Путешествие в бездну. «Вояджер» и «Пионер» - спутники покинувшие Солнечную систему

November 14th, 2016 , 10:45 pm

Космический зонд «Вояджер-2», по необъяснимым причинам посылает на Землю сигналы на неизвестном человечеству языке.

Космический аппарат «Вояджер-2» американцы запустили в космос ещё в августе 1977 года, для исследования планет Солнечной системы. В январе 1986 года «Вояджер-2» достиг Урана, а в августе 1989 года он был на Нептуне.
Научные работники НАСА рассчитали, что их космический зонд сейчас находится приблизительно в 15 млрд километров от Земли. А с летательным аппаратом по их словам, происходит нечто странное.

Представители американского национального космического агентства заявили, что «Вояджер-2» по никому не понятным причинам изменил кодировку сообщений, которые отправлял на Землю. Эксперты уверяют, что сам по себе аппарат не мог изменить кодировку передаваемого сигнала.

Уфологи, услышав данное заявление, незамедлительно предположили, что зонд был захвачен представителями внеземной цивилизации, и сейчас инопланетяне посылают на Землю зашифрованные послания.

Астрофизик Кевин Бэйнс, работающий в НАСА более 30 лет, сообщает, что «Вояджер-2» как бы самопроизвольно начал посылать сигналы не неизвестном учёным языке. И по его заверениям, сам он изменить кодировку никак не мог.
Получается что сотрудники НАСА признают, что кто-то извне изменил систему связи аппарата. Но вопрос кто же может сделать такое в далёком космосе остаётся открытым.

«ВОЯДЖЕР»: САМЫЙ БЫСТРЫЙ КОСМИЧЕСКИЙ АППАРАТ ВО ВСЕЛЕННОЙ

19 января 2006 года земляне запустили зонд «Новые горизонты» — автоматическую межпланетную станцию, которая должна будет изучить Плутон, Харон и объект в поясе Койпера. Полная миссия аппарата рассчитана на 15—17 лет. Окрестности Земли «Новые горизонты» покинул с самой большой скоростью среди известных космических аппаратов — 16,26 км/с относительно Земли. Гелиоцентрическая скорость — 45 км/с, что позволило бы аппарату уйти из Солнечной системы без гравитационного маневра. Однако есть в этой Вселенной аппарат, созданный руками человека, который летит еще быстрее и равных ему в скорости пока нет.

Два космических зонда Voyager побили все рекорды по пройденным расстояниям. Они отправили нам фотографии Юпитера, Сатурна и Нептуна и продолжают двигаться прочь из Солнечной системы. 22 февраля 2014 года «Вояджер-1» находился на расстоянии около 19 миллиардов километров от Земли и по-прежнему отсылает нам данные — 10 часов они идут от зонда к нашей планете. Несколько лет назад мы писали, что «Вояджер-1» покинул Солнечную систему. Как зондам удается передавать данные так далеко?

Космический корабль «Вояджер» использует 23-ваттный радиопередатчик. Это больше, чем у обычного мобильного телефона, но в общем порядке вещей этот передатчик достаточно маломощный. Большие радиостанции на Земле передают десятки тысяч ватт, но все равно сигнал достаточно слабый.

Ключом к успеху, благодаря которому сигнал будет доходить вне зависимости от мощности радиопередатчика, стала комбинация трех вещей:

Очень большие антенны.
Направленные друг на друга антенны (земная и вояджеровская).
Радиочастоты с малым количеством помех.
Антенны, которые использует «Вояджер», достаточно велики. Вы наверняка видели спутниковые тарелки у любителей телевидения. Обычно они 2—3 метра в диаметре. У антенны «Вояджера» диаметр 3,7 метра, и она передает данные, которые принимает 34-метровая антенна на Земле. Антенна «Вояджера» и антенна Земли направлены прямо друг на друга. Всенаправленная маленькая антенка вашего телефона и 34-метровый гигант — совершенно разные вещи.

Спутники «Вояджер» передают данные в 8-гигагерцевом диапазоне, на этой частоте мало помех. Антенна на Земле задействует мощный усилитель и получает сигнал. После этого отправляет сообщение обратно на зонд с помощью мощнейшего передатчика, чтобы «Вояджер» наверняка получил сообщение.

На передовой
«Вояджер-1» передает данные на Землю с 1977 года. Но члены команды, контролирующей миссию в Лаборатории реактивного движения NASA, не так давно обрадовали нас интересной новостью. 12 сентября 2013 года NASA подтвердило, что зонд вступил в область гелиопаузы, где солнечный ветер нашего Солнца уже не так силен, чтобы сталкиваться с солнечными ветрами соседних звезд. В этот момент «трехосный магнитометр» зафиксировал изменение магнитного поля, перпендикулярного направлению движения зонда. «Вояджер-1» стал первым объектом техногенного происхождения, покинувшим Солнечную систему.

Золотая Запись на борту «Вояджера»: 117 изображений Земли, приветствие на 54 языках, земные звуки

Циники — как и большинство астрономов, космологов и само NASA — говорят, что граница Солнечной системы определяется как точка, где объект перестает подвергаться воздействию солнечной гравитации. Но гравитация, как вы знаете, определяет Вселенную в огромных масштабах. И эта точка располагается на дистанции в 50 000 раз большей, чем расстояние от Солнца до Земли. «Вояджер-1» проехал 123 расстояния от Земли до Солнца (примерно 18 миллиардов километров). И ему понадобится еще 14 000 лет, чтобы при нынешней его скорости покинуть гравитационный захват Солнца.

Ничто не мешает программе «Вояджер» делать отличные наблюдения. «Вояджер-1» и его двойник, «Вояджер-2», вылетевший на 15 дней раньше, но опоздавший из-за экскурсии к Урану и Нептуну, обнаружили следы четырех газовых гигантов и множество странных астрономических явлений. И хотя «Вояджер-1» некоторое время оставался в пределах Солнечной системы, он вошел в зону, где заряженные частицы солнечного ветра сменятся пылью и другими материалами, заполняющими пространство между звездами.

За годы «Вояджеры» обнаружили ряд астрономических сюрпризов. Один из последних появился летом 2012 года, когда «Вояджер-1» обнаружил ранее неизвестное явление под названием «магнитное шоссе». В этом регионе, как показали инструменты на борту зонда, сталкиваются солнечное и межзвездное магнитные поля. Эдвард Стоун, главный по программе «Вояджера» с 1972 года, объяснил, что это происходит, когда частицы с низкой энергией внутри «гелиосферы» подменяются более высокоэнергетичными частицами из космоса.

Создатели зондов рассчитывали, что те будут достаточно крепкими и прочными, чтобы выдержать все капризы космоса. Особенно во время близкого подлета к Юпитеру и Сатурну, а также экскурсиям к Урану и Нептуну в исполнении «Вояджера-2». Поэтому когда в 1973 году «Пионер-10» измерил радиацию вокруг Урана и Нептуна и обнаружил, что она выше, чем ожидалось, команда Стоуна потратила 9 месяцев на замену и реконструкцию каждого элемента зонда, который может пострадать. Конечно, зонды были спроектированы с избыточным запасом прочности. Например, каждый из зондов несет по две копии трех отдельных компьютерных систем. Но пока что мало какие бортовые системы нуждаются в перезагрузке. Можно с уверенностью сказать, что Стоун по-отцовски гордится своим творением и его подвигами.

Забота, с которой зонды делали здесь, на Земле, тоже сыграла свою роль в успехе миссии. Когда основной и дополнительный приемники на «Вояджере-2» отказали спустя год от начала миссии, земная команда активировала резервную систему, которая работает и по сей день. В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.

Команда ученых регулярно обновляет систему управления для обеспечения оптимального использования ресурсов зондов во время их активной работы. Только за юпитерианскую фазу «Вояджера-1» это сделали 18 раз. Возьмем, к примеру, передачу данных. Когда «Вояджеры» облетали Юпитер и Сатурн, зонды были достаточно близки к Земле, чтобы послать несжатое изображение и другие данные на относительно высокой скорости передачи: 115 000 и 45 000 бит в секунду соответственно. Но поскольку сила сигнала изменяется обратно пропорционально квадрату расстояния между передатчиками, во время исследования Урана «Вояджер-2» передавал данные со скоростью 9000 бит/сек. У Нептуна число упало до 3000, тем самым уменьшив количество фотографий и данных, которые можно отправить домой.

Большинство резервных компьютеров включаются в работу, когда основная терпит крушение. Однако одна из вспомогательных систем зондов была активирована и работала совместно с основной. Это позволило отправлять 640-килобайтные изображения Урана с потерей качества после сжатия всего до 256 килобайт.

Как говорится, все гениальное — просто. Команда Стоуна экипировала зонды передовым аппаратным обеспечением под названием дешифратор Рида — Соломона. Устройство значительно снижает уровень погрешности, мешающий корректному прочтению сообщений в случае потерь отдельных битов. Первоначально «Вояджер» использовал старую и хорошо проверенную систему, которая отсылала один бит, «корректирующий ошибки», на каждый бит в сообщении. Дешифратор Рида — Соломона правил одним битом пять других. Забавно то, что в 1977 году способ дешифрации скорректированных данных по методу Рида — Соломона еще не существовал. К счастью, к тому времени, когда «Вояджер-2» достиг Урана в 1986 году, все было готово.

Знаменитый снимок Земли «Pale Blue Dot» 1990 года: последняя миссия «Вояджера-1». 6 миллиардов километров

В настоящее время данные, которые приходят от «Вояджеров» на радиотелескопы по всему земному шару, идут со скоростью всего 160 бит в секунду. Это решение было принято сознательно, чтобы поддерживать постоянную скорость на протяжении всей миссии. Основные камеры были отключены после пролета последней планеты Солнечной системы, активными остались только несколько инструментов. Каждые шесть месяцев на протяжении 30 минут данные с 8-контактной цифровой ленты переносятся в сжатый архив на скорости 1400 бит в секунду.

