Составление ионных уравнений. Ионные уравнения

Достаточно часто школьникам и студентам приходится составлять т. н. ионные уравнения реакций. В частности, именно этой теме посвящена задача 31, предлагаемая на ЕГЭ по химии. В данной статье мы подробно обсудим алгоритм написания кратких и полных ионных уравнений, разберем много примеров разного уровня сложности.

Зачем нужны ионные уравнения

Напомню, что при растворении многих веществ в воде (и не только в воде!) происходит процесс диссоциации - вещества распадаются на ионы. Например, молекулы HCl в водной среде диссоциируют на катионы водорода (H + , точнее, H 3 O +) и анионы хлора (Cl -). Бромид натрия (NaBr) находится в водном растворе не в виде молекул, а в виде гидратированных ионов Na + и Br - (кстати, в твердом бромиде натрия тоже присутствуют ионы).

Записывая "обычные" (молекулярные) уравнения, мы не учитываем, что в реакцию вступают не молекулы, а ионы. Вот, например, как выглядит уравнение реакции между соляной кислотой и гидроксидом натрия:

HCl + NaOH = NaCl + H 2 O. (1)

Разумеется, эта схема не совсем верно описывает процесс. Как мы уже сказали, в водном растворе практически нет молекул HCl, а есть ионы H + и Cl - . Так же обстоят дела и с NaOH. Правильнее было бы записать следующее:

H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O. (2)

Это и есть полное ионное уравнение . Вместо "виртуальных" молекул мы видим частицы, которые реально присутствуют в растворе (катионы и анионы). Не будем пока останавливаться на вопросе, почему H 2 O мы записали в молекулярной форме. Чуть позже это будет объяснено. Как видите, нет ничего сложного: мы заменили молекулы ионами, которые образуются при их диссоциации.

Впрочем, даже полное ионное уравнение не является безупречным. Действительно, присмотритесь повнимательнее: и в левой, и в правой частях уравнения (2) присутствуют одинаковые частицы - катионы Na + и анионы Cl - . В процессе реакции эти ионы не изменяются. Зачем тогда они вообще нужны? Уберем их и получим краткое ионное уравнение:

H + + OH - = H 2 O. (3)

Как видите, все сводится к взаимодействию ионов H + и OH - c образованием воды (реакция нейтрализации).

Все, полное и краткое ионные уравнения записаны. Если бы мы решали задачу 31 на ЕГЭ по химии, то получили бы за нее максимальную оценку - 2 балла.


Итак, еще раз о терминологии:

  • HCl + NaOH = NaCl + H 2 O - молекулярное уравнение ("обычное" уравнения, схематично отражающее суть реакции);
  • H + + Cl - + Na + + OH - = Na + + Cl - + H 2 O - полное ионное уравнение (видны реальные частицы, находящиеся в растворе);
  • H + + OH - = H 2 O - краткое ионное уравнение (мы убрали весь "мусор" - частицы, которые не участвуют в процессе).

Алгоритм написания ионных уравнений

  1. Составляем молекулярное уравнение реакции.
  2. Все частицы, диссоциирующие в растворе в ощутимой степени, записываем в виде ионов; вещества, не склонные к диссоциации, оставляем "в виде молекул".
  3. Убираем из двух частей уравнения т. н. ионы-наблюдатели, т. е. частицы, которые не участвуют в процессе.
  4. Проверяем коэффициенты и получаем окончательный ответ - краткое ионное уравнение.

Пример 1 . Составьте полное и краткое ионные уравнения, описывающие взаимодействие водных растворов хлорида бария и сульфата натрия.

Решение . Будем действовать в соответствии с предложенным алгоритмом. Составим сначала молекулярное уравнение. Хлорид бария и сульфат натрия - это две соли. Заглянем в раздел справочника "Свойства неорганических соединений" . Видим, что соли могут взаимодействовать друг с другом, если в ходе реакции образуется осадок. Проверим:

Упражнение 2 . Дополните уравнения следующих реакций:

  1. KOH + H 2 SO 4 =
  2. H 3 PO 4 + Na 2 O=
  3. Ba(OH) 2 + CO 2 =
  4. NaOH + CuBr 2 =
  5. K 2 S + Hg(NO 3) 2 =
  6. Zn + FeCl 2 =

Упражнение 3 . Напишите молекулярные уравнения реакций (в водном растворе) между: а) карбонатом натрия и азотной кислотой, б) хлоридом никеля (II) и гидроксидом натрия, в) ортофосфорной кислотой и гидроксидом кальция, г) нитратом серебра и хлоридом калия, д) оксидом фосфора (V) и гидроксидом калия.

