Биография альберт эйнштейн на немецком. Эйнштейн был заядлым курильщиком

Физик-теоретик, один из основателей современной теоретической физики Альберт Эйнштейн родился 14 марта 1879 года в Ульме (Германия). Его отец, Герман Эйнштейн, был владельцем фирмы, торговавшей электрооборудованием, мать, Паулина Эйнштейн, занималась домашним хозяйством. В 1880 году семейство Эйнштейнов перебралось в Мюнхен , где в 1885 году Альберт стал учеником католической начальной школы. В 1888 году он поступил в Луитпольдовскую гимназию (Luitpold Gymnasium).

В 1894 году родители Эйнштейна переехали в Италию, и Альберт, не получив аттестата зрелости, вскоре воссоединился с ними. Своё образование он продолжил уже в Швейцарии , где с 1895 года по 1896 год был учеником школы в Арау. В 1896 году Эйнштейн поступил в Высшее техническое училище (Политехникум) в Цюрихе, по окончании которого должен был стать учителем физики и математики. В 1901 году он получил диплом, а также гражданство Швейцарии (от гражданства Германии Эйнштейн отказался в 1896 году). Долгое время Эйнштейн не мог найти преподавательскую должность и в итоге получил место технического ассистента в швейцарском патентном ведомстве.

В 1905 году были опубликованы сразу три важнейшие научные работы Альберта Эйнштейна, посвященные специальной теории относительности, квантовой теории и броуновскому движению. В статье "Зависит ли инерция тела от содержания в нем энергии" Эйнштейн впервые ввел в физику формулу соотношения между массой и энергией, а в 1906 году записал ее в виде формулы Е=mc2. Она лежит в основе релятивистского принципа сохранения энергии, всей ядерной энергетики.

В начале 1906 года Эйнштейн получил степень доктора философии Цюрихского университета. При этом до 1909 года он оставался служащим патентного бюро, пока не был назначен экстраординарным профессором теоретической физики в университете Цюриха. В 1911 году Эйнштейн стал профессором Немецкого университета в Праге, а в 1914 году его назначили директором Института физики кайзера Вильгельма и профессором Берлинского университета. Также он стал членом академии наук Пруссии.

В 1916 году Эйнштейн предсказал явление индуцированного (вынужденного) излучения атомов, лежащее в основе квантовой электроники. Теория Эйнштейна о вынужденном, упорядоченном (когерентном) излучении привела к открытию лазеров.

В 1917 году Эйнштейн завершил создание общей теории относительности, концепции, обосновывающей распространение принципа относительности на системы, двигающиеся с ускорением и криволинейно друг относительно друга. Теория Эйнштейна впервые в науке обосновывала связь между геометрией пространства-времени и распределением массы во Вселенной. Новая теория основывалась на теории тяготения Ньютона.

Хотя и специальная, и общая теории относительности были слишком революционны, чтобы снискать немедленное признание, они вскоре получили ряд подтверждений. Одним из первых было объяснение прецессии орбиты Меркурия, которую не удавалось полностью понять в рамках ньютоновской механики. Во время полного солнечного затмения в 1919 году астрономам удалось наблюдать звезду, скрытую за кромкой Солнца. Это свидетельствовало о том, что лучи света искривляются под действием гравитационного поля Солнца. Всемирная слава пришла к Эйнштейну, когда сообщения о наблюдении солнечного затмения 1919 года облетели весь мир. В 1920 году Эйнштейн стал приглашенным профессором Лейденского университета, а в 1922 году удостоился Нобелевской премии по физике за открытие законов фотоэффекта и труды по теоретической физике. В 1924-1925 годах Эйнштейн внес большой вклад в разработку квантовой статистики Бозе, которая ныне именуется статистикой Бозе-Эйнштейна.

В 1920-1930-х годах в Германии набирал силу антисемитизм, теория относительности подвергалась научно необоснованным нападкам. В обстановке клеветы и угроз научное творчество было невозможно, и Эйнштейн покинул Германию.

В 1932 году Эйнштейн читал лекции в Калифорнийском технологическом институте, а с апреля 1933 года получил профессуру в Принстонском институте высших исследований (США), где проработал до конца жизни.

Последние 20 лет своей жизни Эйнштейн разрабатывал "единую теорию поля", пытаясь свести воедино теории гравитационного и электромагнитного полей. Хотя Эйнштейн не решил проблему единства физики, главным образом из-за неразработанности в то время концепций элементарных частиц, субатомных структур и реакций, сама методология формирования "единой теории поля" отчетливо проявила свою значимость в создании современной концепций унификации физики.

Большое внимание Эйнштейн уделял проблемам этики, гуманизма и пацифизма. Он развил концепцию этики ученого, его ответственности перед человечеством за судьбы своего открытия. Этико-гуманистические идеалы Эйнштейна реализовались в его общественной деятельности. В 1914 году Эйнштейн выступил против немецких "патриотов" и в ходе первой мировой войны подписал антивоенный манифест немецких профессоров-пацифистов. В 1919 году Эйнштейн подписал пацифистский манифест Ромена Роллана и с целью предотвращения войн выдвинул идею создания мирового правительства.

Когда во время Второй мировой войны Эйнштейн получил информацию о немецком урановом проекте, он, несмотря на свои пацифистские убеждения, вместе с Лео Силардом направил президенту США Франклину Рузвельту письмо с описанием возможных последствий создания нацистами атомной бомбы. Письмо оказало существенное воздействие на решение правительства США форсировать разработку атомного оружия.

