Где есть комплекс гольджи. Какие функции выполняет комплекс гольджи

В 1898 г. итальянский ученый К. Гольджи, используя свойства связывания тяжелых металлов (осмия и серебра) с клеточными структурами, выявил в нервных клетках сетчатые образования, которые он назвал “внутренним сетчатым аппаратом” (рис. 174). Дальнейшее усовершенствование метода окраски металлами (импрегнации) дало возможность убедиться, что сетчатые структуры (аппарат Гольджи) встречаются во всех клетках любых эукариотных организмов. Обычно элементы аппарата Гольджи расположены около ядра, вблизи клеточного центра (центриоли). Участки аппарата Гольджи, четко выявляемые методом импрегнации, имели в некоторых клетках вид сложных сетей, где ячейки были связаны друг с другом или представлялись в виде отдельных темных участков, лежащих независимо друг от друга (диктиосомы), имеющих вид палочек, зерен, вогнутых дисков и т.д. (рис. 175). Между сетчатой и диффузной формой аппарата Гольджи нет принципиального различия, так как часто в одних и тех же клетках наблюдается смена форм этого органоида. Элементы аппарата Гольджи часто связаны с вакуолями, что особенно характерно для секретирующих клеток.

Было обнаружено, что морфология АГ меняется в зависимости от стадий клеточной секреции, что послужило основанием Д.Н. Насонову (1924) выдвинуть гипотезу о том, что АГ является органоидом, обеспечивающим сепарацию и накопление веществ в самых различных клетках.

Долгое время в растительных клетках не удавалось обнаружить элементов аппарата Гольджи обычными методами микротехники. Однако с появлением метода электронной микроскопии элементы АГ были обнаружены во всех растительных клетках, где они расположены по периферии клетки.

Тонкое строение аппарата Гольджи

В электронном микроскопе видно, что аппарат Гольджи представлен мембранными структурами, собранными вместе в небольшой зоне (рис. 176, 177). Отдельная зона скопления этих мембран является диктиосомой (рис. 178). В диктиосоме плотно друг к другу (на расстоянии 20-25 нм) расположены в виде стопки плоские мембранные мешки, или цистерны, между которыми располагаются тонкие прослойки гиалоплазмы. Каждая отдельная цистерна имеет диаметр около 1 мкм и переменную толщину; в центре ее мембраны могут быть сближены (25 нм), а на периферии иметь расширения, ампулы, ширина которых непостоянна. Количество таких мешков в стопке обычно не превышает 5-10. У некоторых одноклеточных их число может достигать 20 штук. Кроме плотно расположенных плоских цистерн в зоне АГ наблюдается множество вакуолей. Мелкие вакуоли встречаются главным образом в периферических участках зоны АГ; иногда видно, как они отшнуровываются от ампулярных расширений на краях плоских цистерн. Принято различать в зоне диктиосомы проксимальный или формирующийся, цис-участок, и дистальный или зрелый, транс-участок (рис. 178). Между ними располагается средний или промежуточный участок АГ.

Во время деления клеток сетчатые формы АГ распадаются до диктиосом, которые пассивно и случайно распределяются по дочерним клеткам. При росте клеток общее количество диктиосом увеличивается.

В секретирующих клетках обычно АГ поляризован: его проксимальная часть обращена к цитоплазме и ядру, а дистальная - к поверхности клетки. В проксимальном участке к стопкам сближенных цистерн примыкает зона мелких гладких пузырьков и коротких мембранных цистерн. В образцах препаративно выделенных зон АГ при негативном контрастировании видно, что к проксимальной части диктиосомы примыкает сетевидная или губкообразная система мембранных полостей. Считается, что эта система может представлять собой зону перехода элементов ЭР в зону аппарата Гольджи (рис. 179).

В средней части диктиосомы периферия каждой цистерны также сопровождается массой мелких вакуолей около 50 нм в диаметре.

В дистальном или транс-участке диктиосом к последней мембранной плоской цистерне примыкает участок, состоящий из трубчатых элементов и массой мелких вакуолей, часто имеющих фибриллярную опушенность по поверхности со стороны цитоплазмы - это опушенные или окаймленные пузырьки такого же типа, как и окаймленные пузырьки при пиноцитозе. Это - так называемая транс-сеть аппарата Гольджи (TGN), где происходит разделение и сортировка секретируемых продуктов. Еще дистальнее располагается группа более крупных вакуолей - это уже продукт слияния мелких вакуолей и образования секреторных вакуолей.