Искренне надеюсь, что у вас не возникло проблем с выполнением этих трех заданий. Если это не так, необходимо вернуться к теме "Химические свойства основных классов неорганических соединений".

Как превратить молекулярное уравнение в полное ионное уравнение

Начинается самое интересное. Мы должны понять, какие вещества следует записывать в виде ионов, а какие - оставить в "молекулярной форме". Придется запомнить следующее.

В виде ионов записывают:

  • растворимые соли (подчеркиваю, только соли хорошо растворимые в воде);
  • щелочи (напомню, что щелочами называют растворимые в воде основания, но не NH 4 OH);
  • сильные кислоты (H 2 SO 4 , HNO 3 , HCl, HBr, HI, HClO 4 , HClO 3 , H 2 SeO 4 , ...).

Как видите, запомнить этот список совсем несложно: в него входят сильные кислоты и основания и все растворимые соли. Кстати, особо бдительным юным химикам, которых может возмутить тот факт, что сильные электролиты (нерастворимые соли) не вошли в этот перечень, могу сообщить следующее: НЕвключение нерастворимых солей в данный список вовсе не отвергает того, что они являются сильными электролитами.

Все остальные вещества должны присутствовать в ионных уравнениях в виде молекул. Тем требовательным читателям, которых не устраивает расплывчатый термин "все остальные вещества", и которые, следуя примеру героя известного фильма, требуют "огласить полный список" даю следующую информацию.

В виде молекул записывают:

  • все нерастворимые соли;
  • все слабые основания (включая нерастворимые гидроксиды, NH 4 OH и сходные с ним вещества);
  • все слабые кислоты (H 2 СO 3 , HNO 2 , H 2 S, H 2 SiO 3 , HCN, HClO, практически все органические кислоты...);
  • вообще, все слабые электролиты (включая воду!!!);
  • оксиды (всех типов);
  • все газообразные соединения (в частности, H 2 , CO 2 , SO 2 , H 2 S, CO);
  • простые вещества (металлы и неметаллы);
  • практически все органические соединения (исключение - растворимые в воде соли органических кислот).

Уф-ф, кажется, я ничего не забыл! Хотя проще, по-моему, все же запомнить список N 1. Из принципиально важного в списке N 2 еще раз отмечу воду.


Давайте тренироваться!

Пример 2 . Составьте полное ионное уравнение, описывающие взаимодействие гидроксида меди (II) и соляной кислоты.

Решение . Начнем, естественно, с молекулярного уравнения. Гидроксид меди (II) - нерастворимое основание. Все нерастворимые основания реагируют с сильными кислотами с образованием соли и воды:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O.

А теперь выясняем, какие вещества записывать в виде ионов, а какие - в виде молекул. Нам помогут приведенные выше списки. Гидроксид меди (II) - нерастворимое основание (см. таблицу растворимости), слабый электролит. Нерастворимые основания записывают в молекулярной форме. HCl - сильная кислота, в растворе практически полностью диссоциирует на ионы. CuCl 2 - растворимая соль. Записываем в ионной форме. Вода - только в виде молекул! Получаем полное ионное уравнение:

Сu(OH) 2 + 2H + + 2Cl - = Cu 2+ + 2Cl - + 2H 2 O.

Пример 3 . Составьте полное ионное уравнение реакции диоксида углерода с водным раствором NaOH.

Решение . Диоксид углерода - типичный кислотный оксид, NaOH - щелочь. При взаимодействии кислотных оксидов с водными растворами щелочей образуются соль и вода. Составляем молекулярное уравнение реакции (не забывайте, кстати, о коэффициентах):

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O.