После краха нацистской Германии Эйнштейн вместе с другими учеными обратился с призывом к президенту США не применять атомную бомбу в войне с Японией.

Это обращение не предотвратило трагедии Хиросимы, и Эйнштейн активизировал свою пацифистскую деятельность, стал духовным лидером кампаний борьбы за мир, разоружение, за запрет атомного оружия, за прекращение "холодной" войны.

Незадолго до смерти он поставил свою подпись под воззванием британского философа Бертрана Рассела, обращенным к правительствам всех стран, предупреждающим их об опасности применения водородной бомбы и призывающим к запрету ядерного оружия. Эйнштейн выступал за свободный обмен идеями и ответственное использование науки на благо человечества.

Помимо Нобелевской премии, он был удостоен многих других наград, в том числе медали Копли Лондонского королевского общества (1925), золотой медали Королевского астрономического общества Великобритании и медали Франклина Франклиновского института (1935). Эйнштейн был почетным доктором многих университетов и членом ведущих академий наук мира.

Среди многочисленных почестей, оказанных Эйнштейну, было предложение стать президентом Израиля, последовавшее в 1952 году. Ученый от этого предложения отказался.

В 1999 году журнал Time назвал Эйнштейна человеком столетия.

Первой женой Эйнштейна была Милева Марич, его соученица по Федеральному технологическому институту в Цюрихе. Они поженились в 1903 году, несмотря на жестокое противодействие его родителей. От этого брака у Эйнштейна было два сына: Ганс-Альберт (1904-1973) и Эдуард (1910-1965). В 1919 году супруги развелись. В том же году Эйнштейн вступил в брак со своей двоюродной сестрой Эльзой, вдовой с двумя детьми. Эльза Эйнштейн скончалась в 1936 году.

В часы досуга Эйнштейн любил музицировать. Он начал учиться игре на скрипке, когда ему исполнилось шесть лет, и продолжал играть всю жизнь, иногда в ансамбле с другими физиками, например с Максом Планком, который был великолепным пианистом. Также Эйнштейн увлекался парусным спортом.

Материал подготовлен на основе информации открытых источников

Физик-теоретик, один из основоположников современной физики. Известен прежде всего как автор теории относительности. Эйнштейн внес также значительный вклад в создание квантовой механики, развитие статистической физики и космологии. Лауреат Нобелевской премии по физике 1921 («за объяснение фотоэлектрического эффекта»).


Родился 14 марта 1879 в Ульме (Вюртемберг, Германия) в семье мелкого коммерсанта. Предки Эйнштейна поселились в Швабии около 300 лет назад, и ученый до конца жизни сохранил мягкое южногерманское произношение, даже когда говорил по-английски. Учился в католической народной школе в Ульме, затем, после переезда семьи в Мюнхен, в гимназии. Школьным урокам, однако, предпочитал самостоятельные занятия. В особенности привлекали его геометрия и популярные книги по естествознанию, и вскоре в точных науках он далеко опередил своих сверстников. К 16 годам Эйнштейн овладел основами математики, включая дифференциальное и интегральное исчисления. В 1895, не окончив гимназию, отправился в Цюрих, где находилось Федеральное высшее политехническое училище, пользовавшееся высокой репутацией. Не выдержав экзаменов по современным языкам и истории, поступил в старший класс кантональной школы в Аарау. По окончании школы, в 1896, Эйнштейн стал студентом Цюрихского политехникума. Здесь одним из его учителей был превосходный математик Герман Минковский (впоследствии именно он придал специальной теории относительности законченную математическую форму), так что Энштейн мог бы получить солидную математическую подготовку, однако большую часть времени он работал в физической лаборатории, а в остальное время читал классические труды Г.Кирхгофа, Дж.Максвелла, Г.Гельмгольца и др.

После выпускного экзамена в 1900 Эйнштейн в течение двух лет не имел постоянного места работы. Недолгое время он преподавал физику в Шаффгаузене, давал частные уроки, а затем по рекомендации друзей получил место технического эксперта в Швейцарском патентном бюро в Берне. В этом «светском монастыре» Эйнштейн проработал 7 лет (1902–1907) и считал это время самым счастливым и плодотворным периодом в своей жизни.

В 1905 в журнале «Анналы физики» («Annalen der Physik») вышли работы Эйнштейна, принесшие ему мировую славу. С этого исторического момента пространство и время навсегда перестали быть тем, чем были прежде (специальная теория относительности), квант и атом обрели реальность (фотоэффект и броуновское движение), масса стала одной из форм энергии (E = mc2).

Хронологически первыми были исследования Эйнштейна по молекулярной физике (начало им было положено в 1902), посвященные проблеме статистического описания движения атомов и молекул и взаимосвязи движения и теплоты. В этих работах Эйнштейн пришел к выводам, существенно расширяющим результаты, которые были получены австрийским физиком Л.Больцманом и американским физиком Дж.Гиббсом. В центре внимания Эйнштейна в его исследованиях по теории теплоты находилось броуновское движение. В статье 1905 О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты (ber die von molekularkinetischen Theorie der Wrme geforderte Bewegung von in ruhenden Flssigkeiten suspendierten Teilchen) он с помощью статистических методов показал, что между скоростью движения взвешенных частиц, их размерами и коэффициентами вязкости жидкостей существует количественное соотношение, которое можно проверить экспериментально. Эйнштейн придал законченную математическую форму статистическому объяснению этого явления, представленному ранее польским физиком М.Смолуховским. Закон броуновского движения Эйнштейна был полностью подтвержден в 1908 опытами французского физика Ж.Перрена. Работы по молекулярной физике доказывали правильность представлений о том, что теплота есть форма энергии неупорядоченного движения молекул. Одновременно они подтверждали атомистическую гипотезу, а предложенный Эйнштейном метод определения размеров молекул и его формула для броуновского движения позволяли определить число молекул.

