«Распространение радиоволн. Радиолокация

Физической основой радиолокации является рассеяние радиоволн объектами, отличающимися своими электрическими характеристиками (электрической проницаемостью диэлектрической проницаемостью и электропроводностью а) от соответствующих характеристик окружающей среды при их облучении.

Интенсивность рассеяния или отражения радиоволн (интенсивность вторичного поля) зависит от степени отличия электрических характеристик объекта и среды, от формы объекта, от соотношения его размеров I и длины волны А. и от поляризации радиоволн. Результирующее вторичное электромагнитное поле состоит из поля отражения, распространяющегося в сторону облучающего первичного поля, и теневого поля, распространяющегося за объект (в ту же сторону, что и первичное поле).

С помощью приемной антенны и приемного устройства можно принять часть рассеянного сигнала, преобразовать и усилить его для последующего обнаружения. Таким образом, простейшая РЛС может состоять из передатчика, формирующего и генерирующего радиосигналы, передающей антенны, излучающей эти радиосигналы, приемной антенны, принимающей отраженные сигналы, радиоприемника, усиливающего и преобразующего сигналы и, наконец, выходного устройства, обнаруживающего отраженные сигналы (рис. 1.1).

Рис. 1.1. Принцип действия простейшей РЛС

Как правило, амплитуда (или мощность) принимаемого сигнала мала, а сам сигнал имеет случайный характер. Малая мощность сигнала объясняется большим расстоянием до объекта (цели) и поглощением энергии сигнала при его распространении. Кроме того, на интенсивность отраженного сигнала существенно влияют размеры целей. Случайный характер сигнала является следствием флуктуации отраженного сигнала за счет: случайного перемещения элементов цели сложной формы при отражении радиоволн; многолучевого распространения радиоволн; хаотических изменений амплитуды сигнала при распространении и ряда других факторов. В результате принимаемый сигнал по виду, интенсивности и характеру изменения похож в приемном тракте на шумы и помехи. Поэтому первой и основной задачей РЛС является обнаружение полезного радиосигнала, т.е. вынесение решения о присутствии полезного сигнала в поступающей на вход приемного тракта смеси полезного сигнала с помехами, называемой входной реализацией. Эта статистическая задача решается входящим в РЛУ специальным устройством - обнаружителем, в котором стараются использовать алгоритм оптимального (наилучшего) обнаружения. Качество процесса обнаружения характеризуют вероятностью правильного обнаружения когда присутствующий во входной реализации сигнал обнаруживается, и вероятностью ложной тревоги когда за полезный сигнал принимается помеха, а сам сигнал отсутствует. Обнаружитель тем лучше, чем больше и меньше

Большинство параметров принимаемого сигнала априори неизвестны, поэтому при обнаружении приходится осуществлять поиск нужного параметра радиосигнала, отличающего его от сопутствующих шумов и помех.

Построение РЛС на базе современных технологий обработки информации заключается в использовании в качестве антенн фазированной антенной решетки (ФАР), в качестве генератора пусковых импульсов синтезатора частоты - синхронизатора, в качестве выходного устройства - цифрового процессора. Передатчик в зависимости от того, какая антенна используется в РЛС, может быть реализован в модульном варианте и встроен в активную ФАР, либо в виде модулятора и однокаскадного или многокаскадного генератора радиочастоты для пассивной ФАР или зеркальной антенны. Таким образом, перспективная РЛС (рис. 1.2) состоит из ФАР,

Рис. 1.2. Построение современной импульсной

синтезатора-синхронизатора, аналогового процессора (приемника), цифрового процессора и устройства отображения информации.

Антенна по сигналам от ЭЦВМ осуществляет формирование лучей и их перемещение для обзора пространства. Радиопередатчик формирует зондирующие сигналы, которые излучаются антенной. Радиоприемник усиливает слабые отраженные целью и принятые антенной сигналы. Поскольку эти сигналы приходят в смеси с шумами и помехами, то их выделение осуществляется с помощью согласованных фильтров сосредоточенной селекции и цифровых фильтров. Обычно процессор сигналов (приемник) выдает электрические сигналы в цифровом коде. Дальнейшая обработка сигналов выполняется в процессоре данных по заложенным в него программам алгоритмов обработки. Рабочие частоты и временные интервалы в РЛС задаются с помощью синтезатора-синхронизатора. Устройство отображения информации выполняется обычно на индикаторе с электроннолучевой трубкой или на дисплее процессора.

Количество одновременно обнаруживаемых и сопровождаемых целей определяется быстродействием систем обработки информации - выходного устройства, в качестве которого обычно используется цифровой процессор. На рис. 1.3 изображен диспетчерский пункт регулирования воздушного движения в зоне аэропорта.

Рис. 1.3. Диспетчерский путсг УВД

Типичное изображение на экране индикатора кругового обзора (ИКО) РЛС УВД показано на рис. 1.4, а. Здесь можно различить светящиеся радиальные и круговые метки. В центре экрана «находится» РЛС. Яркие точки - отметки целей. По радиусу можно отсчитать дальность, а по углу поворота радиуса, проходящего через отметку цели, относительно вертикали, проходящей через центр экрана, можно измерить пеленг цели. К каждой отметке на экране «прикреплен» формуляр, который содержит необходимую информацию о бортовом номере, высоте, дальности и азимуте самолета (рис. 1.4, б). На рис. 1.4 для лучшей различимости проведено инвертирование изображения.

Рис. 1.4. Вид экрана РЛС управления воздушным движением: а - общий вид экрана; б - укрупненное изображение фрагмента экрана с формуляром

Электромагнитные волны различных диапазонов

Распространение радиоволн

Электромагнитные волны, используемые для радиосвязи, называются радиоволнами . Радиоволны делятся на группы.