При изучении толстых срезов клеток в мегавольтный электронный микроскоп было найдено, что в клетках отдельные диктосомы могут быть связаны друг с другом системой вакуолей и цистерн. Так что образуется рыхлая трехмерная сеть, выявляемая в световом микроскопе. В случае диффузной формы АГ каждый отдельный его участок представлен диктиосомой. У клеток растений преобладает диффузный тип организации АГ, обычно в среднем на клетку приходится около 20 диктиосом. В клетках животных часто с зоной мембран аппарата Гольджи ассоциированы центриоли; между радиально отходящих от них пучков микротрубочек лежат группы стопок мембран и вакуолей, которые концентрически окружают клеточный центр. Эта связь, вероятно, отражает участие микротрубочек в движении вакуолей.

Секреторная функция аппарата Гольджи

Мембранные элементы АГ участвуют в сегрегации и накоплении продуктов, синтезированных в ЭР, участвуют в их химических перестройках, созревании: это, главным образом перестройка олигосахаридных компонентов гликопротеинов в составе водорастворимых секретов или в составе мембран (рис. 180).

В цистернах АГ происходит синтез полисахаридов, их взаимосвязь с белками, приводящая к образованию мукопротеидов. Но главное, с помощью элементов аппарата Гольджи происходит процесс выведения готовых секретов за пределы клетки. Кроме того, АГ является источником клеточных лизосом.

Участие АГ в процессах выведения секреторных продуктов было очень хорошо изучено на примере экзокринных клеток поджелудочной железы. Для этих клеток характерно наличие большого числа секреторных гранул (зимогеновых гранул), которые представляют собой мембранные пузырьки, заполненные белковым содержимым. В составе белков зимогеновых гранул входят разнообразные ферменты: протеазы, липазы, карбогидразы, нуклеазы. При секреции содержимое этих зимогеновых гранул выбрасывается из клеток в просвет железы, а затем перетекает в полость кишечника. Так как основным продуктом, выводимым клетками поджелудочной железы, является белок, то исследовали последовательность включения радиоактивных аминокислот в различные участки клетки (рис. 181). Для этого животным вводили меченную тритием аминокислоту (3 Н-лейцин) и с помощью электронно-микроскопической радиоавтографии следили во времени за локализацией метки. Оказалось, что через короткий промежуток времени (3-5 мин) метка локализовалась только в базальных участках клеток, в участка, богатых гранулярным ЭР. Так как метка включалась в белковую цепь во время синтеза белка, то было ясно, что ни в зоне АГ, ни в самих зимогеновых гранулах синтез белка не происходит, а он синтезируется исключительно в эргастоплазме на рибосомах. Несколько позднее (через 20-40 мин) метка кроме эргастоплазмы была обнаружена в зоне вакуолей АГ. Следовательно, после синтеза в эргастоплазме белок был транспортирован в зону АГ. Еще позднее (через 60 мин) метка обнаруживалась уже и в зоне зимогеновых гранул. В дальнейшем метку можно было видеть в просвете ацинусов этой железы. Таким образом, стало ясно, что АГ является промежуточным звеном между собственно синтезом секретируемого белка и выведением его из клетки. Также подробно процессы синтеза и выведения белков были изучены на других клетках (молочная железа, бокаловидные клетки кишечника, щитовидная железа и др.), и были исследованы морфологические особенности этого процесса. Синтезированный на рибосомах экспортируемый белок отделяется и накапливается внутри цистерн ЭР, по которым он транспортируется к зоне мембран АГ. Здесь от гладких участков ЭР отщепляются мелкие вакуоли, содержащие синтезированный белок, которые поступают в зону вакуолей в проксимальной части диктиосомы. В этом месте вакуоли могут сливаться друг с другом и с плоскими цис-цистернами диктиосомы. Таким образом происходит перенесение белкового продукта уже внутри полостей цистерн АГ.

По мере модификации белков в цистернах аппарата Гольджи, они с помощью мелких вакуолей переносятся от цистерн к цистерне в дистальную часть диктиосомы, пока не достигают трубчатой мембранной сети в транс-участке диктиосомы. В этом участке происходит отщепление мелких пузырьков, содержащих уже зрелый продукт. Цитоплазматическая поверхность таких пузырьков бывает сходна с поверхностью окаймленных пузырьков, которые наблюдаются при рецепторном пиноцитозе. Отделившиеся мелкие пузырьки сливаются друг с другом, образуя секреторные вакуоли. После этого секреторные вакуоли начинают двигаться к поверхности клетки, соприкасаются с плазматической мембраной, с которой сливаются их мембраны, и, таким образом, содержимое этих вакуолей оказывается за пределами клетки. Морфологически этот процесс экструзии (выбрасывания) напоминает пиноцитоз, только с обратной последовательностью стадий. Он носит название экзоцитоз .