Радиоизотопные термоэлектрические генераторы на основе плутония-238 будут поддерживать работу инструментов минимум до 2021 года. А к 2025 году после почти полувекового путешествия туда, где нет ничего человеческого, команда отключит зонды и будет сообщаться с ними в немного сентиментальной односторонней манере, чтобы «Вояджеры» верно шли своим курсом. И они будут лететь все дальше и дальше во тьму.

«Вояджер-1» несет достаточно ядерного топлива, чтобы продолжать служить во благо науки до 2025 года, а после смерти плыть по течению. По своей нынешней траектории зонд в конце концов должен оказаться в 1,5 световых годах от нас у звезды Camelopardalis в северном созвездии, которое выглядит чем-то средним между жирафом и верблюдом. Никто не знает, есть ли планеты возле этой звезды и обоснуют ли инопланетяне там резиденцию к моменту прибытия зонда.

36 лет назад в космос был запущен космический аппарат “Вояджер-2”. И хотя в последние годы его более быстро летящий брат-близнец “Вояджер-1” куда больше на слуху (чего стоят одни споры насчет того, вышел он за пределы Солнечной системы или нет), не стоит забывать что “Вояджер-2” по-прежнему удерживает уникальное достижение - еще ни одному космическому аппарату ни до, ни после него не удавалось изучить одним заходом четыре планеты Солнечной системы. Причем, если к Сатурну и Юпитеру позже запускались другие аппараты, то Уран и Нептун с тех пор больше никто не посещал. Так что неизвестно, сколько еще десятилетий нам придется довольствоваться той информацией, что передал “Вояджер-2”.

Замысел


А началось все в конце 60-х годов. Благодаря тому, что все планеты-гиганты удачно расположились в сравнительно узком секторе, образовав своего рода гигантскую "дугу" (такое событие бывает раз в 175 лет), инженеры NASA задумали миссию, которая смогла одним бы заходом изучить все четыре планеты за очень короткий промежуток времени используя их гравитационное поле для ускорения.


Один из авторов и бессменный руководитель программы "Вояджер" профессор Эд Стоун. Что интересно, большинство нынешних участников проекта родилось позже, чем были запущены сами аппараты.

Изначальный план состоял в том, чтобы отправить в космос четыре космических корабля - но из-за значительного урезания бюджета NASA в начале 70-х, деньги были выделены только на два зонда, которые должны были изучить Юпитер и Сатурн. К счастью, создателям аппарата удалось добиться плана полета, предусматривающего возможность продления миссии "Вояджера-2" для изучения Урана и Нептуна. Для этого требовалось, чтобы “Вояджер-1” полностью выполнил все поставленные перед им задачи. К счастью, “Вояджер-1” сработал безупречно.

Старт

В соответствии с практикой тех лет, всего было построено три аппарата с бортовыми номерами VGR 77-1, VGR 77-2 и VGR 77-3. Последний был резервным, на тот случай если на каком-то из основных аппаратов будут обнаружены неполадки. Эта практика полностью себя оправдала когда на испытаниях аппарата с номером VGR 77-2 возникли проблемы - и потому его пришлось заменить на VGR 77-3, который и был запущен 20 августа 1977 года и известен теперь как "Вояджер-2".

Через две недели, 5 сентября 1977 года стартовал "Вояджер-1". Кому-то может показаться странным, что аппарат с номером 2 стартует раньше чем номер 1 - но первый "Вояджер" шел по более быстрой и экономичной траектории, и потому вскоре обогнал своего “брата”. VGR 77-2 же остался на Земле и сейчас инженеры отрабатывают на нем все команды, перед тем как передать их непосредственно на сами аппараты.

Юпитер


Зонд достиг Юпитера в июле 1979 году. “Вояджер-2” более близко подошёл к Европе и Ганимеду, чем “Вояджер-1” - переданные им снимки позволили выдвинуть гипотезу о существовании жидкого океана под поверхностью Европы.




Слева направо и сверху вниз: Ио, Европа, Ганимед, Каллисто


Обследование самого крупного спутника в Солнечной системе Ганимеда, показало, что он покрыт корой "грязного" льда, а его поверхность значительно старше поверхности Европы. Кроме того, пролетая мимо спутника Юпитера Ио, "Вояджер-2" подтвердил его продолжающуюся вулканическую активность, которая по словам Эда Стоуна является его персонально самым любимым открытием, сделанным в ходе миссии.


Ио на фоне Юпитера

Сатурн


Август 1981 года. Аппарат пролетает вблизи Сатурна и передает подробные фотографии газового гиганта, его колец и спутников (в том числе, Тефии, Япета и Энцелада).


Энцелад и Япет



На фотографии справа изображен фрагмент колец Сатурна. На фотографии слева - прощальное фото навсегда покидавшего нашу систему "Вояджера-1".

Уран

В январе 1985 года "Вояджер-2" пролетел вблизи Урана, передав на Землю тысячи снимков планеты, его спутников и колец. Благодаря этим фотографиям, учёные обнаружили 10 новых спутников, два новых кольца и исследовали девять уже известных.


Кольца Урана

Сам Уран получился достаточно невыразительным на фотографиях в видимом спектре, но вот снимки его спутников, в частности Миранды, удивили исследователей.


Слева направо: Миранда, Ариэль, Умбриэль, Титания и Оберон

До этого считалось что маленькие спутники быстро охлаждаются после своего образования, и представляют собой однообразную пустыню, испещрённую кратерами. Однако выяснилось, что на поверхности Миранды пролегают долины и горные хребты, среди которых были заметны скалистые утёсы. Это говорит о том, что история луны богата тектоническими и термальными явлениями.



На фотографии слева - Титания. Справа - Миранда.


"Прошальное" фото Урана

Нептун


24 августа 1989 года аппарат пролетел в 48 тыс. км от поверхности Нептуна, который с 2008 года считается последней планеты Солнечной системы. Несмотря на то, что к тому моменту полет длился уже 12 лет, отклонение корабля от начального графика составило всего несколько минут.

Были получены красивые снимки Нептуна и его уникального путника Тритона. На Тритоне были обнаружен криовулканизм, что стало большой неожиданностью для всех участников проекта.


"Вояджер-2" покидает Нептун и Тритон. Одна из последних сделанных аппаратом фотографий

Технические проблемы и их решение

Поскольку полёт «Вояджера-2» продлился гораздо дольше, чем было запланировано, ученым сопровождавшим миссию, пришлось решить огромное количество технических проблем. Заложенные изначально правильные подходы к конструированию аппаратов позволили это сделать. К наиболее значимым и успешно решённым проблемам можно отнести:

*Выход из строя компенсатора частоты сигнала радиопередатчика. Это устройство должно было подстраивать несущую частоту радиопередатчика в связи с тем, что она, у двигающегося со скоростью порядка 11,5 км/с аппарата, испытывает значительное смещение Допплера. Проблема была решена созданием в максимально сжатые сроки земного аналога этого устройства, но уже для наземного приёмного комплекса, работающего до сих пор. Без него связь с аппаратом была бы невозможна.

*Выход из строя одной из ячеек оперативной памяти бортовой ЭВМ — программу удалось переписать и загрузить так, что этот бит перестал влиять на нее.

*На определённом участке полёта применявшаяся система кодирования управляющего сигнала уже переставала отвечать требованиям достаточной помехозащищённости из-за ухудшения отношения сигнал/шум. В бортовую ЭВМ была загружена новая программа, осуществлявшая кодирование гораздо более защищённым кодом (был применён двойной код Рида — Соломона). Самое интересное то, что в 1977 году этот способ кодировки еще не существовал.

*В 2010 году, получив искаженное сообщение от зонда, команда провела тщательный дамп памяти, используя один из резервных компьютеров, и выяснила, что один бит в программе изменился с 0 на 1. Перезагрузка программы все исправила.

*При пролёте плоскости колец Сатурна бортовая поворотная платформа с телекамерами была заклинена, возможно, частицей этих колец. Осторожные попытки поворота её несколько раз в противоположные стороны позволили, в конце концов, разблокировать платформу.

*Падение мощности питающих изотопных элементов потребовало составления сложных циклограмм работы бортового оборудования, часть которого начали время от времени отключать, чтобы предоставить другой части достаточно электроэнергии.

*Огромное удаление аппарата от Земли потребовало многократной модернизации наземного приёмо-передающего комплекса, чтобы принимать слабеющий сигнал.

Планета X

Данные полученные "Вояджером-2" позволили ученым положить конец почти вековой дискуссии о существовании т.н. Планеты X - гипотетического небесного тела, оказывающего необъяснимое влияние на орбиту Урана. Поиски этого тела в свое время привели к открытию Плутона - но когда выяснилось, что его масса составляет лишь 0,002% от земной, стало понятно, что он никак не может вызывать такие отклонения.

Точка в этой истории была поставлена в 1994 году, когда по результатам уточнения массы Нептуна, проведенного на основании анализа данных полученных “Вояджером-2”, выяснилось что она на 0,5% меньше расчетной (разница была сопоставима с массой Марса). В результате исчезли несоответствия в орбите Урана, а с ними и надобность в Планете X.

Настоящее и будущее

В настоящее время, "Вояджер-2" находится на расстоянии 102 а.е. от Солнца и продолжает удаляться от него еще на 3.2 а.е. в год (для сравнения - "Вояджер-1" находится на расстоянии 125 а.е. от Солнца). Данные полученные с зонда позволяют предположить что гелиосфера ("пузырь", в пределах которого Солнце, его магнитное поле и солнечный ветер доминируют над межзвёздной средой), имеет выпуклость, направленную наружу (в северном полушарии нашей системы), и впадину, направленную внутрь (в южном полушарии).