CO 2 - оксид, газообразное соединение; сохраняем молекулярную форму. NaOH - сильное основание (щелочь); записываем в виде ионов. Na 2 CO 3 - растворимая соль; пишем в виде ионов. Вода - слабый электролит, практически не диссоциирует; оставляем в молекулярной форме. Получаем следующее:

СO 2 + 2Na + + 2OH - = Na 2+ + CO 3 2- + H 2 O.

Пример 4 . Сульфид натрия в водном растворе реагирует с хлоридом цинка с образованием осадка. Составьте полное ионное уравнение данной реакции.

Решение . Сульфид натрия и хлорид цинка - это соли. При взаимодействии этих солей выпадает осадок сульфида цинка:

Na 2 S + ZnCl 2 = ZnS↓ + 2NaCl.

Я сразу запишу полное ионное уравнение, а вы самостоятельно проанализируете его:

2Na + + S 2- + Zn 2+ + 2Cl - = ZnS↓ + 2Na + + 2Cl - .

Предлагаю вам несколько заданий для самостоятельной работы и небольшой тест.

Упражнение 4 . Составьте молекулярные и полные ионные уравнения следующих реакций:

  1. NaOH + HNO 3 =
  2. H 2 SO 4 + MgO =
  3. Ca(NO 3) 2 + Na 3 PO 4 =
  4. CoBr 2 + Ca(OH) 2 =

Упражнение 5 . Напишите полные ионные уравнения, описывающие взаимодействие: а) оксида азота (V) с водным раствором гидроксида бария, б) раствора гидроксида цезия с иодоводородной кислотой, в) водных растворов сульфата меди и сульфида калия, г) гидроксида кальция и водного раствора нитрата железа (III).

Тема: Химическая связь. Электролитическая диссоциация

Урок: Составление уравнений реакций ионного обмена

Составим уравнение реакции между гидроксидом железа (III) и азотной кислотой.

Fe(OH) 3 + 3HNO 3 = Fe(NO 3) 3 + 3H 2 O

(Гидроксид железа (III) является нерастворимым снованием, поэтому не подвергается . Вода - малодиссоциируемое вещество, на ионы в растворе практически недиссоциировано.)

Fe(OH) 3 + 3H + + 3NO 3 - = Fe 3+ + 3NO 3 - + 3H 2 O

Зачеркнем одинаковое количество нитрат-анионов слева и справа, запишем сокращенное ионное уравнение:

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

Данная реакция протекает до конца, т.к. образуется малодиссоциируемое вещество - вода.

Составим уравнение реакции между карбонатом натрия и нитратом магния.

Na 2 CO 3 + Mg(NO 3) 2 = 2NaNO 3 + MgCO 3 ↓

Запишем данное уравнение в ионной форме:

(Карбонат магния является нерастворимым в воде веществом, следовательно, на ионы не распадается.)

2Na + + CO 3 2- + Mg 2+ + 2NO 3 - = 2Na + + 2NO 3 - + MgCO 3 ↓

Зачеркнем одинаковое количество нитрат-анионов и катионов натрия слева и справа, запишем сокращенное ионное уравнение:

CO 3 2- + Mg 2+ = MgCO 3 ↓

Данная реакция протекает до конца, т.к. образуется осадок - карбонат магния.

Составим уравнение реакции между карбонатом натрия и азотной кислотой.

Na 2 CO 3 + 2HNO 3 = 2NaNO 3 + CO 2 + H 2 O

(Углекислый газ и вода - продукты разложения образующейся слабой угольной кислоты.)

2Na + + CO 3 2- + 2H + + 2NO 3 - = 2Na + + 2NO 3 - + CO 2 + H 2 O

CO 3 2- + 2H + = CO 2 + H 2 O

Данная реакция протекает до конца, т.к. в результате нее выделяется газ и образуется вода.

Составим два молекулярных уравнения реакций, которым соответствует следующее сокращенное ионное уравнение: Ca 2+ + CO 3 2- = CaCO 3 .