Такое описание событий является только общей схемой участия аппарата Гольджи в секреторных процессах. дело усложняется тем, что одна и та же клетка может участвовать в синтезе многих выделяемых белков, может их друг от друга изолировать и направлять к клеточной поверхности или же в состав лизосом. В аппарате Гольджи происходит не просто “перекачка” продуктов из одной полости в другую, но и постепенно идет их “созревание”, модификация белков, которая заканчивается “сортировкой” продуктов, направляющихся или к лизосомам, или к плазматической мембране, или к секреторным вакуолям.

Модификация белков в аппарате Гольджи

В цис-зону аппарата Гольджи синтезированные в ЭР белки попадают после первичного гликозилирования и редукции там же нескольких сахаридных остатков. В конечном итоге все белки там имеют одинаковые олигосахаридные цепи, состоящие из двух молекул N-ацетилглюкозамина, шести молекул маннозы (рис. 182). В цис-цистернах начинается вторичная модификация олигосахаридных цепей и их сортировка на два класса. В результате олигосахариды на гидролитических ферментах, предназначенных для лизосом (богатые маннозой олгосахариды), фосфорилируются, а олигосахариды других белков, направляемых в секреторные гранулы, или к плазматической мембране, подвергаются сложным превращениям, теряя ряд сахаров и присоединяя галактозу, N-ацетилглюкозамин и сиаловые кислоты.

При этом возникает специальный комплекс олигосахаридов. Такие превращения олигосахаридов осуществляются с помощью ферментов - гликозилтрансфераз, входящих в состав мембран цистерн аппарата Гольджи. Так как каждая зона в диктиосомах имеет свой набор ферментов гликозилирования, то гликопротеиды как бы по эстафете переносятся из одного мембранного отсека (“этажа” в стопке цистерн диктиосомы) в другой и в каждом подвергаются специфическому воздействию ферментов. Так в цис-участке происходит фосфорилирование манноз в лизосомных ферментах и образуется особая маннозо-6-группировка, характерная для всех гидролитических ферментов, которые потом попадут в лизосомы.

В средней части диктиосом протекает вторичное гликозилирование секреторных белков: дополнительное удаление маннозы и присоединение N-ацетилглюкозамина. В транс-участке к олигосахаридной цепи присоединяются галактоза и сиаловые кислоты (рис. 183).

Эти данные были получены совершенно разными методами. С помощью дифференциального центрифугирования удалось получить раздельные более тяжелые (цис-) компоненты аппарата Гольджи и более легкие (транс-) и определить в них наличие гликозидаз и их продуктов. С другой стороны, используя моноклональные антитела к различным ферментам с помощью электронной микроскопии удалось их локализовать прямо на срезах клеток.

В ряде специализированных клеток в аппарате Гольджи происходит синтез собственно полисахаридов.

В аппарате Гольджи растительных клеток происходит синтез полисахаридов матрикса клеточной стенки (гемицеллюлозы, пектины). Кроме того, диктиосомы растительных клеток участвуют в синтезе и выделении слизей и муцинов, в состав которых входят также полисахариды. Синтез же основного каркасного полисахарида растительных клеточных стенок, целлюлозы, происходит как уже говорилось, на поверхности плазматической мембраны.

В аппарате Гольджи клеток животных происходит синтез длинных неразветвленных полисахаридных цепей глюкозаиногликанов. Один из них, гиалуроновая кислота, входящая в состав внеклеточного матрикса соединительной ткани, содержит несколько тысяч повторяющихся дисахаридных блоков. Многие глюкозаиногликаны ковалентно связаны с белками и образуют протеогликаны (мукопротеины). Такие полисахаридные цепи модифицируются в аппарате Гольджи и связываются с белками, которые в виде протеогликанов секретируются клетками. В аппарате Гольджи происходит также сульфатирование глюкозаиногликанов и некоторых белков.

Сортировка белков в аппарате Гольджи

Итак, через аппарат Гольджи проходит по крайней мере, три потока синтезированных клеткой нецитозольных белков: поток гидролитических ферментов в компартмент лизосом, поток выделяемых белков, которые накапливаются в секреторных вакуолях, и выделяются из клетки только по получении специальных сигналов, поток постоянно выделяемых секреторных белков. Следовательно, должен быть какой-то специальный механизм пространственного разделения этих разных белков и их путей следования.