И так как "Вояджер-2" летит как раз в “южном” направлении, то это означает, что он может успеть выйти в межзвездное пространство еще до того, как иссякнут его радиоизотопные элементы, что случится между 2020 и 2025 годами.


После того как будет утеряна связь, аппарат отправится в бесконечной путешествие к звездам. Через 40 000 лет Вояджер-2 пройдет на расстоянии 1.7 световых года от звезды Росс 248, а еще через 256 000 лет подойдет на расстояние 4.3 световых года к Сириусу. На его борту каждого из “Вояджеров” находится золотая пластинка с нашим посланием к другим цивилизациям . Возможно, однажды какой-то другой разумный вид получит его и сможет расшифровать.

Пятого сентября 1977 года состоялся запуск межпланетной станции «Вояджер-1» - первого космического аппарата, который вышел в межзвездное пространство. Хотя его миссия должна была продлиться не более пяти лет, зонд до сих пор работает и передает на Землю ценную информацию. За прошедшее время аппарат успел удалиться от поверхности нашей планеты на расстояние в 139,6 астрономической единицы. В этом году мы отмечаем сорокалетие со дня старта «Вояджера-1» и рассказываем об истории проекта.

Идея проекта «Вояджер» (Voyager) была выдвинута аэрокосмическим агентством NASA в конце 60-х годов. В 1976 году должно было случиться редкое для Солнечной системы событие - раз в 177 лет Юпитер, Сатурн, Уран и Нептун на три года оказываются по одну сторону от нашего светила, так что с Земли они видны на небольшом участке неба. Инженеры NASA решили использовать это явление, чтобы запустить к газовым гигантам две исследовательские станции - удачное расположение планет позволяло зондам совершить гравитационные маневры и сэкономить топливо.

В 1977 году «Вояджер-1» и его не менее известный близнец «Вояджер-2» отправились исследовать тогда еще малоизученные миры. Несмотря на номер в названии, первым в космос был запущен корабль «Вояджер-2». Дело в том, что зонды должны были облететь планеты-гиганты с разных сторон, чтобы собрать о них как можно больше информации. «Вояджер-2» летел по так называемой медленной траектории и должен был сблизиться со всеми четырьмя планетами, в то время как «Вояджер-1» исследовал только Юпитер и Сатурн и путь его был заметно короче. Поскольку ученые с самого начала знали, что запущенный позже зонд достигнет астероидного пояса между Марсом и Юпитером раньше, чем его брат-близнец, то и назвали его соответственно.

Прежде чем отправить «Вояджеры» в космическое пространство, инженеры NASA рассмотрели более 10 тысяч возможных траекторий полета, после чего выбрали лишь одну (и, как оказалось, удачную). Тем не менее, даже после такой детальной подготовки многие были не уверены в том, что миссия удастся. Почти сразу после запуска у «Вояджера-2» возникли технические неполадки, поэтому инженеры не спешили отправлять в космос второй аппарат. Изначально запуск «Вояджера-1» должен был состояться 1 сентября, однако его откладывали дважды. Несмотря на то, что агентство NASA считает полет зонда «точным и безупречным», воспоминания участников миссии говорят об обратном. Как рассказывает Джон Касани, руководитель программы, сразу после старта он и Чарльз Колейз, советник миссии «Вояджер» и эксперт по навигации, находились в диспетчерской центра запусков на мысе Канаверал, когда им пришли плохие показатели с ракеты-носителя Titan IIIE («Титан-Центавр»). Казалось, что «Вояджер-1» не достигнет цели. «Я был напуган. Мы были напуганы», - поделился Касани. Колейз повернулся к Касани, который сидел рядом: «Джон, мы можем потерпеть неудачу. Нам не хватает скорости».

В топливной магистрали второй ступени «Титана» обнаружилась крошечная, изначально не замеченная утечка, которая создала серьезные проблемы во время запуска. Даже если бы «Вояджер-1» достиг пределов околоземной орбиты, ему могло бы не хватить скорости, чтобы успешно долететь до своей следующей цели - Юпитера.

Тем не менее, ракета-носитель обладала запасом топлива, которое могло спасти ситуацию. Главная опасность заключалась в том, что пустые топливные насосы могли взорваться и повредить «Вояджер-1», если бы горючее было полностью израсходовано. Однако «Титан-Центавра» доставил зонд на орбиту за три секунды до того, как у него закончилось топливо, и миссия была спасена.

«Вояджер-2»

Зонд «Вояджер-2» стартовал с мыса Канаверал 20 августа 1977 года. Траектория его полета позволяла исследовать не только Юпитер и Сатурн и их спутники, но и два других газовых гиганта - Уран и Нептун.

«Вояджер-2» стал первым и единственным космическим аппаратом, который с близкого расстояния изучил все четыре внешние планеты Солнечной системы. Кроме того, зонд сфотографировал Ганимед и Европу, галилеевы луны Юпитера, - благодаря этим изображениям ученые впервые выдвинули гипотезу о существовании жидкого океана за пределами Земли.

«Вояджер-2» также получил снимки колец Сатурна и поверхности его спутников, тысячи снимков Урана, его спутников и колец и уникальные фотографии Нептуна. Сейчас его миссия, как и миссия «Вояджера-1», продолжается - аппарат все больше удаляется от нас и теперь изучает межзвездное пространство.

Кстати, изначально «Вояджеры» должны были стать частью программы «Маринер» (Mariner), которая занималась изучением внутренних планет, и получить названия «Маринер-11» и «Маринер-12», но руководители миссии в итоге отказались от этой идеи. Позднее «Вояджеру-1» хотели дать имя Mariner-Jupiter-Saturn 77, или MJS-77. «Я сказал: «Кому вообще интересен год старта миссии? Нам нужно красивое, цепляющее название, - рассказывает Касани. - Мы провели соревнование. Главным призом для победителя был ящик шампанского». Так появилось название «Вояджер».

Так как программа с самого начала подразумевала исследование далеких планет, ученые не могли установить на «Вояджеры» солнечные батареи - по мере удаления от Солнца интенсивность его излучения заметно падает. Например, вблизи орбиты Нептуна она примерно в 900 раз меньше, чем у обриты Земли. Поэтому источниками электроэнергии в каждом из зондов являются три радиоизотопных термоэлектрических генератора (РИТЭГ) - в качестве топлива они используют плутоний-238 . На момент старта их мощность составляла примерно 470 ватт; так как период полураспада плутония-238 составляет 87,74 года, генераторы, использующие его, теряют 0,78 процента своей мощности в год. На 3 сентября 2017 года у «Вояджера-1» осталось 72,9 процента запасов топлива. К 2050 году мощность сократится до 56,5 процента.


Совместный снимок Земли и Луны, сделанный с борта «Вояджера-1»

На борту космического аппарата установлена система из двух телевизионных камер - широкоугольной и узкоугольной. Разрешения узкоугольной камеры достаточно , чтобы прочесть заголовок газеты на расстоянии одного километра. Именно благодаря этой системе космическому аппарату удалось получить уникальные снимки Солнечной системы. Например, спустя две недели после запуска «Вояджер-1» сделал первый в истории совместный портрет Земли и ее спутника Луны.

В марте 1979 года зонд добрался до окрестностей Юпитера. Он сфотографировал знаменитое Большое Красное Пятно - самый большой атмосферный вихрь в Солнечной системе, - а также обнаружил вулканическую активность на Ио, одной из галилеевых лун газового гиганта. Это был первый случай, когда ученым удалось увидеть действующие вулканы где-то за пределами Земли. Кроме того, «Вояджер-1» сделал еще одно примечательное открытие - он впервые увидел кольца Юпитера. До этого считалось, что система колец есть только у Сатурна и Урана.


Действующий вулкан на Ио, спутнике Юпитера, на снимке, полученном «Вояджером-1»

Следующей остановкой «Вояджера-1» стал Сатурн с его знаменитой системой колец и спутников. Максимальное сближение космического аппарата и планеты произошло 12 ноября 1980 года - тогда зонд приблизился к верхнему слою облаков на 64,2 тысячи километров. Он отправил на Землю первые высококачественные снимки колец, состоящих из осколков льда, комет и пыли, а также сфотографировал некоторые из лун Сатурна. Космический аппарат обнаружил, что щель Кассини , впервые замеченная в XVII веке, тоже является своеобразным разреженным кольцом из частиц льда и пыли. Тогда же было открыто тонкое и тусклое кольцо E. Кроме того, инфракрасные и ультрафиолетовые спектрометры, установленные на борту «Вояджера-1», определили, что атмосфера планеты почти полностью состоит из водорода с примесями гелия.

На исследовании Сатурна и Юпитера основная миссия аппарата закончилась, однако он продолжил свою космическую одиссею. В феврале 1990 года «Вояджер-1» направил свои камеры на нашу планету и сделал серию портретов Солнечной системы. Тогда же был получен знаменитый снимок Pale Blue Dot («Бледная голубая точка»): на нем Земля запечатлена с расстояния 5,9 миллиарда километров. Фотография получила такое название из-за того, что наша планета на нем похожа на крошечную голубую точку; она занимает всего 0,12 пикселя на снимке.

