимального разрешения глаза, равного 0,1 мм. Использование микроскопов дает возможность различать структуры с расстоянием между элементами до 0,2 мкм. В зависимости от решаемых задач микроскопы могут быть учебными, исследовательскими, универсальными и т.д. Например, как правило, металлографические исследования образцов металлов начинаются с помощью метода световой микроскопии (рис. 21.3). На представленной типичной микрофотографии сплава (рис. 21.3, а) видно, что поверхность фольг сплава алюминия с медью со-


Рис. 21.3. а - зеренная структура поверхности фольги сплава А1-0,5 ат.% Си (Шепелевич и др., 1999); б - поперечное сечение по толщине фольги сплава А1-3,0 ат.% Си (Шепелевич и др., 1999) (гладкая сторона - сторона фольги, контактирующая с подложкой при затвердевании) держит области более мелких и более крупных зерен (см. подтему 30.1). Анализ зеренной структуры шлифа поперечного сечения толщины образцов показывает, что микроструктура сплавов системы алюминий - медь изменяется по толщине фольг (рис. 21.3, б).

МИНИМАЛЬНЫЙ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО ФИЗИКЕ (РАЗДЕЛ “ОПТИКА, ЭЛЕМЕНТЫ АТОМНОЙ И ЯДЕРНОЙФИЗИКИ”) ДЛЯ ЗАОЧНИКОВ

1. Световое излучение и его характеристики

Свет представляет собой материальный объект, обладающий двойственной природой (корпускулярно-волновым дуализмом). В одних явлениях свет ведёт себя как электромагнитная волна (процесс колебаний электрических и магнитных полей распространяющийся в пространстве), в других – как поток особых частиц - фотонов или квантов света .

В электромагнитной волне вектора напряжённости электрического поля E, магнитного поля H и скорость распространения волны V взаимно перпендикулярны и образуют правовинтовую систему.

Вектора E и H колеблются в одной фазе. Для волны выполняется условие:

При взаимодействии световой волны с веществом наибольшую роль играет электрическая составляющая волны (магнитная составляющая в немагнитных средах влияет слабее), поэтому вектор E (напряжённость электрического поля волны) называют световым вектором и его амплитуду обозначают А.

Характеристикой переноса энергии световой волны является интенсивность I – это количество энергии переносимое за единицу времени световой волной через единицу площади, перпендикулярной направлению распространения волны. Линию, по которой распространяется энергия волны, называется лучом .

2. Отражение и преломление плоской волны на границе 2-х диэлектриков. Законы отражения и преломления света.

Закон отражения света : луч падающий, луч отражённый и нормаль к границе раздела

сред в точке падения лежат в одной плоскости. Угол падения равен углу отражения (α =β ). Причём падающий и отражённый лучи лежат по разные стороны нормали.

Закон преломления света : луч падающий, луч преломлённый и нормаль к границе раздела сред в точке падения лежат в одной плоскости. Отношение синуса угла падения к синусу угла преломления – величина постоянная для данных двух сред и называется относительным показателем преломления или показателем преломления второй среды относительно первой.

sin α / sin γ = n21 = n2 / n1

где n 21 - относительный показатель преломления второй среды относительно первой,

n 1, n 2 - абсолютные показатели преломления первой и второй сред (т.е. показатели преломления сред по отношению к вакууму).

Среду, у которой показатель преломления больше, называют оптически более плотной . При падении луча из оптически менее плотной в оптически более плотную среду (n2 >n1 )

угол падения больше угла преломления α>γ (как на рис.).

При падении луча из оптически более плотной в оптически менее плотную среду (n 1 > n 2 ) угол падения меньше угла преломления α< γ . При некотором угле падения

преломленный луч будет скользящим к поверхности (γ =90о ). Для углов больше этого угла падающий луч полностью отражается от поверхности (явление полного внутреннего отражения ).

Относительный показатель n21

и абсолютные показатели преломления сред n1 и n2 можно

также выразить через скорости света в средах

n 21 =

n 1 =

Где с - скорость света в вакууме.

3. Когерентность. Интерференция световых волн. Интерференционная картина от двух источников.

Когерентность – согласованное проникание двух или более колебательных процессов. Когерентные волны при сложении создают интерференционную картину. Интерференция – процесс сложения когерентных волн, заключающийся в перераспределении энергии световой волны в пространстве, которое наблюдается в виде тёмных и светлых полос.

Причина отсутствия наблюдения интерференции в жизни – это некогерентность естественных источников света. Излучение таких источников образуется совокупностью излучений отдельных атомов, каждый из которых в течение ~10-8 с испускает «обрывок» гармонической волны, который называется цугом .