Если работы по теории броуновского движения продолжили и логически завершили предшествовавшие работы в области молекулярной физики, то работы по теории света, тоже базировавшиеся на сделанном ранее открытии, носили поистине революционный характер. В своем учении Эйнштейн опирался на гипотезу, выдвинутую в 1900 М.Планком, о квантовании энергии материального осциллятора. Но Эйнштейн пошел дальше и постулировал квантование самого светового излучения, рассматривая последнее как поток квантов света, или фотонов (фотонная теория света). Это позволяло простым способом объяснить фотоэлектрический эффект – выбивание электронов из металла световыми лучами, явление, обнаруженное в 1886 Г.Герцем и не укладывавшееся в рамки волновой теории света. Девять лет спустя предложенная Эйнштейном интерпретация была подтверждена исследованиями американского физика Милликена, а в 1923 реальность фотонов стала очевидной с открытием эффекта Комптона (рассеяние рентгеновских лучей на электронах, слабо связанных с атомами). В чисто научном отношении гипотеза световых квантов составила целую эпоху. Без нее не могли бы появиться знаменитая модель атома Н.Бора (1913) и гениальная гипотеза «волн материи» Луи де Бройля (начало 1920-х годов).

В том же 1905 была опубликована работа Эйнштейна К электродинамике движущихся тел (Zur Elektrodynamik der bewegter Krper). В ней излагалась специальная теория относительности, которая обобщала ньютоновские законы движения и переходила в них при малых скоростях движения (v

Исходя из специальной теории относительности, Эйнштейн в том же 1905 открыл закон взаимосвязи массы и энергии. Его математическим выражением является знаменитая формула E = mc2. Из нее следует, что любой перенос энергии связан с переносом массы. Эта формула трактуется также как выражение, описывающее «превращение» массы в энергию. Именно на этом представлении основано объяснение т.н. «дефекта массы». В механических, тепловых и электрических процессах он слишком мал и потому остается незамеченным. На микроуровне он проявляется в том, что сумма масс составных частей атомного ядра может оказаться больше массы ядра в целом. Недостаток массы превращается в энергию связи, необходимую для удержания составных частей. Атомная энергия есть не что иное, как превратившаяся в энергию масса. Принцип эквивалентности массы и энергии позволил упростить законы сохранения. Оба закона, сохранения массы и сохранения энергии, до этого существовавшие раздельно, превратились в один общий закон: для замкнутой материальной системы сумма массы и энергии остается неизменной при любых процессах. Закон Эйнштейна лежит в основе всей ядерной физики.

В 1907 Эйнштейн распространил идеи квантовой теории на физические процессы, не связанные с излучением. Рассмотрев тепловые колебания атомов в твердом теле и используя идеи квантовой теории, он объяснил уменьшение теплоемкости твердых тел при понижении температуры, разработав первую квантовую теорию теплоемкости. Эта работа помогла В.Нернсту сформулировать третье начало термодинамики.

В конце 1909 Эйнштейн получил место экстраординарного профессора теоретической физики Цюрихского университета. Здесь он преподавал только три семестра, затем последовало почетное приглашение на кафедру теоретической физики Немецкого университета в Праге, где долгие годы работал Э.Мах. Пражский период отмечен новыми научными достижениями ученого. Исходя из своего принципа относительности, он в 1911 в статье О влиянии силы тяжести на распространение света (ber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes) заложил основы релятивистской теории тяготения, высказав мысль, что световые лучи, испускаемые звездами и проходящие вблизи Солнца, должны изгибаться у его поверхности. Таким образом, предполагалось, что свет обладает инерцией и в поле тяготения Солнца должен испытывать сильное гравитационное воздействие. Эйнштейн предложил проверить это теоретическое соображение с помощью астрономических наблюдений и измерений во время ближайшего солнечного затмения. Провести такую проверку удалось только в 1919. Это сделала английская экспедиция под руководством астрофизика Эддингтона. Полученные ею результаты полностью подтвердили выводы Эйнштейна.

Летом 1912 Эйнштейн возвратился в Цюрих, где в Высшей технической школе была создана кафедра математической физики. Здесь он занялся разработкой математического аппарата, необходимого для дальнейшего развития теории относительности. В этом ему помогал его соученик Марсель Гросман. Плодом их совместных усилий стал труд Проект обобщенной теории относительности и теории тяготения (Entwurf einer verallgemeinerten Relativitatstheorie und Theorie der Gravitation, 1913). Эта работа стала второй, после пражской, вехой на пути к общей теории относительности и учению о гравитации, которые были в основном закончены в Берлине в 1915.

В Берлин Эйнштейн прибыл в апреле 1914, будучи уже членом Академии наук (1913), и приступил к работе в созданном Гумбольдтом университете – крупнейшем высшем учебном заведении Германии. Здесь он провел 19 лет – читал лекции, вел семинары, регулярно участвовал в работе коллоквиума, который во время учебного года раз в неделю проводился в Физическом институте.