«Бледная голубая точка», снимок «Вояджера-1»

Впоследствии американский астрофизик и популяризатор науки Карл Саган написал про этот снимок в своей книге: «Взгляните еще раз на эту точку. Это здесь. Это наш дом. Это мы. Все, кого вы любите, все, кого вы знаете, все, о ком вы когда-либо слышали, все когда-либо существовавшие люди прожили свои жизни на ней <...> каждая мать и каждый отец, каждый способный ребенок, изобретатель и путешественник, каждый преподаватель этики, каждый лживый политик, каждая „суперзвезда“, каждый „величайший лидер“, каждый святой и грешник в истории нашего вида жили здесь - на соринке, подвешенной в солнечном луче».

В феврале 1998 года «Вояджер-1» обогнал аппарат «Пионер-10» и стал самым далеким от нас объектом, созданным руками человека. Сегодня зонд находится на расстоянии 139,6 астрономических единиц от Земли (или около 21 миллиарда километров - или, если воспользоваться другой единицей измерения, увековеченной Жюлем Верном в своем романе, почти 3,76 миллиарда морских лье) и продолжает двигаться к внешним границам Солнечной системы со скоростью 16,9 километра в секунду. На его борту находится послание инопланетным цивилизациям - одна из двух золотых пластинок «Вояджера». В ее создании участвовали Карл Саган и астроном Фрэнсис Дрейк, которые придумали, как с помощью технологии грамзаписи выгравировать на пластинке не только звуки и музыку, но и изображения.


По одной такой золотой пластинке с посланием иным цивилизациям несут оба «Вояджера»

Сообщение представляет собой медный диск с золотым покрытием, который запакован в алюминиевый футляр. На нем записана вся самая важная информация о нашей планете - ее виды, расположение относительно 14 мощных пульсаров, состав атмосферы, известные формы жизни, молекула ДНК и звуки природы. На золотых пластинках есть рассказ и о нас, людях. Если инопланетные цивилизации когда-нибудь расшифруют послание, то они смогут узнать об анатомии человека, услышать плач ребенка и шепот матери, познакомиться с музыкой Баха и Моцарта и получить приветствие на 55 языках, включая русский. Даже когда двигатели «Вояджера-1» прекратят работу (это случится в 2030 году), золотые пластинки будут медленно плыть в космосе в целости и сохранности не менее миллиарда лет.

В декабре 2004 года плазменный комплекс, еще один научный прибор на борту «Вояджера-1», показал, что зонд пересек гелиосферную ударную волну - поверхность внутри гелиосферы, на которой солнечный ветер резко замедляется до звуковых скоростей (относительно скорости самого Солнца). Это происходит из-за того, что поток заряженных частиц «наталкивается» на межзвездное вещество, поэтому ударная волна считается одним из рубежей Солнечной системы. Расстояние до светила на тот момент составляло 94 астрономических единицы.


Синия линия в голубой зоне на графике показывает, как теоретически должна изменяться плотность заряженных частиц на разных расстояниях от Солнца. Сейчас зонд находится в голубой зоне, на графике также показан момент пересечения гелиосферной ударной волны.

В декабре 2011 года «Вояджер-1» удалился на расстояние 119 астрономических единиц и добрался до так называемого региона стагнации - последнего рубежа, отделяющего зонд от межзвездного пространства. В этой области наблюдается сильное магнитное поле из-за того, что давление заряженных частиц из внешнего космоса заставляет поле, создаваемое Солнцем, уплотняться. Там же наблюдается рост числа высокоэнергетических электронов (примерно в 100 раз), которые прилетают из межзвездной среды, поэтому эта область тоже считается одной из границ Солнечной системы.

В первой половине 2012 года «Вояджер-1» достиг границ межзвездного пространства. Датчики аппарата зафиксировали рост уровня галактических лучей на 25 процентов - это значило, что зонд приближается к границе гелиосферы. 12 сентября 2013 года NASA подтвердило, что «Вояджер-1» вышел за пределы гелиосферы и теперь находится в межзвездном пространстве. Однако до гипотетического облака Оорта, границы гравитационного влияния Солнца, аппарату все еще далеко.

Все научные приборы «Вояджера-1» будут выключены к 2025 году, после этого с зонда будут поступать только данные о его техническом состоянии. Сегодня сигнал от космической станции идет к Земле 17 часов и 20 минут. В будущем в программе миссии намечено еще одно сближение с крупным небесным телом - правда, произойдет оно не скоро, лишь через 40 тысяч лет. Космический аппарат должен пролететь в 1,6 светового года (15 триллионов километров) от звезды AC+79 3888 в созвездии Жирафа; правда, к тому моменту мы уже не сможем получить никаких данных от «Вояджера-1». После этого зонд продолжит скитаться по Млечному пути, все больше отдаляясь от своего дома - Земли.собирает межпланетная станция New Horizons, запущенная NASA в 2006 году.

Сейчас этот зонд, как и «Вояджеры», движется в сторону межзвездного пространства, но находится гораздо ближе к Солнцу - на расстоянии 39 астрономических единиц - и летит гораздо медленнее, несмотря на более высокую скорость запуска. Это связано с тем, что «Вояджеру-1» удалось набрать дополнительную скорость за счет гравитационного маневра у Юпитера. Кроме того, мощность двигателей станции New Horizons уступает мощности двигателей «Вояджеров», поэтому ей не удастся побить рекорд дальности зондов-близнецов - когда космический аппарат прекратит свою работу в 2020-х годах, общая длина его пути составит 50–55 астрономических единиц.

Кристина Уласович


Вступление

Уважаемые посетители! В августе 2004 года исполнилось 15 лет с того момента, когда аппарат "Вояджер-2" сблизился с Нептуном, и на этом завершилось большое путешествие аппарата по большим планетам Солнечной системы. "Вояджер-2" за 12 лет посетил 4 планеты-гиганта. Как проходил полет "Вояджера-2" по Солнечной системе, какие трудности ему пришлось преодолеть и что ожидает аппарат в будущем, рассказывается в статье знаменитого ученого-планетолога Л. В. Ксанфомалити.

Дальше - только звезды (о полете "Вояджера-2") Часть 2

В августе 1989 г. сближением "Вояджера-2" с Нептуном завершилась планетная часть миссии "Вояджер". Еще один таинственный мир из семейства планет-гигантов предстал на телевизионных экранах.

Проект "Вояджер" по продолжительности и продуктивности - один из самых выдающихся экспериментов, выполненных в космосе в последней четверти XX века. Четыре планеты-гиганта: Юпитер , Сатурн , Уран и Нептун , прошли перед объективами телевизионных камер и другой научной аппаратуры "Вояджера-2". Четыре раза поток научных данных возрастал до пределов, которые аппарат еще способен был передать на Землю. Расстояния до планет-гигантов так огромны, что даже современные средства наземной астрономии оказываются бессильными перед этой беспредельной далью. Но космический аппарат "Вояджер-2" через 12 лет полета сумел достичь Нептуна, удаленного от Земли в 30 раз дальше, чем Солнце.

Автоматы исследуют Солнечную систему. Их полеты напоминают путешествия в начале истории географических открытий, когда человек впервые поверил в свою способность преодолевать безмерную, казалось бы, ширь земных океанов. Прошли века. И пусть теперь, как писал И. Ефремов, беззаботные молодые люди за штурвалом сверхзвукового самолета "преодолевают эти расстояния за время, недостаточное для совершения обряда утреннего омовения", но величие подвига мореплавателей прошлого не меркнет до сих пор. Вероятно, и наши, не столь уже далекие потомки, шутя будут преодолевать расстояние до орбиты Нептуна, откуда даже радиосигнал "Вояджера-2" шел более четырех часов. Вероятно, они будут знать задворки Солнечной системы не хуже отдаленных уголков Земли. И все же последняя четверть XX века навсегда останется одной из самых ярких эпох осознания человеком устройства и природы Солнечной системы и своего в ней места.

Конечно, было бы наивно думать, что полет двух "Вояджеров" позволил сколько-нибудь глубоко разобраться в процессах, происходящих в недрах газожидких гигантов. Это еще впереди. Но уверенно сделаны первые шаги, и теперь в руках ученых вместо шатких гипотез (а иногда и просто домыслов) оказались твердые факты.

Развитие науки все ускоряется. Вряд ли кто-либо из учителей астрономов-планетчиков моего поколения мог предположить, что их студентам выпадет не только увидеть обратную сторону Луны и работающих на Луне космонавтов, но и поверхность спутников самых далеких планет. С момента открытия в 1846 г. Нептун не завершил еще и одного оборота вокруг Солнца. В 1949 .г. известный исследователь планет Г. Койпер открыл спутник Нептуна Нереиду. В 1989 г. его бывший студент К. Саган участвовал в исследованиях Нереиды с борта "Вояджера-2".

В этой статье коротко рассказывается об истории проекта "Вояджер", о самих аппаратах и некоторых их приключениях. Научным итогам миссии посвящаются другие статьи, поэтому основные научные результаты, полученные в исследованиях Юпитера, Сатурна, Урана и их спутников, вынесены в приложение (без комментариев). Исследованиям Нептуна намечено посвятить отдельную статью.

"Большой тур" и Вояджер. "Вояджер-2" был запущен к Юпитеру с космодрома космического центра им. Кеннеди 20 августа 1977 г. ракетой "Титан 3Е-Центавр" со стартовой массой около 700 т. "Вояджер-1" последовал за ним 5 сентября 1977 г., но для него была выбрана более короткая (и менее экономичная) трасса. Планеты Юпитер он достиг 5 марта 1979 г., на 4 месяца раньше "Вояджера-2", который сблизился с Юпитером 9 июля того же года. Аппараты "Вояджер-1" и "Вояджер-2" были созданы в лаборатории реактивного движения (JPL) НАСА. Интересна предыстория их разработки. Идея проекта "Большой тур" впервые появилась в конце 60-х годов, незадолго до запуска первых пилотируемых аппаратов к Луне и аппаратов "Пионер" к Юпитеру. Работы по проекту "Большой тур" НАСА начала в 1969 г. Уже на 1972 г. Конгресс США, как ожидалось, должен был выделить 30 млн. долларов для работ по этому проекту. Однако эта сумма утверждена не была.