В цис- и средних зонах диктиосом все эти белки идут вместе без разделения, они только раздельно модифицируются в зависимости от их олигосахаридных маркеров.

Собственно разделение белков, их сортировка, происходит в транс-участке аппарата Гольджи. Этот процесс не до конца расшифрован, но на примере сортировки лизосомных ферментов можно понять принцип отбора определенных белковых молекул (рис. 184).

Известно, что только белки-предшественники лизосомных гидролаз имеют специфическую олигосахаридную, а именно маннозную группу. В цис-цистернах эти группировки фосфорилируются и дальше вместе с другими белками переносятся от цистерны к цистерне, через среднюю зону в транс-участок. Мембраны транс-сети аппарата Гольджи содержат трансмембранный белок - рецептор (манноза-6-фосфатный рецептор или М-6-Ф-рецептор), который узнает фосфорилированные маннозные группировки олигосахаридной цепи лизосомных ферментов и связывается с ними. Это связывание происходит при нейтральных значениях рН внутри цистерн транс-сети. На мембранах эти М-6-Ф-рецепторные белки образуют кластеры, группы, которые концентрируются в зонах образования мелких пузырьков, покрытых клатрином. В транс-сети аппарата Гольджи происходит их отделение, отпочковывание и дальнейший перенос к эндосомам. Следовательно М-6-Ф-рецепторы, являясь трансмембранными белками, связываясь с лизосомными гидролазами, отделяют их, отсортировывают, от других белков (например, секреторных, нелизосомных) и концентрируют их в окаймленных пузырьках. Оторвавшись от транс-сети эти пузырьки быстро теряют шубу, сливаются с эндосомами, перенося свои лизосомные ферменты, связанные с мембранными рецепторами, в эту вакуоль. Как уже говорилось, внутри эндосом из-за активности протонного переносчика происходит закисление среды. Начиная с рН 6 лизосомные ферменты диссоциируют от М-6-Ф-рецепторов, активируются и начинают работать в полости эндолизосомы. Участки же мембран вместе с М-6-Ф-рецепторами возвращаются путем рециклизации мембранных пузырьков обратно в транс-сеть аппарата Гольджи.

Вероятнее всего, что та часть белков, которая накапливается в секреторных вакуолях и выводится из клетки после поступления сигнала (например нервного или гормонального) проходит такую же процедуру отбора, сортировки на рецепторах транс-цистерн аппарата Гольджи. Эти секреторные белки попадают сначала в мелкие вакуоли тоже одетые клатрином, которые затем сливаются друг с другом. В секреторных вакуолях часто происходит агрегация накопленных белков в виде плотных секреторных гранул. Это приводит к повышению концентрации белка в этих вакуолях примерно в 200 раз, по сравнению с его концентрацией в аппарате Гольджи. Затем эти белки по мере накопления в секреторных вакуолях выбрасываются из клетки путем экзоцитоза, поле получения клеткой соответствующего сигнала.

От аппарата Гольджи исходит и третий поток вакуолей, связанный с постоянной, конститутивной секрецией. Так фибробласты выделяют большое количество гликопротеидов и муцинов, входящих в основное вещество соединительной ткани. Многие клетки постоянно выделяют белки, способствующие связыванию их с субстратами, постоянно идет поток мембранных пузырьков к поверхности клетки, несущие элементы гликокаликса и мембранных гликопротеидов. Этот поток выделяемых клеткой компонентов не подлежит сортировке в рецепторной транс-системе аппарата Гольджи. Первичные вакуоли этого потока также отщепляются от мембран и относятся по своей структуре к окаймленным вакуолям, содержащим клатрин (рис. 185).

Заканчивая рассмотрение строения и работы такой сложной мембранной органеллы, как аппарат Гольджи, необходимо подчеркнуть, что несмотря на кажущуюся морфологическую однородность его компонентов, вакуоли и цистерны, на самом деле, это не просто скопище пузырьков, а стройная, динамичная сложно организованная, поляризованная система.

В АГ происходит не только транспорт везикул от ЕР к плазматической мембране. Существует ретроградный перенос везикул. Так от вторичных лизосом отщепляются вакуоли и возвращаются вместе с рецепторными белками в транс-АГ зону. Кроме того существует поток вакуолей от транс-зоны к цис-зоне АГ, а так же от цис-зоны к эндоплазматическому ретикулуму. В этих случаях вакуоли одеты белками COP I-комплекса. Считается, что таким путем возвращаются различные ферменты вторичного гликозилирования и рецепторные белки в составе мембран.