В 1915 Эйнштейн завершил создание общей теории относительности. Если построенная в 1905 специальная теория относительности, справедливая для всех физических явлений, за исключением тяготения, рассматривает системы, движущиеся по отношению друг к другу прямолинейно и равномерно, то общая имеет дело с произвольно движущимися системами. Ее уравнения справедливы независимо от характера движения системы отсчета, а также для ускоренного и вращательного движений. По своему содержанию, однако, она являтся в основном учением о тяготении. Она примыкает к гауссовой теории кривизны поверхностей и имеет целью геометризацию гравитационного поля и действующих в нем сил. Эйнштейн утверждал, что пространство отнюдь не однородно и что его геометрическая структура зависит от распределения масс, от вещества и поля. Сущность тяготения объяснялась изменением геометрических свойств, искривлением четырехмерного пространства-времени вокруг тел, которые образуют поле. По аналогии с искривленными поверхностями в неевклидовой геометрии используется представление об «искривленном пространстве». Здесь нет прямых линий, как в «плоском» пространстве Евклида; есть лишь «наиболее прямые» линии – геодезические, представляющие собой кратчайшее расстояние между точками. Кривизной пространства определяется геометрическая форма траекторий тел, движущихся в поле тяготения. Орбиты планет определяются искривлением пространства, задаваемым массой Солнца, и характеризуют это искривление. Закон тяготения становится частным случаем закона инерции.

Для проверки общей теории относительности, которая основывалась на очень небольшом числе эмпирических фактов и представляла собой продукт чисто умозрительных рассуждений, Эйнштейн указал на три возможных эффекта. Первый состоит в дополнительном вращении или смещении перигелия Меркурия. Речь идет о давно известном явлении, в свое время открытом французским астрономом Леверье. Оно заключается в том, что ближайшая к Солнцу точка эллиптической орбиты Меркурия смещается за 1 тысячу лет на 43 дуговые секунды. Эта цифра превышает значение, следующее из ньютоновского закона тяготения. Теория Эйнштейна объясняет его как прямое следствие изменения структуры пространства, вызванное Солнцем. Второй эффект состоит в искривлении световых лучей в поле тяготения Солнца. Третий эффект – релятивистское «красное смещение». Оно заключается в том, что спектральные линии света, испускаемого очень плотными звездами, смещены в «красную» сторону, т.е. в сторону больших длин волн, по сравнению с их положением в спектрах тех же молекул, находящихся в земных условиях. Смещение объясняется тем, что сильное гравитационное воздействие уменьшает частоту колебаний световых лучей. Красное смещение было проверено на спутнике Сириуса – звезды с очень большой плотностью, а затем и на других звездах – белых карликах. Впоследствии оно было обнаружено и в поле земного тяготения при измерениях частоты g -квантов с помощью эффекта Мёссбауэра.

Всего через год после опубликования работы по общей теории относительности Эйнштейн представил еще одну работу, имеющую революционное значение. Поскольку не существует пространства и времени без материи, т.е. без вещества и поля, отсюда с необходимостью следует, что Вселенная должна быть пространственно конечной (идея замкнутой Вселенной). Эта гипотеза находилась в резком противоречии со всеми привычными представлениями и привела к появлению целого ряда релятивистских моделей мира. И хотя статическая модель Эйнштейна оказалась в дальнейшем несостоятельной, основная ее идея – замкнутости – сохранила силу. Одним из первых, кто творчески продолжил космологические идеи Эйнштейна, был советский математик А.Фридман. Исходя из эйнштейновских уравнений, он в 1922 пришел к динамической модели – к гипотезе замкнутого мирового пространства, радиус кривизны которого возрастает во времени (идея расширяющейся Вселенной).

В 1916–1917 вышли работы Эйнштейна, посвященные квантовой теории излучения. В них он рассмотрел вероятности переходов между стационарными состояниями атома (теория Н.Бора) и выдвинул идею индуцированного излучения. Эта концепция стала теоретической основой современной лазерной техники.

Середина 1920-х годов ознаменовалась в физике созданием квантовой механики. Несмотря на то что идеи Эйнштейна во многом способствовали ее становлению, вскоре обнаружились значительные расхождения между ним и ведущими представителями квантовой механики. Эйнштейн не мог примириться с тем, что закономерности микромира носят лишь вероятностный характер (известен его упрек, адресованный Борну, в том, что тот верит «в Бога, играющего в кости»). Эйнштейн не считал статистическую квантовую механику принципиально новым учением, а рассматривал ее как временное средство, к которому приходится прибегать, пока не удается получить полное описание реальности. На Сольвеевских конгрессах 1927 и 1930 разгорелись жаркие, полные драматизма дискуссии между Эйнштейном и Бором по поводу интерпретации квантовой механики. Эйнштейн не смог убедить ни Бора, ни более молодых физиков – Гейзенберга и Паули. С тех пор он следил за работами «копенгагенской школы» с чувством глубокого недоверия. Статистические методы квантовой механики казались ему «невыносимыми» с теоретико-познавательной и неудовлетворительными с эстетической точки зрения. Начиная со второй половины 1920-х годов Эйнштейн уделял много времени и сил разработке единой теории поля. Такая теория должна была объединить электромагнитное и гравитационное поля на общей математической основе. Однако те несколько работ, которые он опубликовал по этому вопросу, не удовлетворили его самого.