Когерентные волны от реальных источников можно получить, разделяя волну одного источника на два и более, затем, давая возможность им пройти разные оптические пути, свести их в одной точке на экране. Пример – опыт Юнга.

Оптическая длина пути световой волны

L = n l ,

где l - геометрическая длина пути световой волны в среде с показателем преломления п.

Оптическая разность хода двух световых волн

∆ = L 1 −L 2 .

Условие усиления света (максимумов) при интерференции

∆ = ± k λ , где k=0, 1, 2, 3 , λ - длина световой волны.

Условие ослабления света (минимумов)

∆ = ± (2 k + 1 ) λ 2 , где k=0, 1, 2, 3 ……

Расстояние между двумя интерференционными полосами, создаваемыми двумя когерентными источниками света на экране, расположенном параллельно двум когерентным источникам света

∆y = d L λ ,

где L - расстояние от источников света до экрана, d - расстояние между источниками

(d <

4. Интерференция в тонких пленках. Полосы равной толщины, равного наклона, кольца Ньютона.

Оптическая разность хода световых волн, возникающая при отражении монохроматического света от тонкой пленки

∆ = 2 d n 2 −sin 2 i ± λ 2 или ∆ = 2 dn cos r ± λ 2

где d - толщина пленки; n - показатель преломления пленки; i - угол падения; r - угол преломления света в пленке.

Если зафиксировать угол падения i и взять плёнку переменной толщины, то для определённых участков с толщиной d реализуются интерференционные полосы равной

толщины. Эти полосы можно получить, если направить параллельный пучок света на пластинку с разной толщиной в разных местах.

Если на плоскопараллельную пластинку (d = const) направить расходящийся пучок лучей (т.е. пучок, который обеспечит различные углы падения i ), то при наложении лучей, падающих под определенными одинаковыми углами, будут наблюдаться интерференционные полосы, которые называют полосами равного наклона

Классический пример полос равной толщины – кольца Ньютона . Они образуются, если на плосковыпуклую линзу, лежащую на стеклянной пластине, направить монохроматический пучок света. Кольца Ньютона представляют собой интерференционные полосы от областей с равной толщиной воздушного промежутка между линзой и пластинкой.

Радиус светлых колец Ньютона в отраженном свете

где k =1, 2, 3 …… - номер кольца; R - радиус кривизны. Радиус темных колец Ньютона в отраженном свете

r k = kR λ , где k =0, 1, 2, 3 …….

5. Просветление оптики

Просветление оптики – состоит в том, что на поверхность стеклянной детали наносится тонкая прозрачная плёнка, которая за счёт интерференции устраняет отражение падающего света, повышая, таким образом, светосилу прибора. Показатель преломления

просветляющей пленки n должен быть меньше показателя преломления стеклянной детали

n об . Толщина этой просветляющей пленки находится из условия ослабления света при интерференции по формуле

d min = 4 λ n

6. Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Векторная диаграмма зон Френеля. Дифракция Френеля на простейших преградах (круглом отверстии).

Дифракция света это совокупность явлений, заключающихся в перераспределении светового потока при прохождении световой волны в средах с резкими неоднородностями. В узком смысле дифракция – это огибание волнами препятствий. Дифракция света приводит к нарушению законов геометрической оптики, в частности – законов прямолинейного распространения света.

Между дифракцией и интерференцией нет принципиальной разницы, т.к. оба явления приводят к перераспределению энергии световой волны в пространстве.

Различают дифракцию Фраунгофера и дифракцию Френеля.

Дифракция Фраунгофера – дифракция в параллельных лучах. Наблюдается когда экран или точка наблюдения расположены далеко от препятствия.

Дифракция Френеля – это дифракция в сходящихся лучах. Наблюдается на близком расстоянии от препятствия.

Качественно явление дифракции объясняется принципом Гюйгенса : каждая точка фронта волны становит источником вторичных сферических волн, а новый фронт волны представляет собой огибающую этих вторичных волн.

Френель дополнил принцип Гюйгенса идеей о когерентности и интерференция этих вторичных волн, что дало возможность рассчитывать интенсивность волны для разных направлений.

Принцип Гюйгенса-Френеля : каждая точка фронта волны становится источником когерентных вторичных сферических волн, а новый фронт волны образуется в результате интерференции этих волн.

Френель предложил симметричные волновые поверхности разбивать на особые зоны, расстояния от границ которых до точки наблюдения различаются на λ/2. Соседние зоны действуют в противофазе, т.е. амплитуды, создаваемые соседними зонами в точке наблюдения, вычитаются. Для нахождения амплитуды световой волны в методе зон Френеля используется алгебраическое сложение амплитуд, создаваемых в этой точке зонами Френеля.