Идея проекта заключалась в последовательном облете каждым из намечавшихся аппаратов нескольких планет. На рубеже 70-х и 80-х годов все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы ("парад планет"). Последний раз такое "собрание" проходило 180 лет назад. Использование гравитационного маневра делало возможным перелет аппарата от одной планеты к другой за относительно короткое время. Без такого маневра полет, например, к Нептуну, продолжался бы на 20 лет дольше, а изменение направления полета потребовало бы немыслимого расхода горючего.

Суть маневра заключается в том, что при движении аппарата в гравитационном поле воздействующее на него притяжение планеты несколько изменяет его траекторию. Необходимая для этого энергия заимствуется у планеты и, по закону сохранения, добавляется к кинетической энергии аппарата. Впервые астрономы поняли физику этого явления еще в XIX в., наблюдая, как сильно изменяются орбиты комет под действием массивного Юпитера. В 1989 г., ровно сто лет назад, французский ученый Франсуа Тиссеран проанализировал проблему и создал соответствующий математический аппарат, позволяющий рассчитать орбиты кометы до и после возмущения. В эпоху планетных исследований гравитационный маневр много раз использовался для управления движением аппарата.

Так, аппарат "Маринер-10" был выведен на орбиту сближения с Меркурием после гравитационного маневра у Венеры; прямой вывод аппарата на такую орбиту невозможен. В последнее время этот метод настолько разработан, что его используют даже для разгона аппарата. Самый яркий пример - аппарат "Галилей", который был запущен в США в октябре 1989 г. для исследований Юпитера. Однако после запуска аппарат был направлен не к Юпитеру, а к Венере. После маневра в ее поле тяготения в декабре 1990 г. он вернется к Земле для следующего маневра. Но и это еще не все. В октябре 1991 г. он сблизится с астероидом Гаспра (названным в честь поселка Гаспра вблизи Симеизской обсерватории в Крыму), а затем... снова вернется к Земле (декабрь 1992 г.). Лишь после этого аппарат "Галилей" ляжет на трассу полета к Юпитеру, которого достигнет через 3 года. В проекте "Большой тур" гравитационный маневр играл определяющую роль: изменение направления полета аппарата достигалось фактически без затрат топлива. Но для этого требовалось очень точно выбрать расстояние пролета от центра массы: если аппарат проходит слишком далеко от планеты, излом его траектории оказывается слишком малым, а если очень близко - аппарат может даже развернуться на 180°. Поэтому в проекте Вояджер выбор расстояния в сближении с планетой относился к самым ответственным операциям.

Вероятно, в будущем гравитационный маневр будет использоваться и в звездной навигации. С таким предложением недавно выступил молодой советский ученый Владимир Сурдин. Интересно, что идея этого маневра приходила в голову многим людям, даже далеким от науки. В 1939 г. его описал писатель фантаст Лестер дель Рей.

Таким образом, гравитационный маневр не только изменяет траекторию аппарата, но и дает выигрыш в энергии. Однако чтобы реализовать "Большой тур", требовалось особое расположение планет, примерно такое, как было в 80-х годах, иначе вся миссия растянулась бы непомерно. Предполагалось, что для посещения пяти внешних планет миссия "Большой тур" потребует нескольких аппаратов: два в 1976-1977 гг. должны были быть направлены последовательно к Юпитеру, Сатурну и затем - к Плутону. Кстати, выбор времени сближения с Плутоном был критичным как никакой другой: орбита Плутона значительно наклонена к эклиптике, а полет с выходом из плоскости эклиптики представляет задачу сложную и дорогостоящую. Два других аппарата в 1979 г. намечалось послать к Юпитеру, Урану и Нептуну. Рассматривался даже вариант с пятью аппаратами.

Однако бюджетные ограничения вскоре заставили изменить, а затем и существенно урезать проект. Лунная экспедиция "Аполлон" обошлась слишком дорого, и проект "Маринер - Юпитер - Сатурн - 77", в дальнейшем переименованный в "Вояджер", оказался намного скромнее "Большого тура". Стоимость проекта составила 250 млн. долларов, или 1/3 намечавшейся стоимости "Большого тура". (На сегодня все расходы по проекту, в которые входят ракеты запуска, весь наземный радиокомплекс и операции сближения, включая сближение с Нептуном, составили 865 млн. долларов.) Новый вариант уже не предусматривал ни таких сложных и многочисленных аппаратов, ни посещения Урана, Нептуна и Плутона. "Вояджер" представляет собой довольно крупное сооружение. Это-высокоавтономный робот, оснащенный собственными энергетическими установками, ракетными двигателями, компьютерами, системой радиосвязи, управления и научными приборами для исследования внешних планет. Масса аппарата составляет 815 кг.

Ограничение задач позволило значительно снизить требования к надежности компонентов и стоимости не только бортового, но и наземного оборудования. В самом деле, для радиосвязи на фантастические расстояния (орбита Нептуна - 30 а. е., или 4,5 млрд. км от Земли) требовалось создать сеть гигантских радиотелескопов, каждый из которых представляет очень дорогое сооружение. (Фактически, такая сеть была создана, но намного позднее.) Уже к моменту сближения "Вояджера-2" с Ураном радиотелескопы с диаметром поворотной антенны 64 м для приема сигналов из дальнего космоса были установлены в США, в Испании и в Австралии.

Оставим пока вопрос о том, как "Вояджеру-2" удалось все-таки исследовать Уран и Нептун, и обратимся к рисунку, на котором представлена схема полета Вояджеров. Через полтора года после Юпитера, 12 ноября 1980 г. "Вояджер-1" достиг Сатурна. Чтобы сблизиться с его спутником Титаном, имеющим плотную атмосферу и представляющим особый научный интерес, аппарат прошел сравнительно низко над южным полюсом Сатурна и круто изменил свою траекторию. Сближение с Титаном произошло, как намечалось, но это был конец планетной миссии "Вояджера-1". Аппарат стал все выше подниматься над плоскостью эклиптики. На 1990 г. он ушел "вверх" уже на 19,4 а. е., или почти на 3 млрд. км. Как известно, планетных тел здесь нет.

"Вояджер-2" достиг Сатурна почти на год позже, 25 августа 1981 г. и провел исследования планеты и ее многочисленных спутников. После гравитационного маневра в плоскости эклиптики он был направлен к Урану. Сближение с Ураном произошло 24 января 1986 г. Снова исследования планет и спутников, снова маневр. 24 августа 1989 г. аппарат достиг "последней остановки" - Нептуна. Подобно Титану у Сатурна, спутник Нептуна Тритон давно привлекает внимание исследователей. Последний маневр "Вояджера-2" позволил исследовать Тритон (который, как выяснилось, того стоил). Теперь "Вояджер-2" тоже уходит из Солнечной системы (но в направлении, другом, чем "Вояджер-1"). Несколько слов о научном оснащении аппаратов. Научный комплекс "Вояджеров" позволил (в принципе) одновременно проводить 11 научных экспериментов.

На рисунке слева показано научное оснащение аппаратов. Это установленные на поворотной платформе "широкоугольная" (поле около 3°) и "узкоугольная" (0,4°) телевизионные камеры с объективами, фокусные расстояния которых 200 и 500 мм соответственно. Камеры имеют высокую четкость (800 строк); в них используются специальные видиконы с памятью. Считывание одного кадра требует 48 с. (Теперь в таких камерах ставят ПЗС-матрицы.) При 8-разрядном кодировании один кадр содержит 5,12 Мбит информации. С Сатурна "Вояджер-2" передавал 1 кадр за каждые 3 минуты.

На платформе установлены также спектрометры, инфракрасный и ультрафиолетовый, и фотополяриметр. Инфракрасный прибор (спектроинтерферометр), рассчитанный на диапазон от 4 до 50 мкм предназначен для исследования химического состава и структуры атмосфер планет-гигантов и Тритона. Ультрафиолетовый спектрометр диапазона 50-170 нм регистрирует, главным образом, излучение атомов с относительно высокими энергиями. Фотополяриметр (который работал только на "Вояджере-2") передавал информацию о физических свойствах аэрозолей атмосфер и поверхности спутников. В плазменном комплексе были детектор плазмы, детектор заряженных частиц низких энергий, детектор космических лучей. На борту имелись также магнитометры высокой и низкой чувствительности и приемник плазменных волн. Кроме того, "бесплатным приложением" к научному комплексу была радиосистема аппарата. Без каких-либо специальных приборов, по характеру изменения радиосигнала при заходах аппарата за планету, определяются основные параметры атмосферы небесного тела.

В приложениях I, II и III суммированы основные итоги исследований Юпитера, Сатурна и Урана. Таким образом, двойная планета Плутон-это единственный из миров Солнечной системы, который пока не дождался земных гостей (и. по-видимому, уже не дождется до XXI в.). Заметим, что из-за большого эксцентриситета орбиты Плутона до конца XX в, он будет находиться ближе к Солнцу, чем Нептун. Как видно из схемы, Плутон сейчас недостижим для обоих "Вояджеров".

Домашнее хозяйство аппарата. Почти все основные сведения о планетах-гигантах и их спутниках были либо получены, либо существенно обновлены в полетах "Вояджеров". Для этих исследований аппараты были оснащены достаточно эффективным набором научных инструментов. Но наряду с научными инструментами, важную роль играли системы самого аппарата. Так, развитие космической технологии позволило решить одну из наиболее важных проблем - энергообеспечение аппарата. Чтобы подчеркнуть эту особенность, один из первых вариантов проекта даже имел специальное название - ТОРS - "термоэлектрический аппарат для внешних планет". Радиоизотопные термоэлектрические генераторы устанавливались и раньше как на советских, так и на американских космических аппаратах, но для Вояджеров они имели особое значение.