Эти особенности поведения транспортных везикул дали основу гипотезе о существовании двух типов транспорта компонентов АГ (рис. 186).

По одному из них, наиболее старому, в АГ существуют стабильные мембранные компоненты, к которым от ЭР эстафетно переносятся вещества с помощью транспортных вакуолей. По альтернативной модели АГ является динамическим производным ЭР: отщепившиеся от ЭР мембранные вакуоли сливаются друг с другом в новую цис-цистерну, которая затем продвигается через всю зону АГ и в конце распадается на транспортные везикулы. По этой модели ретроградные COP I везикулы возвращают постоянные белки АГ в более молодые цистерны. Таким образом предполагается, что переходная зона ЭР представляет собой “родильный дом” для аппарата Гольджи.

Аппарат Гольджи выполняет функции:

  • накапливает белки, жиры и унглеводы, а затем отдает их цитоплазме, и они используются для процессов жизнедеятельности самих клетки;
  • образование ферментов (Например, в поджелудочной железе животных клетки синтезируют пищеварительные ферменты);
  • синтез жиров и углеводов;
  • помощь в росте и обновлении плазматической мембраны

Но Основная функция комплекса Гольджи - выведение веществ, которые синтезирует клетка.

Изучение аппарата Гольджи продолжается, поэтому мы еще узнаем о новых функциях, которые природа возложила на этот комплекс.

  • Эратосфен - доклад сообщение

    Эратосфен был древнегреческим ученым из Александрии. Он родился во 2-ой половине III в. до н.э. Эратосфен был очень эрудированный человеком, его интересы распространялись практически на все существующие в ту эпоху знания и умения

  • Доклад Нефть - полезное ископаемое сообщение
  • Страна Швеция - сообщение доклад (3, 7 класс география, окружающий мир)

    Королевство Швеция – независимое государство с монархической формой правления, ограниченной конституцией. Столицей Швеции является город Стокгольм.

  • Писатель Борис Житков. Жизнь и творчество

    Борис Степанович Житков – известный русский и советский писатель. Также занимался написанием прозы, путешествиями, исследованиями, был моряком, инженером, преподавателем,

  • Писатель Марсель Пруст. Жизнь и творчество

    Марсель Пруст являлся известным писателем-романистом, представителем французского модернизма в XX веке. М.Пруст родился 10.07.1871 в деревенском пригороде французской столицы в довольно обеспеченной семье

Аппарат Гольджи представляет собой стопку уплощенных мембранных мешочков (« ») и систему пузырьков, связанных с ними. При изучении ультратонких срезов было затруднительно выявить его трехмерную структуру, однако ученые предположили, что вокруг центральной сформирована взаимосвязанных трубочек.

Аппарат Гольджи выполняет функцию транспорта веществ и химической модификации клеточных продуктов, попадающих в него. Особенно важной является эта функция в секреторных клетках, например, ацинарные клетки поджелудочной секретируют в выводной проток пищеварительные ферменты панкреатического сока. Ученые изучили функционирование аппарата Гольджи при помощи электронной микрофотографии такой клетки. Отдельные транспорта веществ выявили, используя радиоактивно меченые аминокислоты.

В клетке из аминокислот строятся белки. Установлено, что они концентрируются в пузырьках аппарата Гольджи, а затем транспортируются к плазматической мембране. На конечном этапе происходит секреция неактивных ферментов, подобная форма необходима, чтобы они не смогли разрушить клетки, в которых они образуются. Как правило, поступающие в комплекс Гольджи белки представляют собой гликопротеины. Там они проходят модификацию, которая превращает их в маркеры, позволяющие направить белок строго по своему назначению. Каким именно образом комплекс Гольджи распределяет молекулы, в точности не установлено.

Функция секреции углеводов

В некоторых случаях аппарат Гольджи принимает участие в секреции углеводов, например, у растений - при образовании материала клеточных стенок. Его активность усиливается в области клеточной пластинки, находящейся между двумя вновь образовавшимися дочерними ядрами. Пузырьки Гольджи направляются к этому месту при помощи микротрубочек. Мембраны пузырьков делаются частью плазматических мембран дочерних клеток. Их содержимое становится необходимым для построения клеточных стенок срединной пластинки и новых стенок. Целлюлоза в клетки поставляется отдельно при помощи микротрубочек, минуя аппарат Гольджи.

