Формула линейного уравнения с двумя переменными. Линейные уравнения

Нам часто встречались уравнения вида ах + b = 0, где а, b - числа, х - переменная. Например, bх - 8 = 0, х + 4 = О, - 7х - 11 = 0 и т. д. Числа а, Ь (коэффициенты уравнения) могут быть любыми, исключает лишь случай, когда а = 0.

Уравнение ах + b = 0, где а , называют линейным уравнением с одной переменной х (или линейным уравнением с одним неизвестным х). Решить его, т. е. выразить х через а и b, мы с вами умеем:

Ранее мы отмечали, что довольно часто математической моделью реальной ситуации служит линейное уравнение с одной переменной или уравнение, которое после преобразований сводится к линейному. А теперь рассмотрим такую реальную ситуацию.

Из городов A и В, расстояние между которыми 500 км, навстречу друг другу вышли два поезда, каждый со своей постоянной скоростью. Известно, что первый поезд вышел на 2 ч раньше второго. Через 3 ч после выхода второго поезда они встретились. Чему равны скорости поездов?

Составим математическую модель задачи. Пусть х км/ч - скорость первого поезда, у км/ч - скорость второго поезда. Первый был в пути 5 ч и, значит, прошел путь bх км. Второй поезд был в пути 3 ч, т.е. прошел путь Зу км.

Их встреча произошла в пункте С. На рисунке 31 представлена геометрическая модель ситуации. На алгебраическом языке ее можно описать так:

5х + Зу = 500


или
5х + Зу - 500 = 0.

Эту математическую модель называют линейным уравнением с двумя переменными х, у.
Вообще,

ах + by + с = 0,

где а, b, с - числа, причем , - линейное уравнение с двумя переменными х и у (или с двумя неизвестными х и у).

Вернемся к уравнению 5х + Зу = 500. Замечаем, что если х = 40, у = 100, то 5 40 + 3 100 = 500 - верное равенство. Значит, ответ на вопрос задачи может быть таким: скорость первого поезда 40 км/ч, скорость второго поезда 100 км/ч. Пару чисел х = 40, у = 100 называют решением уравнения 5х + Зу = 500. Говорят также, что эта пара значений (х; у) удовлетворяет уравнению 5х + Зу = 500.

К сожалению, это решение не единственно (мы ведь все любим определенность, однозначность). В самом деле, возможен и такой вариант: х = 64, у = 60; действительно, 5 64 + 3 60 = 500 - верное равенство. И такой: х = 70, у = 50 (поскольку 5 70 + 3 50 = 500 - верное равенство).

А вот, скажем, пара чисел х = 80, у = 60 решением уравнения не является, поскольку при этих значениях верного равенства не получается:

Вообще, решением уравнения ах + by + с = 0 называют всякую пару чисел (х; у), которая удовлетворяет этому уравнению, т. е. обращает равенство с переменными ах + by + с = 0 в верное числовое равенство. Таких решений бесконечно много.

Замечание. Вернемся еще раз к уравнению 5х + Зу = 500, полученному в рассмотренной выше задаче. Среди бесконечного множества его решений имеются, например, и такие: х = 100, у = 0 (в самом деле, 5 100 + 3 0 = 500 - верное числовое равенство); х = 118, у = - 30 (так как 5 118 + 3 (-30) = 500 - верное числовое равенство). Однако, являясь решениями уравнения , эти пары не могут служить решениями данной задачи, ведь скорость поезда не может быть равной нулю (тогда он не едет, а стоит на месте); тем более скорость поезда не может быть отрицательной (тогда он едет не навстречу другому поезду, как сказано в условии задачи, а в противоположную сторону).

Пример 1. Изобразить решения линейного уравнения с двумя переменными х + у - 3 = 0 точками в координатной плоскости хОу.

Решение. Подберем несколько решений заданного уравнения, т. е. несколько пар чисел, которые удовлетворяют уравнению: (3; 0), (2; 1), (1; 2) (0; 3), (- 2; 5).

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

КОНСПЕКТ УРОКА

Класс: 7

УМК: Алгебра 7 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н.Г. Миндюк и др.]; под ред. С.А. Теляковского. – 2-е изд. – М.: Просвещение, 2014

Тема: Линейные уравнения с двумя переменными

Цели: Познакомить учащихся с понятиями линейного уравнения с двумя переменными и его решения, научить выражать из уравнения х через у или у через х .