Радиус внешней границы m -ой кольцевой зоны Френеля для сферической волновой поверхности

r m = m a ab + b λ ,

где a –расстояние от источника света до волновой поверхности, b – расстояние от волновой поверхности до точки наблюдения.

Векторная диаграмма зон Френеля представляет собой спираль. Использование векторной диаграммы упрощает нахождение амплитуды результирующего колебания

напряженности электрического поля волны A (и, соответственно, интенсивности I ~A 2 ) в центре дифракционной картины при дифракции световой волны на различных препятствиях. Результирующий вектор А от всех зон Френеля представляет собой вектор, соединяющих начало и конец спирали.

При дифракции Френеля на круглом отверстии в центре дифракционной картины будет наблюдаться тёмное пятно (минимум интенсивности), если в отверстии укладывается чётное число зон Френеля. Максимум (светлое пятно) наблюдается, если в отверстии укладывается нечётное число зон.

7. Дифракция Фраунгофера на щели.

Угол ϕ отклонения лучей (угол дифракции), соответствующий максимуму (светлая полоса) при дифракции на одной узкой щели, определяется из условия

b sin ϕ = (2 k + 1) λ 2 , где k= 1, 2, 3,...,

Угол ϕ отклонения лучей, соответствующий минимуму (темная полоса) при дифракции на узкой щели, определяется из условия

b sin ϕ = k λ , где k= 1, 2, 3,...,

где b - ширина щели; k - порядковый номер максимума.

Зависимость интенсивности I от угла дифракции ϕ для щели имеет вид

8. Дифракция Фраунгофера на дифракционной решетке.

Одномерная дифракционная решётка представляет собой систему из периодически расположенных прозрачных и непрозрачных для света областей.

Прозрачная область – это щели шириной b . Непрозрачные области – щели с шириной a . Величина a+b=d называется периодом (постоянной ) дифракционной решётки. Дифракционная решётка разбивает световую волну, падающую на неё на N когерентных волн (N – общее количество целей в решётке). Дифракционная картина является результатом наложения дифракционных картин от всех отдельных щелей.

В направлениях, в которых волны от щелей усиливают друг друга, наблюдаются главные максимумы .

В направлениях, в которых ни одна из щелей не посылает свет (для щелей наблюдаются минимумы) образуются абсолютные минимумы.

В направлениях, где волны от соседних щелей «гасят» друг друга, наблюдается

вторичные минимумы.

Между вторичными минимумами наблюдаются слабые вторичные максимумы .

Зависимость интенсивности I от угла дифракции ϕ для дифракционной решетки имеет вид

− 7 λ

− 5 λ − 4 λ −

4 λ 5 λ

d d λ

− b

Угол ϕ отклонения лучей, соответствующий главному максимуму (светлая полоса) при дифракции света на дифракционной решетке, определяется из условия

d sin ϕ = ± m λ , где m= 0, 1, 2, 3,...,

где d - период дифракционной решетки, m - порядковый номер максимума (порядок спектра).

9. Дифракция на пространственных структурах. Формула Вульфа - Брэгга.

Формула Вульфа - Брэгга описывает дифракцию рентгеновских лучей на

кристаллах с периодическим расположением атомов в трех измерениях

1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

2. Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :

где , , λ – длина волны света в вакууме.

3. Если оптические длины пути двух лучей равны, , то такие пути называются таутохронными (не вносящими разности фаз). В оптических системах, дающих стигматические изображения источника света, условию таутохронности удовлетворяют все пути лучей, выходящих из одной и той же точки источника и собирающихся в соответствующей ей точке изображения.

4. Величина называется оптической разностью хода двух лучей. Разность хода связана с разностью фаз :

Если два световых луча имеют общие начальную и конечные точки, то разность оптических длин путей таких лучей называют оптической разностью хода

Условия максимумов и минимумом при интерференции.

Если колебания вибраторов А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Условия максимума:

Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн)

Δd = kλ, где k = 0, 1, 2, ..., то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума :

Амплитуда результирующего колебания А = 2x 0 .

Условие минимума:

Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от вибраторов А и Б придут в точку С в противофазе и погасят друг друга: амплитуда результирующего колебания А = 0.

Условие минимума :

Если Δd не равно целому числу полуволн, то 0 < А < 2х 0 .

Явление дефракции света и условия ее наблюдения.