Наименование радиоволн Диапазон частот, Гц Диапазон длин волн (в вакууме), м
Сверхдлинные < 3∙10 4 > 10 000
Длинные 3∙10 4 – 3∙10 5 10000 – 1000
Средние 3∙10 5 – 3∙10 6 1000 – 100
Короткие 3∙10 6 – 3∙10 7 100 – 10
Ультракороткие:
метровые 3∙10 7 – 3∙10 8 10 – 1
дециметровые 3∙10 8 – 3∙10 9 1 – 0,1
сантиметровые 3∙10 9 – 3∙10 10 0,1 – 0,01
миллиметровые 3∙10 10 – 3∙10 11 0,01 – 0,001

При использовании электромагнитных волн для радиосвязи как источник, так и приемник радиоволн чаще всего располагают вблизи земной поверхности. Ее форма и физические свойства, а также состояние атмосферы сильно влияют на распространение радиоволн.

Особенно существенное влияние на распространение радиоволн оказывают слои ионизированного газа в верхних частях атмосферы на высоте 100-300 км над поверхностью Земли. Эти слои называют ионосферой . Ионизация воздуха верхних слоев атмосферы вызывается электромагнитным излучением Солнца и потоком заряженных частиц, испускаемых Солнцем.

Распространение радиоволн зависит от свойств атмосферы. Нижняя, наиболее плотная часть атмосферы называется тропосферой и простирается до высоты 10-12 км. Выше расположена стратосфера, верхняя граница которой лежит на высоте 60-80 км. Далее находится ионосфера, которая характеризуется малой плотностью газа. Под действием солнечной радиации молекулы газа ионизируются, то есть распадаются на ионы и свободные электроны. Ионизированный газ обладает свойством электропроводности и может отражать радиоволны.

Ионосфера неоднородна; некоторые ее слои ионизированы наиболее сильно. Различают слои ионосферы D, Е и F Степень ионизации атмосферы зависит от интенсивности солнечной радиации и изменяется в различное время суток и года.

Проводящая электрический ток ионосфера отражает радиоволны с длиной волны λ > 10 м, как обычная металлическая пластина. Но способность ионосферы отражать и поглощать радиоволны существенно меняется в зависимости от времени суток и времен года (именно поэтому радиосвязь, особенно в диапазоне средних длин волн (100-1000 м), гораздо надежнее ночью и в зимнее время).

Устойчивая радиосвязь между удаленными пунктами на земной поверхности вне прямой видимости оказывается возможной благодаря отражению волн от ионосферы и способности радиоволн огибать выпуклую земную поверхность (т.е. дифракции). Дифракция выражена тем сильнее, чем больше длина волны. Поэтому радиосвязь на больших расстояниях за счет огибания волнами Земли оказывается возможной лишь при длинах волн, значительно превышающих 100 м (средние и длинные волны).

1.Общие сведения о системах радиолокации

2. Классификация систем радиолокации

3. Сигналы и цели в радиолокации

4. Методы измерения координат целей

5. Радиолокационные станции следящего типа

6. Фазовый детектор

7. Смеситель

8.Особенности развития и примеры современных РЛС

Список литературы

1. Общие сведения о системах радиолокации

Назначение и область применения.

Радиолокацией называется совокупность методов и технических средств, предназначенных для обнаружения различных объектов в пространстве, измерения их координат и параметров движения посредством приема и анализа электромагнитных волн, излучаемых или переизлучаемых объектами.

Радиолокация как научно-техническое направление в радиотехнике зародилась в 30-х годах. Достижения авиационной техники обусловили необходимость разработки новых средств обнаружения самолетов, обладающих высокими характеристиками (дальностью, точностью). Такими средствами оказались радиолокационные системы.

Выдающийся вклад в развитие радиолокации внесли советские ученые и инженеры П. К. Ощепков, М. М. Лобанов, Ю. К. Коровин, Б. К. Шембель. В Советском Союзе первые успешные эксперименты обнаружения самолетов с помощью радиолокационных устройств были проведены еще в 1934/36 гг. В 1939 г. на вооружении войск ПВО поступили первые серийные отечественные радиолокаторы. Существенным шагом в развитии радиолокации было создание в 1940/41 гг. под руководством Ю. Б. Кобзарева импульсного радиолокатора. В настоящее время радиолокация одна из наиболее прогрессирующих областей радиотехники.

Получение информации в радиолокации сопряжено с наблюдением некоторой области пространства. Технические средства, с помощью которых ведется радиолокационное наблюдение, называются радиолокационными станциями (РЛС) или радиолокаторами; а наблюдаемые объекты - радиолокационными целями. Типичными целями являются самолеты, ракеты, корабли, наземные инженерные сооружения и т. п.

В радиолокации наиболее часто измеряются дальность между целью и РЛС, угловые координаты (азимут, угол места) и радиальная, относительно радиолокатора, составляющая скорости движения. (Азимут - это угол между направлением на цель и северным направлением, измеренный в горизонтальной плоскости. Угол места измеряется между вектором наклонной дальности и его проекцией на горизонтальную плоскость.) В задачу радиолокационного наблюдения в некоторых случаях входит также идентификация (распознавание) целей.

Понятие «система радиолокации» объединяет РЛС и другие связанные с ними технические средства, операторов, наблюдаемые цели и пространство, в котором ведется наблюдение.

Системы радиолокации практически всегда входит в состав более сложных суперсистем. Эти суперсистемы имеют важное военное и народнохозяйственное значение и находят разнообразное применение: для управления воздушным движением, в навигации самолетов, кораблей, в геофизических и астрофизических исследованиях и др.

Системы радиолокации составляют информационную часть таких суперсистем и функционируют совместно и во взаимной связи с другими подсистемами суперсистемы (радионавигации, радиоуправления, передачи информации).