Формируемые УУД:

Познавательные: выдвигать и обосновывать гипотезы, предлагать способы их проверки

Регулятивные: сличать способ и результат своих действий с заданным эталоном, обнаруживать отклонения и отличия от эталона; составлять план и последовательность действий.

Коммуникативные: устанавливать рабочие отношения; эффективно сотрудничать и способствовать продуктивной кооперации.

Личностные: ф ормирование навыков организации анализа своей деятельности

Оборудование: компьютер, мультимедийный проектор, экран

Ход урока:

I Организационный момент

Послушайте сказку про Деда-Равняло и догадайтесь, о чем мы сегодня будем говорить

Сказка «Дед-Равняло»

Жил в избушке на лесной опушке дед по прозвищу Равняло. Любил он с числами подшучивать. Возьмет дед выстроит по обе стороны от себя числа, соединит их знаками, а самые резвые в скобки возьмет, но следит, чтобы одна часть равнялась другой. А потом какое-нибудь число спрячет под маской «икс» и попросит своего внука, маленького Равнялку, найти его. Равнялка хоть и мал, но дело свое знает: быстро перегонит все числа, кроме «икса», в другую сторону и знаки не забудет у них изменить на противоположные. А числа слушаются его, быстро выполняют по его приказу все действия, и «икс» известен. Дед смотрит на то, как ловко у внучка все получается и радуется: хорошая ему смена растет.

Итак, о чем идет речь в этой сказке? (об уравнениях)

II . Давайте вспомним всё, что мы знаем о линейных уравнениях и попробуем провести параллель между известным нам материалом и новым материалом.

    Какой тип уравнения нам известен? (линейное уравнение с одной переменной)

    Вспомним определение линейного уравнения с одной переменной.

    Что называется корнем линейного уравнения с одной переменной?

    Сформулируем все свойства линейного уравнения с одной переменной.

Заполняется 1 часть таблицы

ах=в, где х – переменная, а,в- числа.

Пример: 3х = 6

Значение х, при котором уравнение обращается в верное равенство

1) перенос слагаемых из одной части уравнения в другую, изменив их знак на противоположный.

2) обе части уравнения умножить или разделить на одно и тоже, не равное нулю число.

Линейное уравнение с двумя переменной.

ах + ву = с, где х,у – переменные, а,в.с – числа.

Пример:

х – у = 5

х + у = 56

2х + 6у =68

Значения х, у, обращающие уравнение в верное равенство.

х=8; у=3 (8;3)

х=60; у = - 4 (60;-4)

Верны свойства 1,2.

3) равносильные уравнения:

х-у=5 и у=х-5

(8;3) (8;3)

После того, как заполнили первую часть таблицы, опираясь на аналогию, начинаем заполнять вторую строку таблицы, тем самым узнавать новый материал.

III . Обратимся к теме: линейное уравнение с двумя переменными . Само название темы наталкивает на мысль, что нужно вводить новую переменную, например у.

Существует два числа х и у, одно больше другого на 5. Как записать соотношение между ними? (х – у = 5) это и есть линейное уравнение с двумя переменными. Сформулируем по аналогии с определением линейного уравнения с одной переменной определение линейного уравнения с двумя переменными (Линейным уравнением с двумя переменными называется уравнение вида ax + by = c , где a,b и c – некоторые числа, а x и y –переменные).

Уравнение x y = 5 при x = 8, y = 3 обращается в верное равенство 8 – 3 = 5. Говорят, что пара значений переменных x = 8, y = 3 является решением этого уравнения.

Сформулируйте определение решения уравнения с двумя переменными (Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство)

Пары значений переменных иногда записывают короче: (8;3). В такой записи на первом месте пишут значение x а на втором - y.

Уравнения с двумя переменными, имеющие одни и те же решения (или не имеющие решений), называются равносильными.

Уравнения с двумя переменными обладают такими же свойствами, как и уравнения с одной переменной:

    Если в уравнении перенести любой член из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

    Если обе части уравнения умножить или разделить на одно и то же число(не равное нулю), то получится уравнение равносильное данному.