Аппаратом Гольджи также синтезируется гликопротеин муцин, образующий в растворе слизь. Он вырабатывается бокаловидными клетками, которые находятся в толще эпителия слизистой дыхательных путей и оболочки кишечника. У некоторых насекомоядных растений в железах листьев аппарат Гольджи вырабатывает ферменты и клейкую слизь. Комплекс Гольджи также принимает участие в секреции воска, слизи, камеди и растительного клея.

Аппарат Гольджи — важная органелла, которая присутствует практически в каждой Пожалуй, единственными клетками, в которых отсутствует этот комплекс, являются эритроциты позвоночных животных. Функции этой структуры весьма разнообразны. Именно в цистернах аппарата скапливают все вырабатываемые клеткой соединения, после чего происходит их дальнейшая сортировка, модификация, перераспределение и транспорт.

Несмотря на то, что аппарат Гольджи был обнаружен еще в 1897 году, и по сегодняшний день некоторые из его функций активно изучаются. Рассмотрим более подробное особенности его строения и функционирования.

Аппарат Гольджи: строение

Эта органелла представляет собой совокупность мембранных цистерн, которые тесно прилегают друг к другу, напоминая стопку. Структурное и функциональной единицей здесь считается диктиосома.

Диктиосома представляет собой отдельную, самостоятельную часть аппарата Гольджи, которая состоит из 3 - 8 тесно прилегающих друг к другу цистерн. Стопка этих мембранных цистерн окружена системой мелкий вакуолей и пузырьков — именно таким образом осуществляется транспорт веществ, а также связь диктиосом между собой и другими клеточными структурами. Как правило, имеют только одну диктиосому, в то время как в растительных структурах их может быть много.

В диктиосоме принято разделять два конца — цис- и транс-стороны. Цис-сторона обращена в сторону ядра и гранулярной эндоплазматической сетки. Сюда в виде мембранных пузырьков транспортируются синтезированные белки и другие соединения. На этом конце диктиосомы постоянно образуются новые цистерны.

Транс-сторона обращена к Как правило, она немного шире. Сюда попадают соединения, которые уже прошли все этапы модификации. От нижней цистерны постоянно отрываются небольшие вакуоли и пузырьки, которые транспортирую вещества к нужным органеллам клетки.

Аппарат Гольджи: функции

Как уже было сказано, функции органеллы весьма разнообразны.

  • Здесь осуществляется модификация новосинтезированных белковых молекул. В большинстве случаев к протеиновой молекуле присоединяется углеводный, сульфатный или фосфорный радикал. Таким образом, аппарат Гольджи отвечает за формирование белкой ферментов и белков лизосом.
  • Аппарат Гольджи отвечает за транспорт модифицированных белков в определенные участки клетки. От транс-стороны постоянно отделяются небольшие пузырьки, в которых содержатся готовые протеины.
  • Здесь происходит образование и транспорт всех ферментов лизосом.
  • В полостях цистерн происходит накопление липидов, а в дальнейшем и образование липопротеидов — комплекса белковой и липидной молекулы.
  • Аппарат Гольджи растительной клетки отвечает за синтез полисахаридов, которые затем идут на образование растения, а также слизи, пектинов, гемицеллюлозы и восков.
  • После деления растительной клетки комплекс Гольджи берет участие в формировании клеточной пластинки.
  • В сперматозоиде эта органелла берет участие в образовании ферментов акросомы, с помощью которых происходит разрушение оболочек яйцеклетки при оплодотворении.
  • В клетках представителей простейших комплекс Гольджи отвечает за образование которые регулируют

Конечно же, это далеко не полный перечень всех выполняемых функций. Современные ученые до сих пор ведут самые разнообразные исследования, используя новейшие технологии. Вполне вероятно, что в ближайшие несколько лет список функций комплекса Гольджи значительно вырастет. Но уже сегодня можно с точностью сказать, что данная органелла поддерживает нормальную жизнедеятельность как клетки, так и всего организма в целом.

Комплекс Гольджи состоит из набора расширенных по краям уплощенных цистерн, сложенных в стопку и отпочковывающихся от цистерн пузырьков. Каждое такое скопление цистерн называется диктиосомой. Строение комплекса Гольджи зависит от типа и функционального состояния клеток. Количество цистерн в разных клетках варьирует, чаще всего в пределах 5-12-ти. Например, в секреторных клетках поджелудочной железы комплекс Гольджи имеет множество цистерн. Количество диктиосом в клетках также различно. Комплекс Гольджи располагается обычно между эндоплазматической сетью и плазматической мембраной. Часть комплекса Гольджи, обращенная к эндоплазматической сети, называется цис-полюсом, а удаленная от ЭС – транс-полюсом. В соответствии с полярностью комплекса Гольджи каждая сторона его цистерн имеет цис- и транс-поверхности.