Между тем политическая ситуация в Германии становилась все более напряженной. К началу 1920 относятся первые организованные выходки против ученого. В феврале реакционно настроенные студенты вынудили Эйнштейна прервать лекцию в Берлинском университете и покинуть аудиторию. Вскоре началась планомерная кампания против создателя теории относительности. Ею руководила группа антисемитов, которая выступала под вывеской «Рабочее объединение немецких естествоиспытателей для сохранения чистой науки»; одним из ее основателей был гейдельбергский физик Ф.Ленард. В августе 1920 «Рабочее объединение» организовало в зале Берлинской филармонии демонстрацию против теории относительности. Вскоре в одной из газет появился призыв к убийству ученого, а спустя несколько дней в немецкой прессе были напечатаны сообщения, что Эйнштейн, оскорбленный травлей, намеревается покинуть Германию. Ученому была предложена кафедра в Лейдене, но он отказался, решив, что отъезд был бы предательством по отношению к тем немецким коллегам, которые его самоотверженно защищали, прежде всего к Лауэ, Нернсту и Рубенсу. Однако Эйнштейн выразил готовность принять звание экстраординарного почетного профессора в нидерландском Королевском университете, и голландская «выездная» профессура оставалась за ним вплоть до 1933.

Антисемитская травля в Берлине оказала существенное влияние на отношение Эйнштейна к сионизму. «Пока я жил в Швейцарии, я никогда не сознавал своего еврейства, и в этой стране не было ничего, что влияло бы на мои еврейские чувства и оживляло бы их. Но все изменилось, как только я переехал в Берлин. Там я увидел бедствия многих молодых евреев. Я видел, как их антисемитское окружение делало невозможным для них добиться систематического образования... Тогда я понял, что лишь совместное дело, которое будет дорого всем евреям в мире, может привести к возрождению народа». Таким делом ученый полагал создание независимого еврейского государства. Вначале он счел необходимым поддержать усилия по созданию Еврейского университета в Иерусалиме, что побудило его предпринять совместную поездку по США с главой сионистского движения, химиком Х.Вейцманом. Поездка должна была содействовать пропаганде сионистской идеи и сбору средств для университета. В США Эйнштейн прочел ряд научных докладов, в том числе в Принстонском университете.

В марте 1922 Эйнштейн отправился с лекциями в Париж, а осенью снова предпринял большую зарубежную поездку – в Китай и Японию. На обратном пути он впервые посетил Палестину. В Иерусалимском университете Эйнштейн рассказывал о своих исследованиях по теории относительности, беседовал с первыми еврейскими переселенцами. После 1925 Эйнштейн не предпринимал дальних путешествий и жил в Берлине, совершая лишь поездки в Лейден для чтения лекций, а летом в Швейцарию, на побережье Северного или Балтийского моря. Весной 1929 по случаю пятидесятилетия ученого магистрат Берлина подарил ему участок лесистой местности на берегу Темплинского озера. В просторном, удобном доме Эйнштейн проводил много времени. Отсюда он уплывал на парусном ялике, часами курсируя по озерам.

Начиная с 1930 Эйнштейн проводил зимние месяцы в Калифорнии. В Пасаденском технологическом институте ученый читал лекции, в которых рассказывал о результатах своих исследований. В начале 1933 Эйнштейн находился в Пасадене, и после прихода Гитлера к власти никогда более не ступал на немецкую землю. В марте 1933 он заявил о своем выходе из Прусской Академии наук и отказался от прусского гражданства.

С октября 1933 Эйнштейн приступил к работе в Принстонском университете, а вскоре получил американское гражданство, одновременно оставаясь гражданином Швейцарии. Ученый продолжал свои работы по теории относительности; большое внимание уделял попыткам создания единой теории поля.

Находясь в США, ученый старался любыми доступными ему средствами оказывать моральную и материальную поддержку немецким антифашистам. Его очень беспокоило развитие политической ситуации в Германии. Эйнштейн опасался, что после открытия деления ядра Ганом и Штрассманом у Гитлера появится атомное оружие. Тревожась за судьбу мира, Эйнштейн направил президенту США Ф.Рузвельту свое знаменитое письмо, которое побудило последнего приступить к работам по созданию атомного оружия. После окончания Второй мировой войны Эйнштейн включился в борьбу за всеобщее разоружение. На торжественном заседании сессии ООН в Нью-Йорке в 1947 он заявил об ответственности ученых за судьбы мира, а в 1948 выступил с обращением, в котором призывал к запрещению оружия массового поражения. Мирное сосуществование, запрещение ядерного оружия, борьба против пропаганды войны – эти вопросы занимали Эйнштейна в последние годы его жизни не меньше, чем физика.

Умер Эйнштейн в Принстоне (США) 18 апреля 1955. Его прах был развеян друзьями в месте, которое должно навсегда остаться неизвестным.

Альберт Эйнштейн родился в 1879 году в городе Ульме, расположенном в Германии. Его отец торговал электрооборудованием, мать вела домашнее хозяйство. Позднее семейство перебралось в Мюнхен, где юный Альберт поступил в католическую школу. Образование Эйнштейн продолжил в Высшем техническом училище Цюриха, по окончании которого ему прочили карьеру школьного учителя математики и физики.

Длительное время будущий знаменитый физик не мог найти место преподавателя, поэтому стал техническим ассистентом в патентном ведомстве Швейцарии. Имея дело с патентами, ученый мог проследить связь между достижениями современной ему науки и техническими новшествами, что очень расширило его научный кругозор. В свободное от службы время Эйнштейн занимался вопросами, имеющими непосредственное отношение к физике.

В 1905 году ему удалось опубликовать несколько важных работ, которые были посвящены броуновскому движению, квантовой теории и теории относительности. Великий физик первым ввел в науку формулу, отражавшую соотношение между массой и энергией. Это отношение легло в основу принципа сохранения энергии, установившегося в релятивизме. На формуле Эйнштейна базируется вся современная ядерная энергетика.