Сокращенное ионное уравнение показывает сущность реакции ионного обмена. В данном случае можно сказать, что для получения карбоната кальция необходимо, чтобы в состав первого вещества входили катионы кальция, а в состав второго - карбонат-анионы. Составим молекулярные уравнения реакций, удовлетворяющих этому условию:

CaCl 2 + K 2 CO 3 = CaCO 3 ↓ + 2KCl

Ca(NO 3) 2 + Na 2 CO 3 = CaCO 3 ↓ + 2NaNO 3

1. Оржековский П.А. Химия: 9-й класс: учеб. для общеобраз. учрежд. / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. - М.: АСТ: Астрель, 2007. (§17)

2. Оржековский П.А. Химия: 9-ый класс: учеб для общеобр. учрежд. / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013. (§9)

3. Рудзитис Г.Е. Химия: неорган. химия. Орган. химия: учеб. для 9 кл. / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009.

4. Хомченко И.Д. Сборник задач и упражнений по химии для средней школы. - М.: РИА «Новая волна»: Издатель Умеренков, 2008.

5. Энциклопедия для детей. Том 17. Химия / Глав. ред. В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов (видеоопыты по теме): ().

2. Электронная версия журнала «Химия и жизнь»: ().

Домашнее задание

1. Отметьте в таблице знаком «плюс» пары веществ, между которыми возможны реакции ионного обмена, идущие до конца. Составьте уравнения реакций в молекулярном, полном и сокращенном ионном виде.

Реагирующие вещества

K 2 CO 3

AgNO 3

FeCl 3

HNO 3

CuCl 2

2. с. 67 №№ 10,13из учебника П.А. Оржековского «Химия: 9-ый класс» / П.А. Оржековский, Л.М. Мещерякова, М.М. Шалашова. - М.: Астрель, 2013.

При растворении в воде не все вещества имеют способность проводить электрический ток. Те соединения, водные растворы которых способны проводить электрический ток называются электролитами . Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания). Существуют вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) – это слабые электролиты. Многие органические соединения (углеводы, спирты), растворенные воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами .

Приведем некоторые закономерности, руководствуясь которыми можно определить к сильным или слабым электролитам относится то или иное соединение:

  1. Кислоты . К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO 3 , H 2 SO 4 , HClO 4 . Почти все остальные кислоты – слабые электролиты.
  2. Основания . Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be). Слабый электролит – NH 3 .
  3. Соли. Большинство распространенных солей – ионных соединений, — электролиты сильные. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и . Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Теория выдвигает следующие постулаты:

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Разные электролиты имеют различную степень диссоциации, которая зависит не только от природы самого электролита, но природы растворителя, а также концентрации электролита и температуры.

Степень диссоциации α , показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N :

α = n/ N

При отсутствии диссоциации α = 0, при полной диссоциации электролита α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на сильные (α > 0,7), средней силы (0,3 > α > 0,7), слабые (α < 0,3).

Более точно процесс диссоциации электролита характеризует константа диссоциации , не зависящая от концентрации раствора. Если представить процесс диссоциации электролита в общем виде:

A a B b ↔ aA — + bB +

K = a · b /

Для слабых электролитов концентрация каждого иона равна произведению α на общую концентрацию электролита С таким образом, выражение для константы диссоциации можно преобразовать:

K = α 2 C/(1-α)

Для разбавленных растворов (1-α) =1, тогда

K = α 2 C

Отсюда нетрудно найти степень диссоциации

Ионно–молекулярные уравнения

Рассмотрим пример нейтрализации сильной кислоты сильным основанием, например:

HCl + NaOH = NaCl + HOH

Процесс представлен в виде молекулярного уравнения . Известно, что как исходные вещества, так и продукты реакции в растворе полностью ионизированы. Поэтому представим процесс в виде полного ионного уравнения :

H + + Cl — +Na + + OH — = Na + + Cl — + HOH

После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

H + + OH — = HOH

Мы видим, что процесс нейтрализации сводится к соединению H + и OH — и образованию воды.

При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

Процесс осаждения сводится к взаимодействию только Ag + и I — и образованию нерастворимого в воде AgI.

Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей нерастворимости.

Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

  • Образование неэлектролита . В качестве неэлектролита может выступать вода.
  • Образование осадка.
  • Выделение газа.
  • Образование слабого электролита, например уксусной кислоты.
  • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
  • Образование или разрыв одной или нескольких .
Категории ,

При нейтрализации любой сильной кислоты любым сильным основанием на каждый моль образующейся воды выделяется около теплоты:

Это говорит о том, что подобные реакции сводятся к одному процессу. Уравнение этого процесса мы получим, если рассмотрим подробнее одну из приведенных реакций, например, первую. Перепишем ее уравнение, записывая сильные электролиты в ионной форме, поскольку они существуют в растворе в виде ионов, а слабые - в молекулярной, поскольку они находятся в растворе преимущественно в виде молекул (вода - очень слабый электролит, см. § 90):

Рассматривая получившееся уравнение, видим, что в ходе реакции ионы и не претерпели изменений. Поэтому перепишем уравнение еще раз, исключив эти ионы из обеих частей уравнения. Получим:

Таким образом, реакции нейтрализации любой сильной кислоты любым сильным основанием сводятся к одному и тому же процессу - к образованию молекул воды из ионов водорода и гидроксид-ионов. Ясно, что тепловые эффекты этих реакций тоже должны быть одинаковы.

Строго говоря, реакция образования воды из ионов обратима, что можно выразить уравнением

Однако, как мы увидим ниже, вода - очень слабый электролит и диссоциирует лишь в ничтожно малой степени. Иначе говоря, равновесие между молекулами воды и ионами сильно смещено в сторону образования молекул. Поэтому практически реакция нейтрализации сильной кислоты сильным основанием протекает до конца.

При смешивании раствора какой-либо соли серебра с соляной кислотой или с раствором любой ее соли всегда образуется характерный белый творожистый осадок хлорида серебра:

Подобные реакции также сводятся к одному процессу. Для того чтобы получить его ионно-молекулярное уравнение, перепишем, например, уравнение первой реакции, записывая сильные электролиты, как и в предыдущем примере, в ионной форме, а вещество, находящееся в осадке, в молекулярной:

Как видно, ионы и не претерпевают изменений в ходе реакции. Поэтому исключим их и перепишем уравнение еще раз:

Это и есть ионно-молекулярное уравнение рассматриваемого процесса.

Здесь также надо иметь в виду, что осадок хлорида серебра находится в равновесии с ионами и в растворе, так что процесс, выраженный последним уравнением, обратим:

Однако, вследствие малой растворимости хлорида серебра, это равновесие очень сильно смещено вправо. Поэтому можно считать, что реакция образования из ионов практически доходит до конца.

Образование осадка будет наблюдаться всегда, когда в одном растворе окажутся в значительной концентрации ионы и . Поэтому с помощью ионов серебра можно обнаружить присутствие в растворе ионов и, наоборот, с помощью хлорид-ионов - присутствие ионов серебра; ион может служить реактивом на ион , а ион - реактивом на ион .

В дальнейшем мы будем широко пользоваться ионно-молекулярной формой записи уравнений реакций с участием электролитов.

Для составления ионно-молекулярных уравнений надо знать, какие соли растворимы в воде и какие практически нерастворимы. Общая характеристика растворимости в воде важнейших солей приведена в табл. 15.

Таблица 15. Растворимость важнейших солей в воде

Ионно-молекулярные уравнения помогают понять особенности протекания реакций между электролитами. Рассмотрим в качеству примера несколько реакций, протекающих с участием слабых кислот и оснований.

Как уже говорилось, нейтрализация любой сильной кислоты любым сильным основанием сопровождается одним и тем же тепловым эффектом, так как она сводится к одному и тому же процессу - образованию молекул воды из ионов водорода и гидроксид-иона.

Однако при нейтрализации сильной кислоты слабым основанием, слабой кислоты сильным или слабым основанием тепловые эффекты различны. Напишем ионно-молекулярные уравнения подобных реакций.

Нейтрализация слабой кислоты (уксусной) сильным основанием (гидроксидом натрия):

Здесь сильные электролиты - гидроксид натрия и образующаяся соль, а слабые - кислота и вода:

Как видно, не претерпевают изменении в ходе реакции только ионы натрия. Поэтому ионно-молекулярное уравнение имеет вид:

Нейтрализация сильной кислоты (азотной) слабым основанием (гидроксидом аммония):

Здесь в виде ионов мы должны записать кислоту и образующуюся соль, а в виде молекул - гидроксид аммония и воду:

Не претерпевают изменений ионы . Опуская их, получаем ионно-молекулярное уравнение:

Нейтрализация слабой кислоты (уксусной) слабым основанием (гидроксидом аммония):

В этой реакции все вещества, кроме образующейся слабые электролиты. Поэтому ионно-молекулярная форма уравнения имеет вид:

Сравнивая между собой полученные ионно-молекулярные уравнения, видим, что все они различны. Поэтому понятно, что неодинаковы и теплоты рассмотренных реакций.