Пример 1. Рассмотрим уравнение 10x + 5y = 15. Используя свойства уравнений, выразим одну переменную через другую.

Для этого сначала перенесем 10x из левой части в правую, изменив его знак. Получаем равносильное уравнение 5y = 15 - 10x.

Разделим каждую часть этого уравнения на число 5, получим равносильное уравнение

у = 3 - 2x. Таким образом, мы выразили одну переменную через другую . Пользуясь этим равенством, для каждого значения x можно вычислить значение y.

Если x = 2, то y = 3 - 2· 2 = -1.

Если x = -2, то y = 3 - 2· (-2) = 7. Пары чисел (2; -1), (-2; 7) – решения данного уравнения. Таким образом, данное уравнение имеет бесконечно много решений.

Из истории. Проблема решения уравнений в натуральных числах подробно рассматривалась в работах известного греческого математика Диофанта (III в.). В его трактате «Арифметика» приводятся остроумные решения в натуральных числах самых разнообразных уравнений. В связи с этим уравнения с несколькими переменными, для которых требуется найти решения в натуральных или целых числах, называют диофантовыми уравнениями.

Пример 2. Мука расфасована в пакеты по 3 кг и по 2 кг. Сколько пакетов каждого вида надо взять, чтобы получилось 20 кг муки?

Допустим, что надо взять x пакетов по 3 кг и y пакетов по 2 кг. Тогда 3x + 2y = 20. Требуется найти все пары натуральных значений переменных x и y, удовлетворяющих этому уравнению. Получаем:

2y = 20 - 3x

у =

Подставляя в это равенство вместо x последовательно все числа 1,2,3 и т.д., найдем при каких значениях х, значения y являются натуральными числами.

Получаем: (2;7), (4;4), (6;1). Других пар, удовлетворяющих данному уравнению нет. Значит надо взять либо 2 и 7, либо 4 и 4, либо 6 и 1 пакетов соответственно.

IV . Работа по учебнику (устно) № 1025, № 1027(а)

Самостоятельная работа с проверкой в классе.

1. Выпишите линейно уравнение с двумя переменными.

а) 3х + 6у = 5 в) ху = 11 б) х – 2у = 5

2. Является ли пара чисел решением уравнения?

2х + у = -5 (-4;3), (-1;-3), (0;5).

3. Выразите из линейного уравнения

4х – 3у = 12 а) х через у б) у через х

4. Найдите три, каких либо решения уравнения.

х + у = 27

V . Итак, подведем итог:

Дать определение линейного уравнения с двумя переменными.

Что называется решением (корнем) линейного уравнения с двумя переменными.

Сформулировать свойства линейного уравнения с двумя переменными.

Выставление оценок.

Домашнее задание: п. 40, № 1028, №1032

Научиться решать уравнения — это одна из главных задач, которые ставит алгебра перед учениками. Начиная с простейшего, когда оно состоит из одной неизвестной, и переходя ко все более сложным. Если не усвоены действия, которые нужно выполнить с уравнениями из первой группы, будет трудно разобраться с другими.

Для продолжения разговора нужно договориться об обозначениях.

Общий вид линейного уравнения с одной неизвестной и принцип его решения

Любое уравнение, которое можно привести к записи такого вида:

а * х = в ,

называется линейным . Это общая формула. Но часто в заданиях линейные уравнения записаны в неявном виде. Тогда требуется выполнить тождественные преобразования, чтобы получить общепринятую запись. К этим действиям относятся:

  • раскрытие скобок;
  • перемещение всех слагаемых с переменной величиной в левую часть равенства, а остальных — в правую;
  • приведение подобных слагаемых.

В случае когда неизвестная величина стоит в знаменателе дроби, нужно определить ее значения, при которых выражение не будет иметь смысла. Другими словами, полагается узнать область определения уравнения.

Принцип, по которому решаются все линейные уравнения, сводится к тому, чтобы разделить значение в правой части равенства на коэффициент перед переменной. То есть «х» будет равен в/а.

Частные случаи линейного уравнения и их решения

Во время рассуждений могут возникать такие моменты, когда линейные уравнения принимают один из особых видов. Каждый из них имеет конкретное решение.