Если для спутников "малого каботажа", предназначенных для исследования Меркурия, Венеры, Земли и Марса вполне достаточно фотоэлектрических (солнечных) батарей, то для далеких планет, где низка плотность солнечной радиации, нужны другие источники энергии. На "Вояджерах" установлены три радиоизотопных термоэлектробатареи с эффективностью около 5 %, нагреваемые тепловыделяющими элементами из окиси плутония. Общая мощность такой батареи вначале составляла почти полкиловатта электроэнергии, однако по мере распада плутония мощность падала (как тепловая, так и электрическая). Это сказывалось уже в период сближения с Ураном (когда мощность упала до 400 Вт) и создавало ограничения в выполнении научной программы; например, нельзя было проводить все эксперименты одновременно.

Естественно, не только энергетика определяет возможности аппарата. Множество систем, которые называют "служебными" (а чаще-просто "домашним хозяйством"), позволяют аппарату вести самоконтроль, управлять своим положением, рассчитывать свои действия, посылать и принимать радиосообщения. "Мозг" Вояджера - это два компьютера, образующих так называемую "подсистему полетных данных". Компьютеры могут работать как в дублирующем, так и в независимом режиме. В их функции входит контроль состояния научных приборов и управление ими, сбор и редактирование научной информации перед радиопередачей ее на Землю, контроль и управление положением аппарата и многие другие задачи. Главным достоинством управляющего комплекса "Вояджера", как выяснилось в многолетнем полете, оказалась необычайно гибкая программа, которая не только допускала радикальные изменения в исследовательских планах или в принципах обработки поступающей научной информации, но позволяла также обойти неизбежно возникающие во время длительного путешествия неисправности то в в одном, то в другом из многочисленных узлов аппарата, включая даже сами компьютеры. Кстати, в бортовой вычислительной машине "Вояджера-1" отказала одна из систем памяти, но выполнению научных задач это не помешало.

Правильное положение аппарата в пространстве определяет возможность радиосвязи с Землей, так как большая параболическая чаша его антенны диаметром 3,65 м. жестко скреплена с аппаратом. Во время радиосвязи она должна быть точно нацелена на Землю. Компьютеры "узнают" положение аппарата с помощью датчиков Солнца и звезд, которые также используются для навигации. Но этого недостаточно. Необходимо знать положение аппарата на небесной сфере. Разумеется, увидеть аппарат с Земли невозможно, но вместо этого можно использовать телевизионные снимки, получаемые с самого аппарата перед сближением с небесным телом. На них планета и ее спутники видны на фоне звезд с известными координатами. После обработки телевизионных изображений положение аппарата удается определить с очень высокой точностью. Например, у Урана погрешность такого определения составляла 20-25 км. Этот метод называется оптической навигацией. Очень высокую точность дает радионавигация. Для этого методами радиоинтерферометрии по регистрации сигнала радиопередатчика аппарата определяется его положение на небе относительно "маяков Вселенной" - квазаров.

Аппарат может, при необходимости, изменить свое положение. Для этого он оснащен малыми ракетными двигателями (двигателями малой тяги, или верньерными двигателями). Двигатели работают на гидразине, который хранится в топливном баке. Небольшое, контролируемое компьютером количество жидкого гидразина поступает на катализатор, который превращает его в газ, выбрасываемый из сопла двигателя. Реактивная тяга поворачивает аппарат. Топливо используется также в тех случаях, когда необходима коррекция траектории аппарата. В целом, гидразин расходовался так экономно, что после встречи с Ураном в топливном баке оставалось еще около половины запаса (62 кг). Интересно назвать главные причины, которые слегка нарушают параметры движения аппарата. Прежде всего, это гравитационные воздействия планет Солнечной системы на тело, находящееся в свободном полете. Затем - очень малые силы, которые возникают под действием падающего на аппарат солнечного излучения и его собственного теплового излучения. Наконец, это механические воздействия собственных устройств аппарата (поворотной платформы). При сближении с Ураном и Нептуном приходилось исключать даже такие ничтожные воздействия, которые вызывало включение бортового магнитофона. С Земли удается с весьма высокой точностью найти скорость аппарата. Лучевая скорость (проекция скорости на линию визирования) определяется по эффекту Доплера с точностью до 2 см/с при скорости аппарата около 16 км/с. Чувствительность метода так высока, что, например, задолго до сближения с планетой ученые поняли, что принятую массу Урана, заложенную в расчеты, необходимо увеличить на 0,3 %, чтобы привести расчеты в соответствие с наблюдаемыми доплеровскими приращениями.

В верхней части, на решетчатой ферме показана поворотная платформа. На ней находятся оптические приборы, включая обе телевизионные камеры. Платформа позволяет направлять приборы в сторону исследуемой планеты, не поворачивая сам аппарат. Она прекрасно работала до сближения с Сатурном. Но в момент пересечения плоскости колец движение по одной из двух ее плоскостей - азимутальной - внезапно прекратилось. Аппарат в это время не был виден с Земли и находился далеко от кольца, поэтому было маловероятно, что платформу повредили частицы кольца. После выхода из-за планеты намечалась съемка южного полушария Сатурна, а также получение мозаичных, из множества отдельных снимков высокого разрешения, изображений поверхности спутников Тефии и Энцелада. К сожалению, эту часть программы выполнить.не удалось, а когда, после нескольких дней напряженной работы специалистов, платформа стала понемногу реагировать на радиокоманды, было уже поздно. Впрочем, потеря была относительно невелика, но проблема не на шутку встревожила ученых: уже тогда было ясно, что полет к Урану - дело решенное. Пусть с какой-то долей риска, но аппарат его выдержит. Но что делать, если платформа не будет исправлена?

Чтобы понять, в чем неисправность, в JPL были срочно изготовлены 86 (!) макетов силового привода платформы, на которых и провели всесторонние исследования. Выводы были обнадеживающие: причиной заклинивания оказалась большая нагрузка, которая пришлась на платформу в работе у Сатурна, и неисправность можно устранить (хотя в дальнейшем с платформой следует обращаться поаккуратней). Предусмотрели и аварийную программу, но она так и не понадобилась. За хорошую работу надо хорошо платить. "Вояджер-2" хорошо поработал в Солнечной системе. Его телевизионные камеры оказались лучше, чем у "Вояджера-1". Но и хлопот он доставил немало, начиная от старта. Перед запуском потребовался ремонт бортовой подсистемы компьютера. После запуска включилась система ориентации. Вскоре выяснилось, что она работает, как любят говорить советские специалисты, "нештатно". Имелись трудности со штангой, на которой находится платформа, - ее сначала не удавалось развернуть. Словом "Вояджер-2" оказался с характером. Постепенно его приводили в порядок, но самая большая неприятность произошла на борту аппарата весной 1978 г., на первом этапе его пути. Как "Вояджер-2" был потерян, но ненадолго. Связь аппарата с Землей ведется посредством двух радиопередатчиков с частотами 2295 МГц (длина волны 13,1 см.) ч 8418 МГц (3,56 см.). Каждый из них для надежности дублирован. Мощность каждого передатчика очень невелика, всего 23 Вт.

Это примерно равно мощности переносной автомобильной лампы. Вся эта мощность, благодаря большой антенне, собирается в остронаправленный радиолуч и посылается на Землю. Мощность принимаемого здесь радиосигнала обратно пропорциональна квадрату удаленности аппарата. С Нептуна сигнал был в 33 раза слабее, чем с Юпитера. С другой стороны, при одной и "той же антенне с диаметром D сигнал зависит от длины волны, так как ширина радиолуча, посылаемого на Землю, составляет 1,22?/0. (Образуемое таким лучом пятно на уровне орбиты Земли превышает 50 млн. км. для сантиметрового передатчика.) Поэтому легко видеть, что мощность принимаемого сигнала будет обратно пропорциональна квадрату длины волны передатчика. Но здесь возникает другая трудность: чтобы радиолуч не ушел с Земли, система ориентации аппарата должна поддерживать направление на Землю с точностью в несколько угловых минут. Есть сложности и на Земле: сантиметровое излучение сильно поглощается дождем (и меньше - облаками).

Радиосистема "Вояджеров" передавала поток информации со скоростью 115,2 кбит/с с Юпитера и 45 кбит/с с Сатурна. Ниже мы остановимся на некоторых ухищрениях инженеров, позволивших "обмануть природу" и передавать по этому каналу с Нептуна в 3-4 раза больше информации, чем намечалось вначале. Но сначала об одной истории, которая показывает, что несущественных компонентов на борту космического аппарата не бывает. Далеко не самые сложные устройства на борту "Вояджеров" - командные приемники. Они принимают и декодируют (расшифровывают) поступающие с Земли радиокоманды. По существу, это "уши" аппарата. Приемников два, основной и резервный. Впрочем, если бы инженеры JPL заранее знали, что ожидает "Вояджер-2" в полете, они, наверное, поставили бы и четыре. Все началось с того, что после очередного сеанса радиосвязи операторы забыли послать на борт специальную команду, предназначенную для самого приемника. Через длинную цепь причинно-следственных связей это привело к выходу приемника из строя. Неожиданно обнаружилось, что и переход на резервный приемник не дает результата. Аппарат оглох. На решение проблемы были брошены лучшие специалисты - ведь дело шло к фактической потере аппарата.