Методы радиолокации.

Носителем информации в радиолокации является радиолокационныйсигнал - электромагнитная волна, излучаемая целью. Это излучение может иметь различную природу; вторичное излучение (отражение), или собственное излучение радиоволн. В зависимости от способа образования радиолокационного сигнала различают активный, активный с активным "ответом” и пассивный методы радиолокации.

В активной радиолокации передатчик РЛС излучает в направлении на цель мощный зондирующий сигнал. При облучении цели электромагнитной волной часть энергии волны поглощается, а остальная - отражается. Приемник радиолокатора улавливает слабый отраженный сигнал. Обнаружение отраженного сигнала свидетельствует о наличии цели. Анализ принятого сигнала и сравнение его с излученным позволяет получить информацию о пространственном положении и движении цели относительно РЛС.

В активной радиолокации с активным ответом радиолокационный сигнал создается путем переизлучения зондирующего сигнала специальным радиоответчиком, установленным на цели. Системы, использующие такой метод, применяются для наблюдения самолетов, космических аппаратов, имеющих ретранслятор сигналов на борту.

Системы активной радиолокации могут быть совмещенными и разделенными. В первом случае приемная и передающая части РЛС совмещаются в едином устройстве; во втором - приемное и передающее устройства размещаются в различных точках пространства, на удалении друг от друга.

В пассивной радиолокации в качестве сигналов используется самопроизвольное электромагнитное излучение целей: собственное тепловое радиоизлучение физических тел или излучение радиотехнических устройств, установленных на цели. Пассивная РЛС имеет только приемное устройство, с помощью которого производится обнаружение целей и измерение их угловых координат.

На современном этапе развития техники часто оказывается затруднительным построение пассивных РЛС с высокими техническими характеристиками, использующими тепловое радиоизлучение, вследствие малой его интенсивности. Поэтому такие РЛС нашли ограниченное применение. Большое значение имеют специальные пассивные РЛС, предназначенные для радиоразведки.

2. Классификация систем радиолокации

В основу классификации систем радиолокации могут быть положены различные признаки. Для систем радиолокации, осуществляющих выделение, обработку и накопление информации о радиолокационных целях, наиболее существенными являются информационные признаки, а именно: назначение и характер получаемой информации. Однако для практики такая классификация часто оказывается недостаточной. Поэтому дополнительно вводят классификацию по способу формирования и обработки сигналов, по месту (объекту) размещения аппаратуры, по диапазону используемых радиоволн.

Элементом системы радиолокации, определяющим ее назначение, основные свойства, возможности практического использования, являются РЛС. В зависимости от назначения и характера получаемой информации можно выделить три класса РЛС.

1. РЛС обзорного типа. Назначение этих радиолокаторов- поиск, обнаружение целей и относительно грубое измерение их координат. Такие РЛС обеспечивают получение информации о многих целях одновременно. Отличительный признак этих РЛС - работа в режиме периодического обзора некоторой зоны пространства. Обзорные РЛС используются для наблюдения воздушного пространства, земной или водной поверхности.

2. РЛС следящего типа. Назначение таких РЛС - точное измерение и непрерывная выдача информации о значениях координат целей. РЛС следящего типа осуществляют слежение за одной или несколькими целями. В частности, РЛС следящего типа применяются для управления оружием, слежения за самолетами в системах УВД.

3. Специализированные измерители и РЛС ближнего действия. К этому типу отнесем устройства, выполняющие некоторую частную задачу. Как правило, такие устройства измеряют один параметр положения или движения цели (объекта) и работают по заведомо одной цели. По назначению рассматриваемые устройства обладают большим разнообразием. В качестве примера укажем на РЛС, используемые как навигационные измерители - самолетный радиовысотомер, доплеровский измеритель вектора скорости самолета.

Существуют также комбинированные и многофункциональные РЛС. В комбинированной системе совмещаются обзорная и следящая РЛС. Наиболее совершенными являются многофункциональные РЛС. Такие РЛС могут одновременно совершать обзор пространства и слежение за целями.

Схемно-техническое построение и конструкция РЛС в существенной мере зависят от места (объекта) размещения, от способа формирования и обработки сигналов. По месту установки РЛС подразделяются на наземные (стационарные и передвижные) и бортовые: самолетные, космические, корабельные.

По способу формирования и обработки сигналов различают РЛС импульсные и с непрерывным излучением, когерентные и некогерентные, одноканальные и многоканальные.

Характеристики и параметры систем радиолокации принято подразделять на тактические и технические. Первые из них определяют возможности практического использования системы.

Перечислим основные тактические характеристики и параметры.

1. Зона действия (рабочая зона) - область пространства, в которой РЛС выполняет свои функции, определенные ее назначением.

2. Измеряемые координаты и точности их измерения. Измеряемые координаты определяются назначением РЛС. Существуют одно-, двух- и трехкоординатные РЛС. Измерение координат сопровождается погрешностями, которые ограничивают возможности тактического использования РЛС. Чрезмерное увеличение точности приводит к усложнению конструкции и к неоправданному повышению стоимости системы.

3. Разрешающая способность РЛС характеризует возможность раздельного наблюдения целей и измерения их параметров при малом отличии этих параметров. Различают разрешение по дальности, по направлению и по скорости. Цели, не разрешаемые ни по дальности, ни по направлению, ни по скорости, воспринимаются радиолокатором как одна цель. Во многих случаях тактического применения РЛС разрешающая способность является характеристикой первостепенной важности, определяющей саму возможность практического использования РЛС.

4. Помехозащищенность характеризуется способностью РЛС выполнять свои функции в условиях воздействия различного рода помех, естественных и организованных.

