Геометрическая оптика законы отражения и преломления света. Основные законы геометрической оптики

Все законы геометрической оптики следуют из закона сохранения энергии. Все эти законы не являются независимыми друг от друга.

4.3.1. Закон независимого распространения лучей

Если через точку пространства проходит несколько лучей, то каждый луч ведет себя так, как если бы других лучей не было

Это справедливо для линейной оптики, где показатель преломления не зависит от амплитуды и интенсивности проходящего света.

4.3.2. Закон обратимости

Траектория и длина хода лучей не зависят от направления распространения.

То есть, если луч, который распространяется от точки до точки , пустить в обратном ходе (от к ), то он будет иметь такую же траекторию, как и в прямом.

4.3.3. Закон прямолинейного распространения

В однородной среде лучи - прямые линии (см. параграф 4.2.1).

4.3.4. Закон преломления и отражения

Закон отражения и преломления подробно рассматривается в Главе 3. В рамках геометрической оптики формулировки законов преломления и отражения сохраняются.

4.3.5. Принцип таутохронизма


Рис.4.3.1. Принцип таутохронизма.

Рассмотрим распространение света, как распространение волновых фронтов (рис.4.3.1).

Оптическая длина любого луча между двумя волновыми фронтами одна и та же:

(4.3.1)

Волновые фронты - поверхности, которые оптически параллельны друг другу. Это справедливо и для распространения волновых фронтов в неоднородных средах

4.3.6. Принцип Ферма

Пусть имеются две точки и , расположенные, возможно, в различных средах. Эти точки можно соединить между собой различными линиями. Среди этих линий будет только одна, которая будет являться оптическим лучом, который распространяется в соответствии с законами геометрической оптики (рис.4.3.2).

Рис.4.3.2. Принцип Ферма.

Принцип Ферма:

Оптическая длина луча между двумя точками минимальна по сравнению со всеми другими линиями, соединяющими эти две точки:

(4.3.2)

Существует более полная формулировка:

Оптическая длина луча между двумя точками является стационарной по отношению к смещению этой линии.

Луч - кратчайшее расстояние между двумя точками. Если линия, вдоль которой мы измеряем расстояние между двумя точками, отличается от луча на величину 1-го порядка малости, то оптическая длина этой линии отличается от оптической длины луча на величину 2-го порядка малости.

Если оптическую длину луча, соединяющего две точки, поделить на скорость света, то получим время, необходимое на преодоление расстояния между двумя точками:

Еще одна формулировка принципа Ферма:

Луч, соединяющий две точки, идет по такому пути, который требует наименьшего времени (по самому быстрому пути).

Из этого принципа могут быть выведены законы преломления, отражения и т.д.

4.3.7 Закон Малюса-Дюпена

Нормальная конгруэнция сохраняет свойства нормальной конгруэнции в процессе прохождения через различные среды.

4.3.8 Инварианты

Инварианты (от слова неизменный) - это соотношения, выражения, которые сохраняют свой вид при изменении каких-либо условий, например, при прохождении света через различные среды или системы.

Интегральный инвариант Лагранжа

Пусть имеется некоторая нормальная конгруэнция (пучок лучей), и две произвольные точки в пространстве и (рис.4.3.4). Соединим эти две точки произвольной линией и найдем криволинейный интеграл.

(4.3.4)
Криволинейный интеграл (4.3.3), взятый между двумя любыми точками и не зависит от пути интегрирования.

Рис.4.3.3. Интегральный инвариант Лагранжа.

Дифференциальный инвариант Лагранжа

Луч в пространстве полностью описывается радиус-вектором , который содержит три линейные координаты , и оптическим вектором , который содержит три угловые координаты . Всего, таким образом, имеется 6 параметров для определения некоторого луча в пространстве. Однако из этих 6 параметров только 4 являются независимыми, так как можно получить два уравнения, которые связывают параметры луча друг с другом.

Первое уравнение определяется длину оптического вектора:

Где - показатель преломления среды.