В первой ситуации:

а * х = 0 , причем а ≠ 0.

Решением такого уравнения всегда будет х = 0.

Во втором случае «а» принимает значение равное нулю:

0 * х = 0 .

Ответом такого уравнения будет любое число. То есть у него бесконечное количество корней.

Третья ситуация выглядит так:

0 * х = в , где в ≠ 0.

Это уравнение не имеет смысла. Потому что корней, удовлетворяющих ему, не существует.

Общий вид линейного уравнения с двумя переменными

Из его названия становится ясно, что неизвестных величин в нем уже две. Линейные уравнения с двумя переменными выглядят так:

а * х + в * у = с .

Поскольку в записи встречаются две неизвестные, то ответ будет выглядеть как пара чисел. То есть недостаточно указать только одно значение. Это будет неполный ответ. Пара величин, при которых уравнение превращается в тождество, является решением уравнения. Причем в ответе всегда первой записывают ту переменную, которая идет раньше по алфавиту. Иногда говорят, что эти числа ему удовлетворяют. Причем таких пар может быть бесконечное количество.

Как решить линейное уравнение с двумя неизвестными?

Для этого нужно просто подобрать любую пару чисел, которая окажется верной. Для простоты можно принять одну из неизвестных равной какому-либо простому числу, а потом найти вторую.

При решении часто приходится выполнять действия для упрощения уравнения. Они называются тождественными преобразованиями. Причем для уравнений всегда справедливы такие свойства:

  • каждое слагаемое можно перенести в противоположную часть равенства, заменив у него знак на противоположный;
  • левую и правую части любого уравнения разрешено делить на одно и то же число, если оно не равно нулю.

Примеры заданий с линейными уравнениями

Первое задание. Решить линейные уравнения: 4х = 20, 8(х — 1) + 2х = 2(4 — 2х); (5х + 15) / (х + 4) = 4; (5х + 15) / (х + 3) = 4.

В уравнении, которое идет в этом списке первым, достаточно просто выполнить деление 20 на 4. Результат будет равен 5. Это и есть ответ: х=5.

Третье уравнение требует того, чтобы было выполнено тождественное преобразование. Оно будет заключаться в раскрытии скобок и приведении подобных слагаемых. После первого действия уравнение примет вид: 8х — 8 + 2х = 8 — 4х. Потом нужно перенести все неизвестные в левую часть равенства, а остальные — в правую. Уравнение станет выглядеть так: 8х + 2х + 4х = 8 + 8. После приведения подобных слагаемых: 14х = 16. Теперь оно выглядит так же, как и первое, и решение его находится легко. Ответом будет х=8/7. Но в математике полагается выделять целую часть из неправильной дроби. Тогда результат преобразится, и «х» будет равен одной целой и одной седьмой.

В остальных примерах переменные находятся в знаменателе. Это значит, что сначала нужно узнать, при каких значениях уравнения определены. Для этого нужно исключить числа, при которых знаменатели обращаются в ноль. В первом из примеров это «-4», во втором оно «-3». То есть эти значения нужно исключить из ответа. После этого нужно умножить обе части равенства на выражения в знаменателе.

Раскрыв скобки и приведя подобные слагаемые, в первом из этих уравнений получится: 5х + 15 = 4х + 16, а во втором 5х + 15 = 4х + 12. После преобразований решением первого уравнения будет х = -1. Второе оказывается равным «-3», это значит, что последнее решений не имеет.

Второе задание. Решить уравнение: -7х + 2у = 5.

Предположим, что первая неизвестная х = 1, тогда уравнение примет вид -7 * 1 + 2у = 5. Перенеся в правую часть равенства множитель «-7» и поменяв у него знак на плюс, получится, что 2у = 12. Значит, у=6. Ответ: одно из решений уравнения х = 1, у = 6.

Общий вид неравенства с одной переменной

Все возможные ситуации для неравенств представлены здесь:

  • а * х > в;
  • а * х < в;
  • а * х ≥в;
  • а * х ≤в.

В общем, оно выглядит как простейшее линейное уравнение, только знак равенства заменен на неравенство.