Эйнштейн и его теория относительности

Основы знаменитой теории относительности Эйнштейн сформулировал к 1917 году. Его концепция обосновывала принцип относительности и переносила его на системы, которые способны двигаться с ускорением по криволинейным траекториям. Общая теория относительности стала выражением связи между пространственно-временным континуумом и распределением массы. Свою концепцию Эйнштейн построил на теории тяготения, предложенной еще Ньютоном.

Теория относительности была для своего времени поистине революционной концепцией. Ее признанию помогли наблюдавшиеся учеными факты, подтверждавшие выкладки Эйнштейна. Слава мирового масштаба пришла к ученому после состоявшегося в 1919 году солнечного затмения, наблюдения за которым показали справедливость выводов этого гениального физика-теоретика.

За труды в области теоретической физики Альберт Эйнштейн в 1922 году был удостоен Нобелевской премии. Позднее он серьезно занимался вопросами квантовой физики, ее статистической составляющей. В последние годы жизни физик работал над созданием единой теории поля, в которой намеревался соединить положения теории электромагнитных и гравитационных взаимодействий. Но завершить эту работу Эйнштейн так и не успел.

Альберт Эйнштейн – ученый-легенда, совершивший небывалый переворот в науке созданием знаменитой теории относительности, автор многих других открытий в теоретической физике, Нобелевский лауреат и непоколебимый пацифист с загадочной биографией.

Он занял третью позицию в списке 100 великих евреев всех времен, уступив лидерство только Моисею и Иисусу. Многие его считают идолом эпохи, человеком столетия, ставят в один ряд с такими гениями как Максвелл и Ньютон. Но некоторые обличители лишают его ореола, называют разрекламированным научным плагиатором и мошенником, утверждая, что ряд положений его вышеупомянутой теории были высказаны ранее другими выдающимися представителями пантеона науки.

Детство и юность

Будущий физик-теоретик появился на свет 14 марта 1879 года в г. Ульме под Мюнхеном. Его мать Паулина была домохозяйкой, дочкой успешного торговца зерном. Отец Герман, напротив, оказался не слишком блестящим коммерсантом. Семье не раз приходилось переезжать из-за разорений его предприятий, в частности, в 1880-м в Мюнхен. В этом городе у мальчика появилась сестренка Майя.


Первенец родился с большой и деформированной головой. Родители долго опасались, что сын будет отставать в психическом развитии. Он рос замкнутым, до семи лет не разговаривал, только повторял за другими людьми одни и те же фразы. Позже он заговорил, но не произносил фразы сразу вслух, а предварительно их воспроизводил одними губами. Причем если его требования отказывались выполнять, он ужасно злился, в бешенстве кривил лицо, швырял подвернувшиеся под руку предметы. Однажды в момент такого припадка он чуть не покалечил сестру. Так что семья считала мальчика умственно отсталым. Современные ученые предполагают, что таким образом мог проявляться синдром Аспергера.

В 6 лет Альберт стал заниматься музыкой и всю взрослую жизнь был влюблен в скрипку, но в детские годы учился из-под палки. Под фортепианный аккомпанемент строгой матери он играл Моцарта и Бетховена. Ряд биографов ученого считает, что именно тиранка Паулина посеяла в душе Эйнштейна скептическое отношение к женскому полу.

В школе будущий гений учился плохо. Поступив в 10 лет в гимназию, он вел себя непочтительно и дерзко, предпочитал заниматься самообразованием, а не посещать скучные уроки. Особенно его удручало изучение древнегреческого языка. Даже по математике у него долгое время стояло 2, хотя интерес к которым у него проснулся уже в те годы и начался с того, что отец презентовал ему компас. Альберт был потрясен тем, что таинственные силы заставляли стрелку сохранять неизменное направление.


Не последнюю роль в становлении личности Альберта сыграл друг их семьи студент Макс Талмуд и его дядя Якоб. Они приносили смышленому мальчишке интересные учебники, предлагали решать интригующие головоломки. В частности, подросток зачитывался трактатом Евклида «Начала». Кроме этого, знакомство с философским трудом Канта «Критика чистого разума» заставило его, крайне религиозного с детства, задуматься над вопросом о существовании бога и о природе войн.


После очередного краха отцовского бизнеса в 1894 году семейство перебрались в пригород Милана Павию. Спустя год Альберт присоединился к ним, так и не окончив мюнхенскую гимназию. Он рассчитывал поступить в политехникум Цюриха и стать учителем, однако вступительные испытания провалил. В результате ему довелось провести год в школе Аарау и только после получения аттестата в 1896-м стать студентом цюрихского учебного заведения.

Путь к науке

В 1900 году способный, но проблемный студент, позволявший себе спорить с профессорами, окончил учебу с прекрасными результатами. Продолжить научную деятельность в альма-матер ему не предложили из-за его неуживчивого характера и бесконечных пропусков занятий. Затем в течение двух лет он не мог отыскать работу по специальности, пребывал в отчаянном материальном положении. Из-за стресса и нищеты у него открылась языва.


Ситуацию спас его бывший однокурсник и будущий известный ученый Марсель Гроссман, который в 1902 году помог Альберту устроиться в Бюро патентования изобретений в Берне. По роду деятельности талантливый молодой специалист имел возможность знакомиться с множеством интересных патентных заявок, что, по мнению ряда критиков, и позволило ему со временем на основе чужих идей разрабатывать собственные теоретические положения. Вскоре он женился на бывшей однокурснице (подробней см. в разделе «Личная жизнь») Милеве Марич.