При помощи транспортных пузырьков комплекс Гольджи получает белки из эндоплазматической сети. Здесь они подвергаются биохимической обработке, большую часть которой составляет прикрепление углеводных комплексов к белкам и липидам. Кроме этого, комплекс Гольджи сортирует их, и согласно назначению, «упаковывает» их в пузырьки, которые доставляют содержимое в лизосомы, пероксисомы, плазматическую мембрану, секреторные пузырьки. Предназначенные для секреции белки комплекс Гольджи упаковывает в пузырьки, мигрирующие по направлению к плазматической мембране. Достигшие плазматической мембраны пузырьки сливаются с плазматической мембраной клетки и освобождают своё содержимое путем экзоцитоза. Некоторые белки, предназначенные для экзоцитоза, могут длительно сохраняться в цитоплазме, освобождаясь под воздействием специфического стимула. Так, пищеварительные ферменты в клетках поджелудочной железы могут долго сохраняться в секреторных гранулах, освобождаясь только при поступлении пищи в кишечник.

Наряду с участием в процессинге (созревании) и сортировке секретируемых клеткой белков, формировании лизосом и секреторных гранул в секреторных клетках, комплекс Гольджи участвует в гидроосмотическом ответе клетки. В случае больших водных потоков цитоплазма обводняется, и вода частично собирается в крупных вакуолях комплекса Гольджи.

Рис. Комплекс Гольджи. Белки и липиды поступают в комплекс Гольджи с цис-стороны. Транспортные пузырьки переносят эти молекулы последовательно из одной цистерны в другую, где происходит их сортировка. Готовый продукт выходит из комплекса на транс-стороне, находясь в различных пузырьках. Часть пузырьков, содержащих белок, подвергается экзоцитозу; другие пузырьки транспортируют белки для плазматической мемраны и лизосом.

Основные типы перемещения внутри клетки – это поток белков и поток пузырьков (везикул). Одна из важнейших задач клетки – доставка молекул к различным отделам внутри клетки и во внеклеточное пространство. Существуют строго определенные пути внутриклеточного и межклеточного перемещения материала. Хотя в высокоспециализированных могут встречаться некоторые вариации, внутриклеточные потоки в эукариотических клетках обычно похожи. Например, хотя между органеллами иногда встречаются двунаправленные потоки, белковый и везикулярный потоки преимущественно однонаправлены – мембранные белки перемещаются из эндоплазматического ретикулума к клеточной поверхности.

Доставку веществ из одного отдела клетки к другому выполняют также специальные белки. В качестве сигнальных меток выступают специфические полипептидные последовательности этих белков. Важным открытием медицины за последние два десятилетия стало понимание того, что нарушение любого из таких транспортных путей может привести к заболеванию. Дефект сигнального маркера или локуса, узнающего маркер, может значительно нарушить здоровье, состояние клетки и организма. Детальное изучение этих путей необходимо для понимания молекулярной основы многих заболеваний человека.

Лизосомы (от греч. lysis – разложение, распад и греч. soma – тело) – окруженные мембраной органеллы (диаметром 0,2-0,8 мкм), присутствующие в цитоплазме всех эукариотических клеток. В клетках печени их насчитывают несколько сотен. Лизосомы образно называют мешочками с «оружием массового поражения», так как внутри них находится целый набор гидролитических ферментов, способных разрушить любой компонент клетки. Клетку спасает от разрушения не только лизосомальная мембрана. Лизосомальные ферменты работают в кислой среде (рН 4,5), которая внутри лизосомы поддерживается АТФ-зависимым протонным насосом. Первичные лизосомы отпочковываются от аппарата Гольджи в виде пузырьков, начиненных ферментами. Объекты, подлежащие разрушению, исходно могут находиться как внутри, так и вне клетки. Это могут быть состарившиеся митохондрии, эритроциты, компоненты мембран, гликоген, липопротеины и др. Состарившиеся митохондрии распознаются и заключаются в пузырек, который образуется из мембраны эндоплазматического ретикулума. Такие пузырьки называют аутофагосомами. Мембранные пузырьки, содержащие захваченные извне частицы, называют эндосомами. Аутофагосомы, фагосомы и эндосомы сливаются с первичными лизосомами, где и происходит переваривание поглощенных частиц и веществ. Отсутствие одного или нескольких ферментов чревато тяжелыми заболеваниями.