Как уже указывалось, реакции нейтрализации сильных кислот сильными основаниями, в ходе которых ионы водорода и гидроксид-ионы соединяются в молекулу воды, протекают практически до конца. Реакции же нейтрализации, в которых хотя бы одно из исходных веществ - слабый электролит и при которых молекулы малоднссоциирующих веществ имеются не только в правой, но и в левой части ионно-молекулярного уравнения, протекают не до конца.

Они доходят до состояния равновесия, при котором соль сосуществует с кислотой и основанием, от которых она образована. Поэтому уравнения подобных реакций правильнее записывать как обратимые реакции.


Так как электролиты в растворе находятся в виде ионов, то реакции между растворами солей, оснований и кислот – это реакции между ионами, т.е. ионные реакции. Некоторые из ионов, участвуя в реакции, приводят к образованию новых веществ (малодиссоциирующих веществ, осадков, газов, воды), а другие ионы, присутствуя в растворе, не дают новых веществ, но остаются в растворе. Для того, чтобы показать, взаимодействие каких ионов приводит к образованию новых веществ, составляют молекулярные, полные и краткие ионные уравнения.

В молекулярных уравнениях все вещества представлены в виде молекул. Полные ионные уравнения показывают весь перечень ионов имеющихся в растворе при данной реакции. Краткие ионные уравнения составлены лишь теми ионами, взаимодействие между которыми приводит к образованию новых веществ (малодиссоциирующих веществ, осадков, газов, воды).

При составлении ионных реакций следует помнить, что вещества малодиссоциированные (слабые электролиты), мало – и труднорастворимые (выпадающие в осадок – “Н ”, “М ”, см. приложение‚ таблица 4) и газообразные записываются в виде молекул. Сильные электролиты, диссоциированные практически полностью, – в виде ионов. Знак “↓”, стоящий после формулы вещества, указывает на то, что это вещество удаляется из сферы реакции в виде осадка, а знак “”, указывает на удаление вещества в виде газа.

Порядок составления ионных уравнений по известным молекулярным уравнениям рассмотрим на примере реакции между растворами Na 2 CO 3 и HCl.

1. Уравнение реакции записывается в молекулярной форме:

Na 2 CO 3 + 2HCl → 2NaCl + H 2 CO 3

2. Уравнение переписывается в ионной форме, при этом хорошо диссоциирующие вещества записываются в виде ионов, а вещества малодиссоциирующие (в том числе и вода), газы или труднорастворимые – в виде молекул. Коэффициент, стоящий перед формулой вещества в молекулярном уравнении одинаково относится к каждому из ионов, составляющих вещество, и поэтому он выносится в ионном уравнении перед ионом:

2 Na + + CO 3 2- + 2H + + 2Cl - <=> 2Na + + 2Cl - + CO 2 + H 2 O

3. Из обеих частей равенства исключаются (сокращаются) ионы, встречающиеся в левой и правой частях (подчеркнуты соответствующими черточками):

2 Na + + CO 3 2- + 2H + + 2Cl - <=> 2Na + + 2Cl - + CO 2 + H 2 O

4. Ионное уравнение записывается в его окончательном виде (краткое ионоое уравнение):

2H + + CO 3 2- <=> CO 2 + H 2 O

Если в ходе реакции образуются и/или малодиссоциированные, и/или труднорастворимые, и/или газообразные вещества, и/или вода, а в исходных веществах такие соединения отсутствуют‚ то реакция будет практически необратимой (→), и для неё можно составить молекулярное, полное и краткое ионное уравнение. Если такие вещества есть и в реагентах‚ и в продуктах, то реакция будет обратимой (<=>):

Молекулярное уравнение : СаСО 3 + 2HCl <=> CaCl 2 + H 2 O + CO 2

Полное ионное уравнение : СаСО 3 + 2H + + 2Cl – <=> Ca 2+ + 2Cl – + H 2 O + CO 2