Второе уравнение вытекает из условия ортогональности векторов и :

Из выражений (4.3.5) и (4.3.6), воспользовавшись аналитической геометрией, можно вывести следующее соотношение:

(4.3.7)
где и - это пара любых из 6-ти параметров луча.

Дифференциальный инвариант Лагранжа:
Величина сохраняет свое значение для данного луча при распространении пучка лучей через любую совокупность оптических сред.

Геометрический фактор остается инвариантным при распространении лучевой трубки через любую последовательность различных сред (рис.4.3.5).

Инвариант Штраубеля выражает закон сохранения энергии, так как он показывает неизменность лучистого потока.

Из определения яркости можно получить следующее равенство:

(4.3.9) где - приведенная яркость, которая инвариантна, как уже было сказано в главе 2.

Основные законы геометрической оптики. Полное отражение

Световой луч - это направленная линия, вдоль которой распространяется световая энергия. При этом ход светового луча не зависит от поперечных размеров пучка света. Говорят, что он распространяется в одном единственном направлении: вдоль светового луча.

В основе геометрической оптики лежат несколько простых эмпирических законов:

1)Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям.

Отсюда - понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком.

Наблюдения за распространением света во многих случаях свидетельствуют о том, что свет распространяется прямолинейно. Это и тень от предмета͵ освещаемого уличным фонарем, и движение тени Луны по Земле во время солнечных затмений, и лазерная юстировка приборов, и многие другие факты. Во всех случаях мы подразумеваем, что свет движется по прямой линии.

В геометрической оптике рассматриваются законы распространения света в прозрачных средах на основе представления о свете как о совокупности световых лучей – прямых или искривленных линий , которые начинаются на источнике света и продолжаются бесконечно. В случае если среда однородная, то лучи распространяются по прямым линиям. Эта закономерность и известна как закон прямолинейного распространения света. Прямолинейность распространения света проявляется в образовании тени от непрозрачного тела, если его освещают точечным источником света. В случае если тот же предмет освещают двумя точечными источниками света S 1 и S 2 (рис.1) или одним протяженным источником, то на экране возникают участки, которые освещены частично и носят название полутени. Примером образования тени и полутени в природе является солнечное затмение. Область применения этого закона ограничена. При малых размерах отверстия, через ĸᴏᴛᴏᴩᴏᴇ проходит свет (порядка 10 -5 м), как уже отмечалось выше, наблюдается явление отклонения света от прямой траектории, ĸᴏᴛᴏᴩᴏᴇ получило название дифракции света.

Рис.1.1.1 Образование тени и полутени.

В неоднородной среде лучи распространяются по криволинейным траекториям. Примеров неоднородной среды – разогретый песок в пустыне. Вблизи него воздух имеет высокую температуру, которая с высотой уменьшается. Соответственно плотность воздуха ближе к поверхности пустыни уменьшается. По этой причине лучи, идущие от реального объекта͵ преломляются в слоях воздуха, имеющих различную температуру, и искривляются. Как результат – формируется ложное представление о местоположении объекта. Возникает мираж, то есть изображение вблизи поверхности может казаться расположенным высоко на небе. По сути, это явление аналогично преломлению света в воде. К примеру, конец шеста͵ опущенного в воду, нам будет казаться расположенным ближе к ее поверхности, чем на самом деле.

2)Закон независимого распространения лучей : световые лучи распространяются независимо друг от друга.

Так, например, при установке непрозрачного экрана на пути пучка световых лучей экранируется (исключается) из состава пучка некоторая его часть. Однако, по свойству независимости необходимо считать, что действие лучей оставшихся незаэкранированными от этого не изменится. То есть предполагается, что лучи не влияют друг на друга, и распространяются так, как будто других лучей, кроме рассматриваемого, не существует.

Закон независимости световых пучков означает, что эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, пучки света можно складывать и расщеплять. Сложенные пучки будут ярче. Хорошо известный пример из истории сложения пучков солнечного света͵ когда при защите города от нападения вражеских судов с моря пучки света от Солнца множеством зеркал направлялись на судно в одну точку, так что в жаркое лето на деревянном судне возникал пожар. Многие из нас в детстве с помощью увеличительного стекла, собирающего свет, пробовали выжигать буквы на деревянной поверхности.