Известно около 40 лизосомных болезней (болезней накопления). Все они связаны с отсутствием в лизосомах того или иного гидролитического фермента. В результате внутри лизосом накапливается значительное количество субстрата недостающего фермента либо в форме интактных молекул, либо в виде частично расщепленных остатков. В зависимости от того, какой фермент отсутствует, может происходить накопление гликопротеинов, гликогена, липидов, гликолипидов, гликозаминогликанов (мукополисахаридов). Чрезмерно наполненные тем или иным веществом лизосомы препятствуют нормальному осуществлению клеточных функций и вследствие этого вызывают проявление заболеваний. Молекулярные механизмы лизосомных болезней обусловлены мутациями структурных генов, контролирующих процесс внутрилизосомного гидролиза макромолекул. Мутация может поражать синтез, процессинг (созревание) или транспорт самих лизосомных ферментов.

Пероксисомы – это везикулы (пузырьки) размером 0,1-1,5мкм, получившие свое название за способность образовывать перекись водорода. Эти мембранные пузырьки присутствуют в клетках млекопитающих. Они особенно многочисленны в клетках печени и почки. Пероксисомы выполняют как анаболические, так и катаболические функции. Они содержат в матриксе более 40 ферментов, катализирующих анаболические реакции биосинтеза желчных кислот из холестерина. Содержат также ферменты класса оксидаз. Оксидазы используют кислород для окисления различных субстратов, причем продуктом восстановления кислорода при этом является не вода, а перекись водорода. Перекись водорода, в свою очередь, сама окисляет другие субстраты (в том числе часть алкоголя в эпителиальных клетках печени и почек). В пероксисомах окисляются некоторые фенолы, d-аминокислоты, а также жирные кислоты с очень длинными (более 22 углеродных атомов) цепями, которые не могут быть до укорачивания окислены в митохондриях. Такие жирные кислоты содержатся в рапсовом масле. Продолжительность жизни пероксисом 5-6 суток. Новые пероксисомы возникают из предшествующих пероксисом путем их деления.

В настоящее время известно около 20-ти заболеваний человека, связанных с дисфункцией пероксисом. Все они имеют неврологическую симптоматику и проявляются в раннем детском возрасте. Тип наследования большинства пероксисомных болезней – аутосомно-рецессивный. Пероксисомные болезни могут быть обусловлены нарушением синтеза желчных кислот и холестерина, нарушением синтеза жирных кислот с длинной и разветвленной цепью, полиненасыщенных жирных кислот, дикарбоновых кислот и др. Известно редкое смертельное генетическое заболевание, вызываемое накоплением C 24 и C 26 - жирных кислот, а также предшественников желчных кислот.

Протеасомы – специальные клеточные «фабрики» по разрушению белков. Само название протеасома – (protos – главный, первичный и soma – тело) показывает, что это органоид, способный к протеолизу – лизису белков. Протеасомы содержат бочковидное ядро из 28 субъединиц и имеют коэффициент седиментации (осаждения) 20S. (S – единица Сведберга). 20S – протеасома имеет форму полого цилиндра 15-17 нм и диаметром 11-12 нм. Она состоит из 4 лежащих друг на друге колец двух типов. Каждое кольцо содержит 7 белковых субъединиц и включает 12-15 полипептидов. На внутренней стороне цилиндра находятся 3 протеолитические камеры. Протеолиз (разрушение белков) происходит в центральной камере и осуществляется с помощью ферментов-протеаз. В этой камере расщепляются белки, содержащие ошибки транскрипции, токсичные или ставшие ненужными клетке регуляторные белки. Например, белки-циклины, участвующие в регуляторных процессах при делении клетки.

Маркировкой ненужных белков занимается специфическая система ферментов – система убиквитирования. Система присоединяет белок убиквитин (ubique – вездесущий) к молекуле белка, который должен быть уничтожен. Сигналами для убиквитирования и последующей деградации могут служить нарушения в структуре белковых молекул. Имеются данные о связи некоторых наследственных заболеваний человека (фиброкистоз, синдром Ангельмана) с нарушениями в ферментных реакциях убиквитирования. Предполагается, что нарушения в работе протеасомной системы деградации белка являются причиной некоторых нейродегенеративных болезней.

Рис. Схематическое строение протеасомы и протеолитических камер.

Схема деградации белковых молекул в протеасомах