Правила тождественных преобразований неравенства

Так же как линейные уравнения, и неравенства можно видоизменять по определенным законам. Они сводятся к следующему:

  1. к левой и правой частям неравенства можно прибавить любое буквенное или числовое выражение, причем знак неравенства останется прежним;
  2. также можно и умножить или разделить на одно и то же положительное число, от этого опять знак не изменяется;
  3. при умножении или делении на одно и то же отрицательное число равенство останется верным при условии смены знака неравенства на противоположный.

Общий вид двойных неравенств

В задачах могут быть представлены такие варианты неравенств:

  • в < а * х < с;
  • в ≤ а * х < с;
  • в < а * х ≤ с;
  • в ≤ а * х ≤ с.

Двойными оно называется, потому что ограничено знаками неравенства с двух сторон. Оно решается с помощью тех же правил, что и обычные неравенства. И нахождение ответа сводится к ряду тождественных преобразований. Пока не будет получено простейшее.

Особенности решения двойных неравенств

Первой из них является его изображение на координатной оси. Использовать этот способ для простых неравенств нет необходимости. А вот в сложных случаях он может быть просто необходимым.

Для изображения неравенства нужно отметить на оси все точки, которые получились во время рассуждений. Это и недопустимые значения, которые обозначаются выколотыми точками, и значения из неравенств, получившиеся после преобразований. Здесь тоже важно правильно нарисовать точки. Если неравенство строгое, то есть < или >, то эти значения выколотые. В нестрогих неравенствах точки нужно закрашивать.

Потом полагается обозначить смысл неравенств. Это можно сделать с помощью штриховки или дуг. Их пересечение укажет ответ.

Вторая особенность связана с его записью. Здесь предлагается два варианта. Первый — это окончательное неравенство. Второй — в виде промежутков. Вот с ним бывает, что возникают трудности. Ответ промежутками всегда выглядит как переменная со знаком принадлежности и скобок с числами. Иногда промежутков получается несколько, тогда между скобками нужно написать символ «и». Эти знаки выглядят так: ∈ и ∩. Скобки промежутков тоже играют свою роль. Круглая ставится тогда, когда точка исключена из ответа, а прямоугольная включает это значение. Знак бесконечности всегда стоит в круглой скобке.

Примеры решения неравенств

1. Решить неравенство 7 - 5х ≥ 37.

После несложных преобразований получается: -5х ≥ 30. Разделив на «-5» можно получить такое выражение: х ≤ -6. Это уже ответ, но его можно записать и по-другому: х ∈ (-∞; -6].

2. Решите двойное неравенство -4 < 2x + 6 ≤ 8.

Сначала нужно везде вычесть 6. Получится: -10 < 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].

Тема: Линейная функция

Урок: Линейное уравнение с двумя переменными и его график

Мы познакомились с понятиями координатной оси и координатной плоскости. Мы знаем, что каждая точка плоскости однозначно задает пару чисел (х; у), причем первое число есть абсцисса точки, а второе - ордината.

Мы будем очень часто встречаться с линейным уравнением с двумя переменными, решением которого и есть пара чисел, которую можно представить на координатной плоскости.

Уравнение вида:

Где a, b, с - числа, причем

Называется линейным уравнением с двумя переменными х и у. Решением такого уравнения будет любая такая пара чисел х и у, подставив которую в уравнение мы получим верное числовое равенство.

Пара чисел будет изображаться на координатной плоскости в виде точки.

У таких уравнений мы увидим много решений, то есть много пар чисел, и все соответствующие точки будут лежать на одной прямой.

Рассмотрим пример:

Чтобы найти решения данного уравнения нужно подобрать соответствующие пары чисел х и у:

Пусть , тогда исходное уравнение превращается в уравнение с одной неизвестной:

,

То есть, первая пара чисел, являющаяся решением заданного уравнения (0; 3). Получили точку А(0; 3)

Пусть . Получим исходное уравнение с одной переменной: , отсюда , получили точку В(3; 0)

Занесем пары чисел в таблицу:

Построим на графике точки и проведем прямую:

Отметим, что любая точка на данной прямой будет решением заданного уравнения. Проверим - возьмем точку с координатой и по графику найдем ее вторую координату. Очевидно, что в этой точке . Подставим данную пару чисел в уравнение. Получим 0=0 - верное числовое равенство, значит точка, лежащая на прямой, является решением.