В 1905-м Эйнштейн опубликовал ряд работ, ставших фундаментом для теорий относительности, квантовой и броуновского движения. Они имели огромный общественный резонанс, изменив представления людей об окружающем мире. В частности, им был обоснован потрясающий факт более медленного течения времени в движущихся координатах. Это означало, что астронавт, отправившийся на удаленную планету со скоростью выше скорости света, вернется домой более молодым по сравнению со сверстниками, находившимися на земле.


Спустя год ученый вывел свою знаменитую формулу Е=mc2, получил степень доктора в родном университете и с 1909 года начал там преподавать. За это открытие в 1910-м Эйнштейн впервые был номинирован на Нобелевскую премию, но победителем не стал. В течение следующих десяти лет члены комитета оставались непреклонными и продолжали отвергать его кандидатуру на престижную награду. Главным аргументом их решения было отсутствие экспериментального подтверждения справедливости формулы.


В 1911-м автор революционной работы переехал в Прагу, где в течение года трудился в старейшем учебном заведении Центральной Европы, продолжая свои научные изыскания. Затем он вернулся в Цюрих, а в 1914-м отправился в Берлин. Кроме науки он занимался общественной деятельностью, активно выступал за гражданские права и против войн.

Во время солнечного затмения 1919 г. исследователи нашли подтверждение ряда постулатов спорной теории, и к ее автору пришло всемирное признание. В 1922-м он стал наконец Нобелевским лауреатом, правда, не за теорию, являвшуюся венцом его интеллектуальной деятельности, а за другое открытие – фотоэффекта. Он побывал в Японии, Индии, Китае, США, в ряде европейских государств, где знакомил публику со своими убеждениями и открытиями.

В начале 1930-х профессор-пацифист начал подвергаться преследованиям на фоне роста антисемитских настроений. С приходом к власти Гитлера он эмигрировал за океан, получив место в исследовательском институте Принстона. В 1934-м по приглашению Франклина Рузвельта он побывал в Белом доме, а в 1939-м подписал обращение ученых на имя американского президента о необходимости создания ядерного оружия для противостояния фашистской Германии, о чем впоследствии сожалел.


В 1952-м Израиль (после смерти главы Хаима Вейцмана) предложил гениальному физику занять должность президента. Он отклонил столь лестное предложение, сославшись на отсутствие опыта государственной деятельности.

Личная жизнь Альберта Эйнштейна

Отец теории относительности был чудаком – никогда не носил носков, не любил чистить зубы, однако пользовался успехом у женщин, имел за свою жизнь около десяти любовниц, а женат был дважды.

Первой его любовью стала Мари, дочь профессора Йоста Винтелера, в доме которого он жил во время учебы в Аарау. После отъезда Альберта в Цюрих их роман закончился, но девушка долго переживала их разрыв, усугубивший ее психическое состояние. Впоследствии она попала в больницу для душевнобольных, где и умерла.


Второй избранницей ученого являлась однокурсница, блестящий математик и физик, Милева Марич. Они обвенчались в 1903 году в Берне. Девушка была внешне неказиста и прихрамывала. Родители Альберта недоумевали, зачем он выбрал в жены дурнушку, на что физик отвечал: «Ну и что! Слышали бы вы ее вокал».

Документальный фильм, посвященный Альберту Эйнштейну

Правда, страстная любовь гения к ней очень скоро остыла. Он представил ей список унизительных условий совместной жизни, фактически превращавших возлюбленную в домработницу и научного секретаря. Более того, он убедил жену отдать их годовалую дочь Лизерль, родившуюся в 1902-м и отвлекавшую мужчину от научной деятельности, в другую семью, где малышка вскоре умерла от скарлатины и ненадлежащего ухода.

В 1904-м у пары появился сын Ганс Альберт, в 1910-м – Эдуард, заболевший впоследствии шизофренией и отправленный отцом навсегда в психиатрическую лечебницу. Старший сын рос угрюмым и нелюдимым, повзрослев, отказался заниматься теоретической физикой, невзлюбив отца за его отношение к матери и брату. Семья распалась из-за измен Альберта в 1914-м, он уехал в Берлин. В качестве откупных при разводе Альберт отдал Марич 32 тысячи долларов – приз за открытие фотоэффекта.


После развода физик женился на своей двоюродной сестре Эльзе, которая воспитывала двух дочерей от предыдущего брака – младшую Марго и девушку на выданье по имени Ильзе. Вначале Эйнштейн испытывал нежные чувства именно к последней, но получив отказ, остановился на ее матери.

В отличие от первой супруги, кузина была женщиной недалекой и смотрела сквозь пальцы на измены супруга. Альберт обожал представительниц слабого пола, и в него были влюблены многие красавицы, включая Марго. Также ученый страстно увлекался парусным спортом. Ему нравилось ходить на яхте в одиночку. В музыке и литературе он был консерватором – любил классику.

Смерть

Гений-чудак с трубкой и всклокоченной шевелюрой был невероятно популярен. Его именем называли улицы, башни, телескопы, кратер на Луне, квазар. В 1955-м его состояние здоровья сильно ухудшилось. Он попал в клинику, в ожидании кончины был спокойным и умиротворенным.


Накануне смерти, наступившей 18 апреля от разрыва аорты, он уничтожил рукопись своего последнего исследования. Что его заставило это сделать – по сей день остается загадкой.