И вот, после длинной серии экспериментов удалось установить, что аппарат все-таки что-то слышит, но слышит одну-единственную "ноту". На все остальные частоты, посылаемые наземным передатчиком, он не реагирует, в том числе и на те, на которые он рассчитан. Удалось выяснить, что у резервного командного приемника из-за повреждения конденсатора не работает автоматическая подстройка частоты гетеродина - несложный, но очень важный электронный узел. Дело в том, что частота сигнала, принимаемого аппаратом с Земли, постоянно меняется из-за доплеровских сдвигов, достигающих очень больших значений. Без автоматической подстройки приемник может принимать лишь сигналы в пределах собственной полосы пропускания, которая составляет менее 1/1000 нормального ее значения. Даже доплеровские сдвиги от суточного вращения Земли превышают ее в 30 раз. Оставался единственный выход из положения - каждый раз рассчитывать новое значение передаваемой частоты и подстраивать наземный передатчик так, чтобы, после всех сдвигов, сигнал как раз попадал в полосу пропускания приемника. Это и было сделано - компьютер теперь включен в контур передатчика. И так- все 12 лет полета. Продолжительность ежедневной связи с аппаратом составляет от 8 до 16 ч, а в сближениях связь идет круглосуточно. Кстати, сигналы на аппарат обычно посылает 400-киловаттный передатчик в Голдстоуне с его 64-метровой (теперь 70-метровой) антенной. Специалисты JPL рассказывают, что время от времени аппарат теряет сигнал и снова "глохнет" на несколько дней. Но есть люди, которые каким-то "шестым чувством" угадывают, на какую частоту ушел приемник. Положение осложняется тем, что кроме доплеровских сдвигов на настройку приемника сильно влияет температура аппарата, которую приходится контролировать очень тщательно: от ее изменения на четверть градуса настройка уходит на 100 Гц. Есть и другие факторы, старение деталей, например. И все-таки ни одно сближение не было потеряно! Впрочем, в памяти бортового компьютера находится еще одна "аварийная" программа, которая предписывает аппарату думать самому, если такое случится. В сближении с Нептуном на консультации с Землей времени не оставалось: время распространения радиосигнала "туда и обратно" составляло 8,2 ч.

Продленная миссия Вояджера-2: Уран и Нептун . В 1981 г. было принято решение дополнить миссию Вояджера-2 сближением с Ураном, а в 1986-с Нептуном. Эти сближения были включены в программу полета и аппарат стали готовить к новым, более сложным задачам. В какой-то мере это был риск, так как вероятность его надежной работы на последующие 5 лет в 1981 г. оценивалась в 60-70 %. С другой стороны, эксплуатационные характеристики аппарата, как ни странно, улучшились. За прошедшие после запуска годы вошли в строй новые 34-метровые антенны, а огромные 64-метровые чаши в США, Испании и Австралии наращены до 70 м. В результате при той же надежности радиолинии скорость передачи данных с Нептуна удалось увеличить с 4,6 до 30 кбит/с (для повышения надежности использовалась скорость 21,6 кбит/с). Фактический выигрыш был намного больше. Со времени запуска существенно продвинулась прикладная математика, что позволило усовершенствовать технику "сжатия данных" на борту аппарата, для чего понадобилось полностью перепрограммировать бортовой компьютер с помощью радиокоманд. Кстати, этот процесс не всегда проходил гладко. Чем планета дальше, тем больше о ней хотят узнать ученые. Объем информации входит в противоречие с ее достоверностью. Но надежность данных можно увеличить только увеличивая избыточность информации. У Юпитера и Сатурна информация перед радиопередачей на Землю кодировалась и сжималась так, что исходный ее объем почти не увеличивался. Но в сближении с Ураном и Нептуном ученые перешли на более мощное кодирование Рида - Соломона, которое позволяет сжать информацию в несколько раз, но несет в себе некоторый риск.

Оставалось всего шесть дней до сближения с Ураном, когда выяснилось, что все изображения, переданные с обновленным кодом, искажены сеткой черных и белых линий. Специалисты бросились искать ошибку. Одна группа, не доверяя компьютеру, обработала вручную все пикселы. (Пиксел - это один элемент, одна точка изображения). Результат оказался тот же. Другая группа подготовила новое задание аппарату: прочесть и передать на Землю все, что он записал в память. Прошло много часов, но, наконец, ответ был получен. Сравнение показало, что среди многих килобайт программы в одном восьмиразрядном слове один из нулей замещен единицей. Запрос с Земли и ответ Вояджера-2 показали, что перевести эту ячейку в "нулевое" состояние не удается. Тогда программисты так переписали эту часть программы, чтобы дефектный триггер не вызывал искажений. За четыре дня до сближения программа была послана на борт. Телеметрическая информация стала поступать без искажений.

Интересно, что подготовленные для "Вояджера-2" решения после лабораторных испытаний опробовались на "Вояджере-1" и только потом включались в программы "Вояджера-2". Очень большие сложности вызывала телевизионная съемка Нептуна, а особенно его темных спутников. Еще в сближении с Ураном инженеры сетовали на недостаточную освещенность планеты и спутников. Телевизионная съемка при низкой освещенности с быстро летящего аппарата приводят к кажущимся искажениям формы небесного тела. "Это все равно, что в сумерки фотографировать кусок угля на черном фоне", - сказал один из них. В самом деле, освещенность от Солнца на Уране в 370 раз ниже, чем на Земле. Но на Нептуне она уже в 900 раз ниже! Единственная возможность получить нормальное изображение-это, как знает каждый фотограф, увеличить длительность экспозиции. Для Нептуна она составляет 15 с и больше, а для темных спутников и колец-от 2 до 10 мин.

Но увеличить экспозицию было не так-то просто. Скорость аппарата близка к 16 км/с, а относительно Нептуна и Тритона - еще больше. Так как аппарат прошел близко от них, 3900 км от облачного слоя над северным полюсом Нептуна и 39 000 км. от Тритона, длительная экспозиция неизбежно приводила бы к смазыванию изображения. Такой же результат дает работа двигателей системы ориентации, исправляющих небольшие отклонения "Вояджера-2" от заданного положения. Импульсы от двигателей слегка покачивают аппарат.

Как удалось специалистам преодолеть эти сложности? Прежде всего, была вдвое сокращена длительность импульсов включения верньерных двигателей системы ориентации. Оказалось, что и таких укороченных импульсов для ориентации достаточно, а покачивания аппарата значительно уменьшились. Во время экспозиции включение двигателей запрещено. Кроме того, включение и выключение лентопротяжного механизма запоминающего устройства (магнитофона) разрешается только вместе с включением верньерных двигателей. Все это привело к тому, что во время накопления экспозиции телевизионными камерами дрейф положения осей аппарата стал в 10 раз медленнее движения часовой стрелки. В дальнейшем, по мере приближения к Нептуну, этот дрейф удалось уменьшить еще в 2,5 раза (0,2 угл. мин/с). Для устранения смазывания изображения камеры медленно поворачиваются за объектом съемки так чтобы компенсировать его относительное движение.

Точность приводов платформы для этого недостаточна, поэтому ее выставляют в нужное положение и фиксируют, а далее за объектом съемки медленно поворачивается весь аппарат. Составленное из полученных таким образом кадров мозаичное изображение получается забавно искаженным, как у спутника Нептуна Миранды. Конечно, она имеет форму сферы, а не яйца. Такие искажения легко устранить обработкой. Благодаря всем принятым мерам, при сближении с Нептуном удалось избежать длительных перерывов в передаче научных данных на Землю, как это было при сближении с Ураном. Так закончилась планетная миссия "Вояджера-2" .

С участием аппаратов данной серии.

Всего было создано и отправлено в космос два аппарата серии «Вояджер»: «Вояджер-1» и «Вояджер-2». Аппараты были созданы в Лаборатории реактивного движения (Jet Propulsion Laboratory - JPL) НАСА . Проект считается одним из самых успешных и результативных в истории межпланетных исследований - оба «Вояджера» впервые передали качественные снимки и , а «Вояджер-2» впервые достиг и . «Вояджеры» стали третьим и четвёртым космическими аппаратами, план полёта которых предусматривал вылет за пределы Солнечной системы (первыми двумя были «Пионер-10» и «Пионер-11»). Первым в истории аппаратом, достигшим границ Солнечной системы и вышедшим за её пределы, стал «Вояджер-1».

Аппараты серии «Вояджер» - это высокоавтономные роботы, оснащённые научными приборами для исследования внешних планет, а также собственными энергетическими установками, ракетными двигателями, компьютерами, системами радиосвязи и управления. Общая масса каждого аппарата - около 721 кг.

Проект «Вояджер»

«Вояджер» - космический зонд.

Проект «Вояджер» - один из самых выдающихся экспериментов, выполненных в космосе в последней четверти XX века. Расстояния до планет-гигантов слишком велики для наземных средств наблюдения. Поэтому отправленные на «Вояджерами» фотоснимки и данные измерений до сих пор имеют большую научную ценность.

Идея проекта впервые появилась в конце 1960-х годов, незадолго до запуска первых пилотируемых аппаратов к и аппаратов «Пионер» к Юпитеру.

Большое Красное пятно Юпитера. Фото сделано «Вояджером-1»

Первоначально планировалось исследовать только Юпитер и Сатурн. Однако благодаря тому, что все планеты-гиганты удачно расположились в сравнительно узком секторе Солнечной системы («парад планет»), было возможно использование гравитационных манёвров для облёта всех внешних планет, за исключением . Поэтому траектория полёта была рассчитана исходя из этой возможности, хотя официально изучение Урана и Нептуна не вошло в программу миссии (для гарантированного достижения этих планет потребовалось бы строительство более дорогих аппаратов с более высокими характеристиками по надёжности).