Пока доказать, что любая точка, лежащая на построенной прямой является решением уравнения, мы не можем, поэтому принимаем это за правду и докажем позже.

Пример 2 - построить график уравнения:

Составим таблицу, нам достаточно для построения прямой двух точек, но возьмем третью для контроля:

В первой колонке мы взяли удобный , найдем у:

, ,

Во втором столбике мы взяли удобный , найдем х:

, , ,

Возьмем для проверки и найдем у:

, ,

Построим график:

Умножим заданное уравнение на два:

От такого преобразования множество решений не изменится и график останется таким же самым.

Вывод: мы научились решать уравнения с двумя переменными и строить их графики, узнали, что графиком подобного уравнения есть прямая и что любая точка этой прямой является решением уравнения

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

2. Портал для семейного просмотра ().

Задание 1: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 960, ст.210;

Задание 2: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 961, ст.210;

Задание 3: Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7, № 962, ст.210;

Инструкция

Если дана система из двух линейных уравнений, решайте ее следующим образом. Выберите одно из уравнений, в котором коэффициенты перед переменными поменьше и выразите одну из переменных, например, х. Затем подставьте это значение, содержащее у, во второе уравнение. В полученном уравнении будет лишь одна переменная у, перенесите все части с у в левую часть, а свободные – в правую. Найдите у и подставьте в любое из первоначальных уравнений, найдите х.

Решить систему из двух уравнений можно и другим способом. Умножьте одно из уравнений на число, чтобы коэффициент перед одной из переменных, например, перед х, был одинаков в обоих уравнениях. Затем вычтите одно из уравнений из другого (если правая часть не равна 0, не забудьте вычесть аналогично и правые части). Вы увидите, что переменная х исчезла, и осталась только одна переменная у. Решите полученное уравнение, и подставьте найденное значение у в любое из первоначальных равенств. Найдите х.

Третий способ решения системы двух линейных уравнений – графический. Начертите систему координат и изобразите графики двух прямых, уравнения которых указаны в вашей системе. Для этого подставляйте любые два значения х в уравнение и находите соответствующие у – это будут координаты точек, принадлежащих прямой. Удобнее всего находить пересечение с осями координат – достаточно подставить значения х=0 и у=0. Координаты точки пересечения этих двух линий и будут задачи.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, деревьев и т.д. – тогда значениями могут быть только целые числа. Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Постройте график прямой, соответствующий линейному уравнению. Посмотрите на график, возможно, на нем будет всего лишь несколько решений, удовлетворяющих всем условиям – например, целых и положительных чисел. Они и будут являться решениями вашего уравнения.

Источники:

  • как решить уравнение с одной переменной

Одной из основных задач математики является решение системы уравнений с несколькими неизвестными. Это очень практическая задача: есть несколько неизвестных параметров, на них накладывается несколько условий и требуется найти их наиболее оптимальную совокупность. Такие задачи являются обыденными в экономике, строительстве, проектировании сложных механических систем и вообще везде где требуется оптимизация затрат материальных и человеческих ресурсов. В связи с этим встает вопрос: а как же решать такие системы?

Инструкция

Математика дает нам два способа решения таких систем: графический и аналитический. Эти способы равнозначны, и нельзя сказать, что какой-то из них лучше или хуже. В каждой ситуации нужно в ходе оптимизации решения выбирать какой способ дает более простое решение. Но есть и некоторые типичные ситуации. Так, систему плоских уравнений, т. е. когда два графика имеют вид y=ax+b, проще решать графическим способом. Делается все очень просто: строятся две прямые: графики линейных функций, затем находится их точка пересечения. Координаты этой точки (абсцисса и ордината) и будут решением данного уравнения. Заметим также, что две прямые могут быть и параллельными. Тогда система уравнений не имеет решения, а функции называются линейно зависимыми.

Может случиться и обратная ситуация. Если нам нужно найти третью неизвестную, при двух линейно независимых уравнениях, тогда система будет недоопределена и иметь бесчисленное множество решений. В теории линейной алгебры доказывается, что система имеет единственное решение, тогда и только тогда, когда число уравнений совпадает с числом неизвестных.