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях - как расширение угла распространения волновых пучков или их отклонение в определённом направлении;

в разложении волн по их частотному спектру;

в преобразовании поляризации волн;

в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Одним из важных частных случаев дифракции является дифракция сферической волны на каких-нибудь препятствиях (например, на оправе объектива). Такая дифракция называется дифракцией Френеля.

Принцип Гюйгенса – Френеля.

Согласно принципу Гюйгенса-Френеля световая волна, возбуждаемая каким-либо источником S может быть представлена как результат суперпозиции когерентных вторичных волн. Каждый элемент волновой поверхности S (рис.) служит источником вторичной сферической волны, амплитуда которой пропорциональна величине элемента dS .

Амплитуда этой вторичной волны убывает с расстоянием  r от источника вторичной волны до точки наблюдения по закону 1/r . Следовательно, от каждого участка dS волновой поверхности в точку наблюдения Р приходит элементарное колебание:

Где (ωt + α 0 ) − фаза колебания в месте расположения волновой поверхности S , k − волновое число, r − расстояние от элемента поверхности dS до точки P , в которую приходит колебание. Множитель а 0 определяется амплитудой светового колебания в месте наложения элемента dS . Коэффициент K зависит от угла φ между нормалью к площадке dS и направлением на точку Р . При φ = 0 этот коэффициент максимален, а при φ/2 он равен нулю.
Результирующее колебание в точке  Р представляет собой суперпозицию колебаний (1), взятых для всей поверхности S :

Эта формула является аналитическим выражением принципа Гюйгенса-Френеля. 

Оптическая длина пути

Оптической длиной пути между точками А и В прозрачной среды называется расстояние, на которое свет (Оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Оптической длиной пути в однородной среде называется произведение расстояния, пройденного светом в среде с показателем преломления n, на показатель преломления:

Для неоднородной среды необходимо разбить геометрическую длину на столь малые промежутки, что можно было бы считать на этом промежутке показатель преломления постоянным:

Полная оптическая длина пути находится интегрированием :


Wikimedia Foundation . 2010 .

Смотреть что такое "Оптическая длина пути" в других словарях:

    Произведение длины пути светового луча на показатель преломления среды (путь, который прошел бы свет за то же время, распространяясь в вакууме) … Большой Энциклопедический словарь

    Между точками А и В прозрачной среды, расстояние, на к рое свет (оптическое излучение) распространился бы в вакууме за то же время, за какое он проходит от А до В в среде. Поскольку скорость света в любой среде меньше его скорости в вакууме, О. д … Физическая энциклопедия

    Кратчайшее расстояние, которое проходит волновой фронт излучения передатчика от его выходного окна до входного окна приемника. Источник: НПБ 82 99 EdwART. Словарь терминов и определений по средствам охранной и пожарной защиты, 2010 … Словарь черезвычайных ситуаций

    оптическая длина пути - (s) Сумма произведений расстояний, проходимых монохроматическим излучением в различных средах, на соответствующие показатели преломления этих сред. [ГОСТ 7601 78] Тематики оптика, оптические приборы и измерения Обобщающие термины оптические… … Справочник технического переводчика

    Произведение длины пути светового луча на показатель преломления среды (путь, который прошёл бы свет за то же время, распространяясь в вакууме). * * * ОПТИЧЕСКАЯ ДЛИНА ПУТИ ОПТИЧЕСКАЯ ДЛИНА ПУТИ, произведение длины пути светового луча на… … Энциклопедический словарь

    оптическая длина пути - optinis kelio ilgis statusas T sritis fizika atitikmenys: angl. optical path length vok. optische Weglänge, f rus. оптическая длина пути, f pranc. longueur de trajet optique, f … Fizikos terminų žodynas

    Оптический путь, между точками А и В прозрачной среды; расстояние, на которое свет (Оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Поскольку скорость света в любой среде меньше его скорости в… … Большая советская энциклопедия

    Произведение длины пути светового луча па показатель преломления среды (путь, к рый прошёл бы свет за то же время, распространяясь в вакууме) … Естествознание. Энциклопедический словарь

    Понятие геом. и волновой оптики, выражается суммой произведений расстояний! проходимых излучением в разл. средах, на соответствующие показатели преломления сред. О. д. п. равна расстоянию, к рое свет прошёл бы за то же время, распространяясь в… … Большой энциклопедический политехнический словарь

    ДЛИНА ПУТИ между точками А и В прозрачной среды расстояние, на к рое свет (оптич. излучение) распространился бы в вакууме за то же время, за какое он проходит от А до В в среде. Поскольку скорость света в любой среде меньше его скорости в вакууме … Физическая энциклопедия