3) Закон отражения света

Отраже́ние - физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. В геологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

Закон отражения света:

падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, «угол падения α равен углу отражения γ».

Рис.1.1.2 Закон преломления

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальным называют отражение света͵ когда падающий параллельный пучок света сохраняет свою параллельность после отражения. В случае если размеры неровностей поверхности больше длины волны падающего света͵ то он рассеивается по всевозможным направлениям, такое отражение света называют рассеянным или диффузионным.

Зеркальное отражение света:

1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения;

2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

Пример. В частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

4)Закон преломления света

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света.

Если вторая среда прозрачна, то часть света при определенных условиях может пройти через границу сред, также меняя при этом, как правило, направление своего распространения. Это явление называется преломлением света.

Закон преломления света: Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления β есть величина постоянная для двух данных сред

Показатель преломления - постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления одной среды относительно первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды. Он равен отношению синуса угла падения α к синусу угла преломления при переходе светового луча из вакуума в данную среду. Относительный показатель преломления n связан с абсолютными показателями n2 и n1 первой среды соотношением:

Поэтому закон преломления может быть записан следующим образом:

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой

Абсолютный показатель преломления среды связан со скоростью распространения света в данной среде и зависит от физического состояния среды, в которой распространяется свет, т.е. от температуры, плотности вещества, наличия в нем упругих натяжений. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

5) Закон обратимости светового луча . Согласно нему луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости, создаваемые ими, складываются.

Полное (внутреннее) отражение

Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При некотором критическом значении интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления β равным 90°:

Если n - показатель преломления стекла относительно воздуха (n>1), то показатель преломления воздуха относительно стекла будет равен 1/n. В данном случае стекло является первой средой, а воздух - второй. Закон преломления запишется так:

При этом угол преломления больше угла падения, Значит, переходя в оптически менее плотную среду, луч отклоняется в сторону от перпендикуляра к границе двух сред. Наибольшему возможному углу преломления β = 90° соответствует угол падения a0.

При угле падения a > a0 преломленный пучок исчезнет, и весь свет отражается от границы раздела, т.е. происходит полное отражение света. Тогда, если направить луч света из оптически более плотной среды в оптически менее плотную среду, то по мере увеличения угла падения преломленный луч будет приближаться к границе раздела двух сред, затем пойдет по границе раздела, а при дальнейшем увеличении угла падения преломленный луч исчезнет, т.е. падающий луч будет полностью отражаться границей раздела двух сред.

Рис.1.1.3 Полное отражение

Предельный угол (альфа нулевое)– это угол падения, которому соответствует угол преломления 90 градусов.

Сумма интенсивностей отраженного и преломленного лучей равна интенсивности падающего луча. При увеличении угла падения интенсивность отраженного луча растет, а интенсивность преломленного луча убывает и для предельного угла падения становится равной нулю.

Рис.1.1.4 Световод

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.

Волокна собираются в жгуты. При этом по каждому из волокон передаётся какой-нибудь элемент изображения.

Жгуты из волокон используются в медицине для исследования внутренних органов. Два световода можно закинуть в любое малодоступое место организма. С помощью одного световода освещают нужный объект, посредством другого передают его изображение в фотокамеру или глаз. Например, опуская световоды в желудок, медикам удаётся получить прекрасное изображение интересующей их области, несмотря на то, что световоды приходится перекручивать и изгибать самым причудливым образом.

Волоконная оптика применяется в для передачи большого объема информации в компьютерных сетях, для освещения недоступных мест, в рекламе, бытовой осветительной технике.