5. Пропускная способность определяется плотностью случайного потока целей, информация о которых обрабатывается радиолокатором и выдается с заданной точностью.

6. Время развертывания (приведения в рабочее состояние). Этот параметр характеризует возможность использования РЛС в условиях скоротечно изменяющейся обстановки.

Радиолока́ция - область науки и техники, объединяющая методы и средства обнаружения, измерения координат, а также определение свойств и характеристик различных объектов, основанных на использовании радиоволн . Близким и отчасти перекрывающимся термином является радионавигация , однако в радионавигации более активную роль играет объект, координаты которого измеряются, чаще всего это определение собственных координат. Основное техническое приспособление радиолокации - радиолокационная станция (англ. Radar).

Различают активную, полуактивную, активную с пассивным ответом и пассивную РЛ. Подразделяются по используемому диапазону радиоволн, по виду зондирующего сигнала, числу применяемых каналов, числу и виду измеряемых координат, месту установки РЛС.

Классификация

Выделяют два вида радиолокации:

  • Пассивная радиолокация основана на приёме собственного излучения объекта
  • При активной радиолокации радар излучает свой собственный зондирующий импульс и принимает его отражённым от цели. В зависимости от параметров принятого сигнала определяются характеристики цели.

Активная радиолокация бывает двух видов:

  • С активным ответом - на объекте предполагается наличие радиопередатчика (ответчика), который излучает радиоволны в ответ на принятый сигнал . Активный ответ применяется для опознавания объектов (свой-чужой), дистанционного управления , а также для получения от них дополнительной информации (например, количество топлива, тип объекта и т. д.).
  • С пассивным ответом - запросный сигнал отражается от объекта и воспринимается в пункте приёма как ответный.

Для просмотра окружающего пространства РЛС использует различные способы обзора за счёт перемещения направленного луча антенны РЛС:

  • круговой
  • секторный
  • обзор по винтовой линии
  • конический
  • по спирали
  • "V" обзор
  • линейный (самолёты ДРЛО типа Ан-71 и А-50 (Россия -Украина) или американские с системой Авакс)

В соответствии с видом излучения РЛС делятся на

  • РЛС непрерывного излучения
  • Импульсные РЛС

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники - Распространение радиоволн . В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение , свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Импульсный метод радиолокации

При импульсном методе радиолокации передатчики генерируют колебания в виде кратковременных импульсов , за которыми следуют сравнительно длительные паузы. Причём длительность паузы выбирается исходя из дальности действия РЛС D max .

Сущность метода состоит в следующем:

Передающее устройство РЛС излучает энергию не непрерывно, а кратковременно, строго периодически повторяющимися импульсами, в паузах между которыми происходит приём отражённых импульсов приёмным устройством той же РЛС. Таким образом, импульсная работа РЛС даёт возможность разделить во времени мощный зондирующий импульс, излучаемый передатчиком и значительно менее мощный эхо-сигнал. Измерение дальности до цели сводится к измерению отрезка времени между моментом излучения импульса и моментом приёма, то есть временем движения импульса до цели и обратно.

Дальность действия РЛС

Максимальная дальность действия РЛС зависит от ряда параметров и характеристик как антенной системы станции, так и генератора, и приёмника системы. В общем случае без учёта потерь мощности в атмосфере, помех и шумов дальность действия системы можно определить следующим образом:

, - мощность генератора; - коэффициент направленного действия антенны; - эффективная площадь антенны - эффективная площадь рассеяния цели - минимальная чувствительность приёмника.

При наличии шумов и помех дальность действия РЛС уменьшается.

Влияние помех

Влияние шумов

Влияние атмосферы

Атмосферные потери особенно велики в сантиметровом и миллиметровом диапазонах и вызываются дождем, снегом и туманом, а в миллиметровом диапазоне также кислородом и парами воды. Наличие атмосферы приводит к искривлению траектории распространения радиоволн (явление рефракции). Характер рефракции зависит от изменения коэффициента преломления атмосферы при изменении высоты. Из-за этого траектория распространения радиоволн искривляется в сторону поверхности земли.

РЛС непрерывного излучения

Используются в основном для определения радиальной скорости движущегося объекта (использует эффект Допплера). Достоинством РЛС такого типа является дешевизна и простота использования, однако в таких РЛС сильно затруднено измерение расстояния до объекта.

Пример: простейший радар для определения скорости автомобиля.

Основные идеи и этапы развития

Как известно, эффект отражения радиоволн открыл А.С. Попов в 1897 году. Но технически использовать удивительный эффект для «дальнего видения» никому не удавалось: волны рассеивались, и на объект локации их попадало меньше одной миллиардной части. Практические работы в области радиолокации начались в 30-х годах. Работы велись практически параллельно в СССР, Германии, Англии и Франции. Естественно, что разработки держались в секрете. Основной целью было обнаружение атак авиации.

В Советском Союзе осознание необходимости средств обнаружения авиации, свободных от недостатков звукового и оптического наблюдения, привела к разворачиванию исследований в области радиолокации. Идея, предложенная молодым артиллеристом Павлом Ощепковым получила одобрение высшего командования: наркома обороны СССР К. Е. Ворошилова и его заместителя - М. Н. Тухачевского .

3 января 1934 года в СССР был успешно проведён эксперимент по обнаружению самолёта радиолокационным методом. Самолёт, летящий на высоте 150 метров был обнаружен на дальности 600 метров от радарной установки. Эксперимент был организован представителями Ленинградского Института Электротехники и Центральной Радиолаборатории. В 1934 году маршал Тухачевский в письме правительству СССР написал: «Опыты по обнаружению самолётов с помощью электромагнитного луча подтвердили правильность положенного в основу принципа». Первая опытная установка «Рапид» была опробована в том же году , в 1936 году советская сантиметровая радиолокационная станция «Буря» засекала самолёт с расстояния 10 километров . Работы по радиолокации были начаты и в УФТИ в Харькове. Первые РЛС в СССР, принятые на вооружение РККА и выпускавшиеся серийно были: РУС-1 – с 1939 года и РУС-2 – с 1940 года.