После вскрытия тела учёного патологоанатом Томас Харви сделал интересное наблюдение. В левом полушарии мозга Эйнштейна наблюдалось аномальное количество глиальных клеток, «питающих» нейроны. А, как известно, левое полушарие отвечает за логику и «точные науки». Также, несмотря на преклонный возраст гения, в его мозгу практически не было дегенеративных изменений, свойственных пожилым людям.


Среди известных ныне живущих потомков Альберта Эйнштейна – его правнуки Томас, Пол, Эдуард и Мира Эйнштейн. Томас – врач, заведует клиникой в Лос-Анджелесе. Пол играет на скрипке. Эдуард (которого все называют просто Тед) в свое время бросил старшую школу и построил успешный бизнес – у него мебельный магазин. Мира работает в сфере телемаркетинга и в свободное время играет на музыкальных инструментах.

Здравствуйте, дорогие ребята! Сталкивались ли вы когда-либо с фотографией чудака с вытянутым языком и взъерошенными волосами? Думаю, приходилось.

А знаете ли, кто этот жизнерадостный человек? Это не кто иной, как великий учёный Альберт Эйнштейн! Тот, что открыл всемирно известную теорию относительности и заложил фундамент всей современной физики. Предлагаю сегодня познакомиться с его биографией поближе.

План урока:

Где рождаются гении?

Родился будущий легендарный физик в семье евреев в 1879 году на юге Германии в городе Ульм. А появился он с неправильной формой головы, что для врачей и его родителей стало предметом для размышлений: нет ли у малыша Эйнштейна умственной отсталости, тем более что ребёнок до трёх лет не разговаривал.

Ещё до поступления в школу как-то отец подарил маленькому Альберту компас. Прибор настолько взорвал детский ум, что наблюдения за стрелкой, которая в любом положении компаса поворачивается непременно на север, стали одной из причин будущих исследований.

Школьные годы жизни были для юного Эйнштейна не самым лучшим временем. О них он вспоминал с горечью, так как не любил простую зубрёжку. Так что любимцем у учителей школьник не слыл, всегда спорил с педагогами, задавал неугодные вопросы, на которые у преподавателей не было ответов.

Видимо оттуда появился миф, что Эйнштейн в школе был двоечником. «Из Вас никогда ничего путного не выйдет!» — вот был приговор учителей. Хотя если взглянуть на его аттестат, то там совсем всё неплохо, особенно по математике, физике и философии.

По настоянию матери он с шести лет начал заниматься скрипкой и делал это изначально только потому, что так требовали родители. Лишь музыка великого Моцарта совершила переворот в его душе, и скрипка навсегда стала спутником в жизни физика.

В свои 12 лет он познакомился с учебником евклидовой геометрии. Этот математический труд потряс юного Альберта, как когда-то семь лет назад взятый в руки отцовский компас. Называемая им с любовью «священная книжечка по геометрии» стала настольным пособием, куда ежедневно ученик по фамилии Эйнштейн заглядывал с неуёмным любопытством,самостоятельно поглощая знания.

Вообще «самостоятельные занятия» были для молодого гения, не любившего обучение из-под палки, особым коньком. Решив, что он сам сможет получить образование, в 1895 году он ушёл из школы и явился без аттестата зрелости к родителям, в то время вынужденным без него жить в Италии. Заверения непослушного отпрыска, что он сможет сам поступить в техническое училище, успехом не увенчались.

Самоуверенный Эйнштейн на первых вступительных экзаменах в цюриховский колледж проваливается. Год он посвящает тому, чтобы закончить среднее образование, и только в 1896 его принимают в Высшее учебное заведение.

Когда великий Эйнштейн «взялся за ум»?

Даже поступив в институт, студент Эйнштейн не стал примером для подражания. Как и в гимназии, дисциплиной он не отличался, лекции пропускал либо присутствовал на них «ради галочки», без интереса. Больше привлекали его самостоятельные исследования: он экспериментировал, проводил опыты, читал труды великих учёных. Вместо учёбы он садился в кафе и штудировал научные журналы.

В 1900 году он всё-таки получил диплом учителя физики, но на работу его нигде не принимали. Только по истечении двух лет ему дали место стажёра в Патентном Бюро. Вот тогда-то Альберт Эйнштейн смог посвятить больше времени любимым исследованиям, всё теснее приближаясь к своим открытиям в области физики.

В результате на свет появились три статьи Эйнштейна, которые перевернули научный мир. Опубликованные в известном научном журнале они принесли физику мировую славу. Итак, что особенного открыл учёный?


Чем интересна личность учёного?

Кроме того, что Альберт Эйнштейн – великий физик, он ещё был и неординарной личностью. Вот несколько интересных фактов из его жизни.


Умер ученый в 1955 году. Последние годы жизни Альберт Эйнштейн провёл в маленьком американский городке Пристон, где и похоронен. Жители городка любили своего соседа, а студенты университета, где он преподавал, прозвали физика «старый док» и пели вот такую песенку:

Кто в математике силён,

И в интегралы кто влюблён,

Кто воду пьёт, а не рейнвейн,

Для тех пример — наш Аль Эйнштейн.

Вот такая краткая история о великом учёном Альберте Эйнштейне у нас получилась сегодня. Надеюсь, этого материала вам будет достаточно, чтобы подготовить интересный доклад на тему знаменитостей.

А я на этом с вами прощаюсь с пожеланиями новых открытий.

Успехов в учебе!

Евгения Климкович