После того, как «Вояджер-1» успешно выполнил программу исследования Сатурна и его , было принято окончательное решение направить «Вояджер-2» к Урану и Нептуну. Для этого пришлось слегка изменить его траекторию, отказавшись от близкого пролёта около Титана.

Научное оснащение аппарата

Нептун. Фото сделано «Вояджером-2»

  • Телевизионные камеры, чёткостью 800 строк, используются специальные видиконы с памятью. Считывание одного кадра требует 48 с.
    • широкоугольная (поле около 3°), фокусное расстояние 200 мм;
    • узкоугольная (0,4°), фокусное расстояние 500 мм;
  • Спектрометры:
    • Инфракрасный, диапазон от 4 до 50 мкм;
    • Ультрафиолетовый, диапазон 50-170 нм;
  • Фотополяриметр;
  • Плазменный комплекс:
    • детектор плазмы;
    • детектор заряженных частиц низких энергий;
    • детектор космических лучей;
    • магнитометры высокой и низкой чувствительности;
    • приёмник плазменных волн.

Энергооснащение аппарата

Слоистая атмосфера Титана, спутника Сатурна

В отличие от космических аппаратов, исследующих внутренние планеты, «Вояджеры» не могли использовать , так как поток солнечного излучения, по мере удаления аппаратов от , становится слишком мал - например, вблизи орбиты Нептуна он примерно в 900 раз меньше, чем на орбите Земли.

Источником электроэнергии являются три . Топливом в них служит плутоний-238 (в отличие от плутония-239, используемого в ядерном оружии); их мощность в момент старта космического аппарата составляла примерно 470 ватт при напряжении 30 вольт постоянного тока. Период полураспада плутония-238 составляет примерно 87,74 года, и генераторы, использующие его, теряют 0,78 % своей мощности в год. В 2006 году, через 29 лет после запуска, такие генераторы должны иметь мощность только 373 Вт, то есть около 79,5 % от исходной. Кроме того, биметаллическая термопара, которая конвертирует тепло в электричество, также теряет эффективность, и реальная мощность будет ещё ниже. На 11 августа 2006 года мощность генераторов «Вояджера-1» и «Вояджера-2» снизилась до 290 Вт и 291 Вт, соответственно, то есть составила около 60 % от мощности на момент запуска. Эти показатели лучше, чем предполётные предсказания, основанные на консервативной теоретической модели деградации термопары. С падением мощности приходится сокращать энергопотребление космического аппарата, что ограничивает его функциональность.

Технические проблемы «Вояджера-2» и их решение

Полёт «Вояджера-2» продлился гораздо дольше, чем было запланировано. В связи с этим после пролёта Юпитера учёным, сопровождавшим миссию, пришлось решить огромное количество технических проблем. Заложенные изначально правильные подходы к конструированию аппаратов позволили это сделать. К наиболее значимым и успешно решённым проблемам можно отнести:

  • выход из строя автоматической подстройки частоты гетеродина. Без автоматической подстройки приёмник может принимать лишь сигналы в пределах собственной полосы пропускания, которая составляет менее 1/1000 нормального её значения. Даже доплеровские сдвиги от суточного вращения Земли превышают её в 30 раз. Оставался единственный выход из положения - каждый раз рассчитывать новое значение передаваемой частоты и подстраивать наземный передатчик так, чтобы после всех сдвигов сигнал как раз попадал в полосу пропускания приемника. Это и было сделано - компьютер теперь включен в контур передатчика.
  • выход из строя одной из ячеек оперативной памяти бортовой ЭВМ - программу удалось переписать и загрузить так, что этот бит перестал влиять на неё;
  • на определённом участке полёта применявшаяся система кодирования управляющего сигнала уже переставала отвечать требованиям достаточной помехозащищённости из-за ухудшения отношения сигнал/шум. В бортовую ЭВМ была загружена новая программа, осуществлявшая кодирование гораздо более защищённым кодом (был применён двойной код Рида - Соломона).
  • при пролёте плоскости бортовая поворотная платформа с телекамерами была заклинена, вероятно, частицей этих колец. Осторожные попытки поворота её несколько раз в противоположные стороны позволили, в конце концов, разблокировать платформу;
  • падение мощности питающих изотопных элементов потребовало составления сложных циклограмм работы бортового оборудования, часть которого начали время от времени отключать, чтобы предоставить другой части достаточно электроэнергии;
  • незапланированное вначале удаление аппаратов от Земли потребовало многократной модернизации наземного приёмо-передающего комплекса, чтобы принимать слабеющий сигнал.

Послание внеземным цивилизациям

Образец золотой пластинки, прикреплённой к аппаратам.

К борту каждого «Вояджера» прикрепили круглую алюминиевую коробку, положив туда позолоченный видеодиск. На диске 115 слайдов, на которых собраны важнейшие научные данные, виды Земли, её континентов, различные ландшафты, сцены из жизни животных и человека, их анатомическое строение и биохимическая структура, включая молекулу ДНК.

В двоичном коде сделаны необходимые разъяснения и указано местоположение Солнечной системы относительно 14 мощных . В качестве «мерной линейки» указана сверхтонкая структура молекулы водорода (1420 МГц).

Кроме изображений, на диске записаны и звуки: шёпот матери и плач ребёнка, голоса птиц и зверей, шум ветра и дождя, грохот вулканов и землетрясений, шуршание песка и океанский прибой.

Человеческая речь представлена на диске короткими приветствиями на 55 языках народов мира. По-русски сказано: «Здравствуйте, приветствую вас!». Особую главу послания составляют достижения мировой музыкальной культуры. На диске записаны произведения Баха, Моцарта, Бетховена, джазовые композиции Луи Армстронга, Чака Берри, народная музыка многих стран.

На диске записано также обращение Картера, который в 1977 году был президентом США. Вольный перевод обращения звучит так:

Этот аппарат создан в США, стране с населением 240 млн человек среди 4-миллиардного населения Земли. Человечество всё ещё разделено на отдельные нации и государства, но страны быстро идут к единой земной цивилизации.

Мы направляем в космос это послание. Оно, вероятно, выживет в течение миллиарда лет нашего будущего, когда наша цивилизация изменится и полностью изменит лик Земли… Если какая-либо цивилизация перехватит «Вояджер» и сможет понять смысл этого диска - вот наше послание:

Это - подарок от маленького далёкого мира: наши звуки, наша наука, наши изображения, наша музыка, наши мысли и чувства. Мы пытаемся выжить в наше время, чтобы жить и в вашем. Мы надеемся, настанет день, когда будут решены проблемы, перед которыми мы стоим сегодня, и мы присоединимся к галактической цивилизации. Эти записи представляют наши надежды, нашу решимость и нашу добрую волю в этой , огромной и внушающей благоговение.

В 2015 году НАСА приняло решение выложить в интернет все звуки с золотой пластинки для зондов «Вояджеров». Ознакомиться с ними может любой желающий на сайте НАСА.

Аппараты покидают солнечную систему

Иллюстрация выхода космических аппаратов за пределы Солнечной системы.

После встречи с Нептуном траектория «Вояджера-2» отклонилась к югу. Теперь его полёт проходит под углом 48° к эклиптике, в южной полусфере. «Вояджер-1» поднимается над эклиптикой (начальный угол 38°). Аппараты навсегда покидают пределы Солнечной системы.

Технические возможности аппаратов таковы: энергии в радиоизотопных термоэлектрических батареях хватит для работы по минимальной программе примерно до 2025 года. Проблемой может стать возможная потеря Солнца солнечным датчиком, так как с большого расстояния Солнце становится всё более тусклым. Тогда направленный радиолуч отклонится от Земли, и приём сигналов аппарата станет невозможным. Это может произойти около 2030 года.

Теперь из научных исследований «Вояджеров» на первом месте - изучение переходных областей между солнечной и межзвёздной плазмой. «Вояджер-1» пересёк гелиосферную ударную волну (termination shock ) в декабре 2004 года на расстоянии 94 а. е. от Солнца. Информация, поступающая с «Вояджера-2», привела к новому открытию: хотя аппарат на тот момент ещё не достиг данной границы, но получаемые от него данные показали, что она асимметрична - её южная часть примерно на 10 а. е. ближе к Солнцу, чем северная (вероятное объяснение - влияние межзвёздного магнитного поля). «Вояджер-2» пересёк гелиосферную ударную волну 30 августа 2007 года на расстоянии 84,7 а. е. Ожидается, что аппараты пересекут гелиопаузу примерно через 10 лет после пересечения гелиосферной ударной волны.

Космический аппарат «Вояджер-2», запущенный 20 августа 1977 года, пересёк в августе 2007 года границу Солнечной системы (точнее, гелиосферы). 10 декабря 2007 года NASA сообщило о результатах анализа данных, присланных «Вояджером».

На определённом расстоянии скорость солнечного ветра резко падает и перестаёт быть сверхзвуковой. Область (практически поверхность), в которой это происходит, называется границей ударной волны (termination shock или termination shockwave). Это и есть граница, которую пересекли «Вояджеры». Можно считать её границей внутренней гелиосферы. По некоторым определениям, гелиосфера здесь и кончается.

«Вояджер-2» подтвердил, что гелиосфера - не идеальный шар, она сплющена: её южная граница находится ближе к Солнцу, чем северная. Кроме того, аппарат сделал ещё одно неожиданное наблюдение: торможение солнечного ветра за счёт противодействия межзвёздного газа должно было бы приводить к резкому повышению температуры и плотности плазмы ветра. Действительно, на границе ударной волны температура была выше, чем во внутренней гелиосфере, но всё равно в 10 раз меньше, чем ожидалось. Чем вызвано расхождение и куда уходит энергия, неизвестно.

Учёные надеются, что связь с «Вояджерами» удастся поддерживать и после того, как они пересекут гелиопаузу.