В 1946 году американские специалисты - Реймонд и Хачертон, бывший сотрудник посольства США в Москве, написали: «Советские учёные успешно разработали теорию радара за несколько лет до того, как радар был изобретён в Англии».

Основным фактором, ограничивающим технические характеристики локаторов, является малая мощность принимаемого сигнала. При этом мощность принимаемого сигнала убывает как четвёртая степень дальности, то есть, чтобы увеличить дальность действия локатора в 10 раз нужно увеличить мощность передатчика в 10000 раз! Естественно на этом пути быстро пришли к пределам, преодолеть которые было далеко не просто. Уже в самом начале развития был осознан тот факт, что имеет значение не сама мощность принимаемого сигнала, а его заметность на фоне шумов приемника. Снижение шумов приемника также было ограничено естественными шумами элементов приемника, например тепловыми. Данный тупик был преодолен на пути усложнения методов обработки принятого сигнала и связанного с этим усложнения формы применяемых сигналов. Развитие радиолокации как научной отрасли знаний шло одновременно с развитием кибернетики и сейчас потребуются специальные исследования, чтобы решить, где именно были получены первые результаты. Следует отметить появление понятия сигнала , который позволил отвлечься от конкретных физических процессов в приемнике, таких как напряжение и ток, и позволил решать стоящие проблемы как математическую задачу о поиске наилучших функциональных преобразованиях функций времени.

Одной из первых работ в этой области была работа Котельникова В. А. об оптимальном приёме сигнала, то есть наилучшем в условии шумов методе обработки сигнала. В результате было доказано, что качество приёма зависит не от мощности сигнала, а от его энергии , то есть произведения мощности на время, таким образом, появилась доказанная возможность увеличения дальности действия за счёт увеличения длительности сигналов, в пределе до непрерывного излучения. Значительным шагом вперед стало отчетливое применение в технике методов статистической теории решений (критерий Неймана-Пирсона) и принятие того факта, что исправное устройство может работать с определённой долей вероятности. Для того, чтобы радиолокационный сигнал при большой длительности позволял измерять дальность и скорость с высокой точностью, потребовались сложные сигналы, в отличие от простых радиолокационных импульсов, изменяющие какие-либо характеристики в процессе генерации. Так. сигналы с линейной частотной модуляцией изменяют частоту колебаний в течение одного импульса, сигналы с фазовой манипуляцией скачкообразно изменяют фазу сигнала, обычно на 180 градусов. При создании сложных сигналов было сформулировано понятие функции неопределённости сигнала, показывающей связь точности измерений дальности и скорости. Необходимость повышения точности измерения параметров стимулировало развитие различных методов фильтрации результатов измерений, например, методов оптимальной нелинейной фильтрации, которые явились обобщением фильтра Калмана на нелинейные задачи. В итоге всех этих разработок теоретическая радиолокация оформилась как самостоятельная сильно математизированная отрасль знаний, в которой значительную роль имеют формализованные методы синтеза , то есть проектирование ведется в известной мере «на кончике пера».

Основными моментами в противостоянии с авиацией были:

  • Применение для скрытия самолётов и вертолётов пассивных маскирующих помех в виде распыляемых в воздухе кусочков фольги, отражающей радиоволны. Ответом на это было внедрение в радиолокаторах систем селекции движущихся целей, которая на основе доплеровского эффекта отличает движущиеся самолёты от сравнительно неподвижной фольги.
  • Развитие технологий построения самолётов и кораблей, уменьшающих мощность отражённого назад к радиолокатору сигналов, получивших название Стелс . Для этого служат и специальные поглощающие покрытия, и специальная форма, отражающая падающую радиоволну не назад, а в другом направлении.

См. также

Ссылки

  • Бистатическая радиолокация [неавторитетный источник? ]

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Радиолокация" в других словарях:

    Радиолокация … Орфографический словарь-справочник

    Обнаружение и определение местоположения разл. объектов с помощью радиотехн. устройств. Первые радиолокац. станции (РЛС), называемые также радиолокаторами или радарами, появились в Великобритании, СССР и США в кон. 1930 х гг. Принцип действия… … Физическая энциклопедия

    - (от радио... и лат. locatio расположение) область науки и техники, предмет которой наблюдение различных объектов (целей) радиотехническими методами: их обнаружение, распознавание, определение их местонахождения и скорости и др.; сам процесс… … Большой Энциклопедический словарь

Тема: «Распространение радиоволн. Радиолокация. Понятие о телевидении. Развитие средств связи».

Цель: ознакомить учащихся со свойствами радиоволн различной длины и о развитии средств связи; объяснить принцип радиолокации и телевидения;

Формировать неформальные знания и умения в освоении понятий «радиолокация» и «телевидение»;

Воспитывать сознательное отношение к учебе и заинтересованность в изучении физики.

Оборудование: презентация «Понятие о телевидении».

Ход урока.

I.Организационный момент.

II. Актуализация знаний.

А). Беседа по вопросам.

1. Что такое электромагнитное поле?

2. Что называется электромагнитной волной?

3. Каковы основные характеристики электромагнитной волны?

4. Каково устройство и принцип действия вибратора Герца?

5. В чём состоит научное и практическое значение опыта Герца?

6. Рассказать о истории развития радио в России.

7. В чём значение опытов А.С. Попова?

8. Расскажите о назначении отдельных деталей приёмника

8. Какова роль Г.Маркони в развитии радиосвязи?

Б). Решение задач.

№1. Электромагнитная волна, с помощью которой передают сигнал бедствия SOS, имеет длину волны 600 м. Принята такая длина волны по международному соглашению. Найти на какой частоте передается этот сигнал.

№ 2. Радиоприемник в автомашине прекращает работу, когда она проезжает под мостом или эстакадой. Почему? (Происходит экранирование и частичное поглощение радиоволны).

№ 3. В приемном контуре колебательного контура включена катушка индуктивностью 2 мкГн.Найти электроемкость конденсатора, если радиоприемник принимает волны длиной 900 м.

№ 4. Подводные лодки, погружаясь на некоторую глубину, не могут пользоваться радиосвязью. Почему? (Морская вода, хороший проводник, она поглощает радиоволны)

III . Изучение нового материала

Распространение радиоволн

Согласно современной теории волны распространяются различными путями. Один путь лежит вдоль поверхности Земли. По нему распространяется так называемая поверхностная (земная) волна. Она сравнительно быстро затухает из-за поглощения энергии всеми проводниками, встречающимися на ее пути.
Форма Земли ограничивает дальность приема поверхностных волн. Если бы они распространялись строго прямолинейно, то радиосвязь была бы возможна только на расстоянии прямой видимости. Но поскольку с высотой электрические и магнитные параметры атмосферы меняются, поверхностная волна преломляется, отклоняясь к Земле, ее траектория искривляется, и дальность приема увеличивается.
Препятствия на поверхности Земли отражают радиоволны. За препятствиями может образовываться радиотень, куда волна не попадает. Но если длина волны достаточно велика, то вследствие дифракции волна огибает препятствие и радиотень не образуется. Мощные радиостанции, работающие на длинных волнах, обеспечивают связь на несколько тысяч километров. На средних волнах связь возможна в зоне до несколько сотен километров. На коротких волнах - лишь в зоне прямой видимости. Имеются также волны пространственные, которые распространяются от антенны по пути, лежащему под большим или меньшим углом к поверхности Земли. На высоте порядка100-300 км волны встречаются со слоем, состоящем из воздуха, ионизированного электромагнитным излучением Солнца и потоком заряженных частиц, излучаемым им. Этот слой называют ионосферой.
Проводящая электрический ток ионосфера отражает радиоволны с длиной волны, большей 10 м, как обычная металлическая пластина. Но способность ионосферы отражать и поглощать радиоволны существенно меняется в зависимости от времени суток и времен года.
Волны после отражения в ионосфера вновь попадают на Землю. Однако все зависит от угла, под которым волны входят в ионосферу. Если он превышает некоторую величину, волны проникают в ионосферу, проходят сквозь нее и затем свободно распространяются в космическом пространстве. И, наоборот, если угол меньше некоторой предельной величины, волна под тем же углом отражается к Земле. Чем меньше длина волны, тем глубже волна проникает в ионосферу, а значит, с большей высоты отражается. Короткие волны распространяются на большие расстояния только за счет многократных отражений от ионосферы и поверхности Земли. Именно с помощью коротких волн можно осуществить радиосвязь на любых расстояниях на Земле. На распространение радиоволн влияют форма и физические свойства земной поверхности, а так же состояние атмосферы.

Классификация радиоволн:

Длинные, средние, короткие волны используются в телеграфии, радиовещании, телевидение, радиолокации и так далее.

Метровые и дециметровые волны используются для исследования свойств вещества.

Сантиметровые и миллиметровые волны получают в магнетронах, мазерах. Применяются в радиолокации, радиоастрономии и радиоспектроскопии.

Электромагнитные волны нашли применение в радиолокации, где используется явление отражения электромагнитных волн. Радиолокация – это обнаружение и определение местонахождения объектов с помощью радиоволн. Радиолокатор состоит из приемной и передающей частей. Радиолокатор (радар) – это комбинация ультрокоротковолнового радиопередатчика и приёмника, имеющих общую приёмно-передающую антенну, создающую остронаправленный радиолуч. Излучение осуществляется короткими импульсами. В радиолокации используются волны сверхвысокой частоты – от 108 до 1011 Гц. Генератор, связанный с антенной излучают остронаправленную волну. Если длина волны 10 см, то радар имеет антенну в виде параболического зеркала. Если длина волны =1 м, то антенна радара имеет вид системы вибраторов. Отраженная волна принимается той же антенной, для этого она работает в импульсном режиме. Расстояние до объекта вычисляется по формуле:

R = с t/2 ; деление на 2, потому что волна идет до цели и обратно.

Применение радиолокационных установок:

Транспорт авиа, морской, железнодорожный, метеослужба, оборона Родины, астрономия. Авиация, космонавтика, флот: безопасность движения судов по любой погоде и в любое время суток, предотвращение их столкновения, безопасность взлёта и посадки самолётов. Военное дело: своевременное обнаружение самолётов или ракет противника, автоматическая корректировка зенитного огня. Радиолокация планет: измерение расстояния до них, уточнение параметров их орбит, определение периода вращения, наблюдение рельефа поверхности.

Аварийная радиоспасательная служба. Это совокупность искусственных спутников Земли, движущихся на круговых околополярных орбитах, наземных пунктов приёма информации и радиобуёв, устанавливаемых на самолётах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нём, вычисляет координаты радиобуя и передаёт информацию в наземные пункты. Система создана в России (КОСПАС) и США, Канаде, Франции (САПСАТ). С её помощью удалось предотвратить гибель людей при авариях.

Зачем нужна связь?

Это способ общения людей, необходимое звено для ведения хозяйства любой страны.

Направления, по которым развиваются средства связи.

Телефонная связь. Сотовая связь. Радиосвязь. Телевизионная связь. Телеграфная связь. Космическая связь. Интернет. Фототелеграф. Видеотелефонная связь.

Области развития видов радиосвязи.

Радиовещание, телевидение, радиотелеграфия, радиотелефония.

Космическая связь.

Это обычная радиосвязь или лазерная связь с помощью, которых осуществляется связь между наземными приемно – передающими станциями и космическими аппаратами, или между несколькими наземными станциями через спутники связи или между космическими аппаратами.

Виды линии передачи радиоволн.

Линия, выполненная электрическим кабелем; двухпроводная линия; радиорелейная линия, волоконно – оптическая линия, лазерная связь.

Преимущества волоконно – оптической линии связи.

В настоящее время такие линии считаются самыми совершенными для передачи информации. В таких линиях используется эффект полного внутреннего отражения.

Большая пропускная способность, небольшие габариты и масса, отсутствие помех, малая стоимость – это не полный перечень достоинств таких линий.

Лазерная система связи.

РАЗВИТИЕ СРЕДСТВ СВЯЗИ

Современное общество не может развиваться без обмена информацией. Связь - это передача и прием информации с помощью различных методов. Одним из самых эффективных способов является передача информации с помощью электрических сигналов, т. е. электросвязь. Структура электросвязи фактически нам известна: передатчик сигнала – канал связи – приемник. Радиосвязь - частный случай электросвязи. В случае радиосвязи канал связи - это среда передачи электромагнитных волн.

Естественным спутником передачи сигнала являются помехи. Для исключения помех и для сохранения секретности информации применяют методы кодирования сигналов. Для передачи разных сигналов-сообщений необходимы разные полосы частот, т. е. свои каналы связи. Телефонные каналы работают в пределах от 300 до 3400 Гц, каналы звукового вещания - от 30 до 15 000 Гц, телевизионного вещания - от 50 Гц до 6 МГц. В одной линии может быть несколько каналов связи.

Совокупность различных свойств определяет длину радиоволны, используемую в конкретных системах связи. Однако влияние оказывают и не только чисто физические факторы. Так, в средней полосе России, где велика плотность населения, широкое распространение получили радиорелейные линии сантиметрового диапазона. Станции-ретрансляторы располагаются в пределах прямой видимости на расстоянии порядка 50 км и позволяют транслировать несколько телевизионных каналов и огромное количество телефонных. В районах Крайнего Севера, где плотность населения невелика, целесообразно применять радиорелейные линии дальнего тропосферного рассеивания, позволяющие ставить ретрансляторы на расстоянии 200 - 1000 км друг от друга. В то же время никакие волны, кроме мириаметровых, не смогут добраться до подводной лодки, лежащей на дне под многометровой толщей соленой воды, из-за сильного поглощения.

При передаче секретных сообщений интерес представляют метеорные линии связи. Ведь, отражаясь от конкретного метеорного следа, как солнечный зайчик от зеркала, волна попадает только в определенную точку, а сама передача информации происходит только во время существования этого метеорного следа.

Для передачи больших потоков информации (ТВ - каналы, сотни и тысячи телефонных, а также каналы передачи информации в цифровом виде) используются системы связи через искусственные спутники Земли, например, «Интелсат» (США), «Молния», «Орбита» (Россия). Широкое распространение в настоящее время получили системы сотовой телефонной связи, когда приемопередающие станции располагаются так, чтобы обеспечить стабильную связь с мобильными приемопередатчиками (сотовыми телефонами) на всей территории обслуживаемого района. Далее эти станции обеспечивают выход на проводную телефонную сеть, междугородную или международную.

ТЕЛЕВИДЕНИЕ

С помощью радиоволн можно передавать на расстояния не только звук, но и изображение. Без телевизионной связи сейчас трудно представить нашу цивилизацию. Практически в каждом доме имеется телевизор – источник информации. История создания телевизионного вещания началась в Х1Х веке. Само слово телевидение было введено русским инженером-электриком К. Д. Перским на международном конгрессе в 1900 году. Это слово произошло от греческого слова «теле», что означает «далеко», и латинского – «визо», что означает «смотреть». Возможность видеть события, происходящие в разных уголках земного шара и в нашей Солнечной системе, наблюдать за космическими объектами сделала телевидение незаменимым средством информации и культурного общения всех народов мира. Как же начиналось телевидение? В конце Х1Х века телевизионная лихорадка охватила всю планету. В патентные бюро поступили описания более двадцати пяти проектов – прообразов телевизионных систем. Наиболее интересная система механического телевидения была предложена немецким изобретателем Нипковым. Но механические системы были очень громоздкими. А теперешнее, электронное, телевидение родилось 25 июля 1907 года, когда профессор Петербургского университета Борис Львович Розинг подал заявку в патентные ведомства России, Англии и Германии на изобретенный им способ электрического воспроизведения изображения с помощью электронной развертки. 22 мая 1911 года Б. Л. Розинг впервые в мире демонстрирует изображение четырех параллельных линий, полученное с помощью немеханической приемной системы. Принципиальными особенностями по сравнению с радиосвязью являются: преобразование изображения в электрические сигналы и наоборот, преобразование электрических сигналов в видеоизображение. Это происходит в специальных устройствах: в первом случае – в иконоскопе, во втором случае – в кинескопе. В современных системах цветного телевидения это сложные радиоэлектронные устройства.

Иконоскоп устроен так. В вакуумном стеклянном баллоне укрепляется мозаичный экран- слюдяная пластинка, покрытая очень тонким слоем металла. Наружная поверхность этой пластинки представляет собой мозаику из сотен тысяч крошечных зерен серебра, обработанных парами цезия (множество миниатюрных фотоэлементов). С помощью объектива на мозаике фокусируется изображение предмета. Под действием света из фотоэлементов вследствие внешнего фотоэффекта выбиваются электроны, которые летят на заземленный электрод. Чем ярче свет, тем больше вылетает электронов, тем сильнее электрический импульс. Величина импульса, кроме того, зависит и от количества электронов, заполняющих ячейку. Для восполнения числа потерянных электронов служит электронный прожектор , тонкий луч которого с помощью отклоняющей системы обегает построчно всю мозаику и порождает в цепи переменный ток, который затем усиливается. В результате получается точная развернутая во времени электронная копия распределения света и тени на изображении. Этим током в передатчике модулируется электромагнитная волна, которая и излучается в пространство.

Преобразование электромагнитных волн, электрической энергии в световую энергию и, следовательно, в изображение происходит в приемной трубке телевизора - кинескопе.

Кинескоп представляет собой электронно-лучевой прибор для воспроизведения изображения. Черно-белый кинескоп состоит из вакуумного стеклянного баллона, электронного прожектора , создающего пучок электронов, отклоняющей системы и люминесцентного экрана. Отклоняющие системы бывают двух типов: электростатические и магнитные. В современных кинескопах чаще всего встречаются магнитные системы: электронный луч отклоняется под действием магнитного поля. Принятый антенной телевизионный сигнал преобразуется и подается на электрод. Люминофор светится тем сильнее, чем интенсивнее электронный луч, движение которого синхронизировано с движением электронного луча на передающей трубке. Таким образом, на экране кинескопа создается такое же изображение, как и на мозаике иконоскопа. Внимательно всмотритесь в изображение на телевизионном экране: оно состоит из большого количества горизонтальных линий - их называют строками. Каждый кадр содержит ровно 625 строк. За 1/25 долю секунды луч «прорисовывает» на экране 625 строк, затем процесс повторяется. За секунду кадры сменяются 25 раз! Точности ради отметим, что 625 строк луч рисует не подряд, а через строку: нечетные, а затем четные строки. Число строк и количество кадров в течение секунды выбраны не случайно. Здесь учтены два свойства нашего зрения: инерционность и разрешающая способность. Если бы телевизионные кадры сменялись реже 25 раз в секунду, то изображение на сетчатке исчезло бы раньше, чем на экране появлялся бы следующий кадр. Глаз стал бы фиксировать мелькания. Вы, наверное, видели, как смешно движутся люди в старых кинокартинах. Это объясняется тем, что число кадров в секунду в то время было слишком мало – 16 в секунду. При проектировании телевизоров расстояние между строками выбирают таким образом, чтобы сидящий на расстоянии 2 м от экрана человек не видел бы отдельных строк. Поскольку при этом весь кадр виден под углом около 10 0 , т. е. 600", а разрешающая способность глаза составляет 1", то строк должно быть более 600 (а их 625)

ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ

В вещательном цветном телевидении наиболее распространены так называемые масочные цветные кинескопы, в которых экран образован неразличимыми глазом узкими полосками или точками люминофоров - красного, зеленого и синего свечения. Три электронных прожектора формируют три сходящихся электронных пучка, каждый из которых возбуждает свечение люминофора только одного цвета. Это обеспечивается пропусканием подходящих к экрану под различными углами пучков через цветоделительную маску со щелевыми или круглыми отверстиями.

Ощущение всей гаммы цветов обеспечивается сложением в глазу излучения трех люминофоров, возбуждаемых в различных пропорциях видеосигналами, и отражающими содержание синей, зеленой и красной составляющих изображения. Электронно-оптическая система цветного кинескопа сводит три пучка в одну точку.

IV. Закрепление изученного материала.

А). Фронтальная беседа.

1. Какое свойство электромагнитных волн используется в радиолокации?

2. Что называется радиолокацией?

3. Волны, какой длины используются радарами?

4. Для каких целей создают остронаправленную волну?

5. Чем отличается кинескоп от иконоскопа?

6. Назовите области применения радиолокации.

7. Как картинку передать на большое расстояние?

8. Как получают изображение на экране кинескопа?

9. Как в иконоскопе получают изображение и затем передают его в виде электромагнитных волн?

10. Зачем и каким образом, волне придают вид луча?

11. Как и с помощью чего радар усиливает принятую отраженную радиоволну?

12. Чем объясняется лучшая слышимость радиостанций зимой?

Б). Решение задач:

1.Сколько колебаний происходит в электромагнитной волне с длиной волны 30 м за время, равное периоду звуковых колебаний с частотой 200 Гц?

2. На каком расстоянии от радиолокатора находится самолет, если отраженный от него сигнал принят через 210 -4 с после посылки этого сигнала?

3.Определить период колебаний в колебательном в колебательном контуре, излучающем электромагнитные волны длиной 450 м.

4. Радиосигнал, посланный на Луну, отразился и был принят на Земле через 2,5с после посылки. Определить расстояние от Земли до Луны.

5. На какой частоте корабли передают сигналы бедствий SOS если по Международному соглашению длина волны равна 600 м?

6. Определить дальность действия радиолокатора, излучающего 500 импульсов в секунду.

7. Сколько колебаний происходит в электромагнитной волне с длиной волны 300 метров за время, равное периоду звуковых колебаний с частотой 2 кГц?


  1. Определите дальность действия радиолокатора, излучающего 500 импульсов в секунду?

  2. Определите период и частоту радиопередатчика, работающего на волне длиной 30 м.

  3. Определите частоту и длину волны радиопередатчика, если период его электрических колебаний 10 -6 с.

  4. Сколько радиостанций может работать без помех в диапазоне длин волн 200-600 м, если каждой станции отводят полосу частот 4 кГц?
V. Подведение итогов урока.

VI. Домашнее задание: § 55 - 57.