В военном деле, на подводных лодках широко используются перископы. Периско́п (от греч. peri - «вокруг» и scopo - «смотрю») - прибор для наблюдения из укрытия. Простейшая форма перископа - труба, на обоих концах которой закреплены зеркала, наклоненные относительно оси трубы на 45° для изменения хода световых лучей. В более сложных вариантах для отклонения лучей вместо зеркал используются призмы, а получаемое наблюдателем изображение увеличивается с помощью системы линз. Луч света полностью отражается и попадает в глаз наблюдателя.

Отклонение лучей призмой

На рисунке изображено сечение стеклянной призмы плоскостью, перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и 0В. Угол А между этими гранями называют преломляющим углом призмы. Угол φ отклонения луча зависит от преломляющего угла призмы А, показателя преломления п материала призмы и угла падения a1. Он может быть вычислен с помощью закона преломления.

φ = А (п-1)

Следовательно, угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы

Рис.1.1.5 Отклонение лучей призмой

Призмы используются в конструкциях многих оптических приборов, к примеру, телескопов, биноклей, перископов, спектрометров. Используя призму, И.Ньютон впервые разложил свет на составляющие, и увидел, что на выходе из призмы возникает разноцветный спектр, причем цвета расположены в том же порядке, как и в радуге. Оказалось, что естественный «белый» свет состоит из большого количества разноцветных пучков.

Контрольные вопросы и задания

1. Сформулируйте и поясните основные законы геометрической оптики.

2. В чем заключается физический смысл абсолютного показателя преломления среды? Что такое относительный показатель преломления?

3. Сформулируйте условия зеркального и диффузного отражений света.

4. При каком условии наблюдается полное отражение?

5. Чему равен угол падения луча, если луч падающий и луч отраженный образуют угол ?

6. Докажете обратимость направления световых лучей для случая отражения света.

7.Можно ли придумать такую систему зеркал и призм (линз) через которую один наблюдатель видел бы второго наблюдателя, а второй наблюдатель не видел бы первого?

8.Показатель преломления стекла относительно воды равен 1,182: показатель преломления глицерина относительно воды равен 1.105. Найдите показатель преломления стекла относительно глицерина.

9. Найдите предельный угол полного внутреннего отражения для алмаза на границе с водой.

10. Почему блестят воздушные пузыри в воде?(Ответ: за счет отражения света на границе «вода-воздух»)

Основные законы геометрической оптики были известны задолго до установления физической природы света.

Закон прямолинейного распространения света : в оптически однородной среде свет распространяется прямолинейно.

Опытным доказательством этого закона могут служить резкие тени, отбрасываемые непрозрачными телами при освещении светом источника достаточно малых размеров («точечный источник»). Другим доказательством может служить известный опыт по прохождению света далекого источника сквозь небольшое отверстие, в результате чего образуется узкий световой пучок. Этот опыт приводит к представлению о световом луче как о геометрической линии, вдоль которой распространяется свет. Следует отметить, что закон прямолинейного распространения света нарушается и понятие светового луча утрачивает смысл, если свет проходит через малые отверстия, размеры которых сравнимы с длиной волны. Таким образом, геометрическая оптика, опирающаяся на представление о световых лучах, есть предельный случай волновой оптики при λ → 0 (исчезающе малой длине волны). Границы применимости геометрической оптики будут рассмотрены в разделе о дифракции света.

На границе раздела двух прозрачных сред свет может частично отразиться так, что часть световой энергии будет распространяться после отражения по новому направлению, а часть пройдет через границу и продолжит распространяться во второй среде.

Закон отражения света : падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения ). Угол отражения γ равен углу падения α.

Закон преломления света : падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред:

Закон преломления был экспериментально установлен голландским ученым Виллебрордом Снелиусом в 1621 г.

Постоянную величину n называют относительным показателем преломления второй среды относительно первой. Показатель преломления среды относительно вакуума называют абсолютным показателем преломления .

Относительный показатель преломления двух сред равен отношению их абсолютных показателей преломления:

n = n 2 / n 1 .

Законы отражения и преломления находят объяснение в волновой физике. Согласно волновым представлениям, преломление является следствием изменения скорости распространения волн при переходе из одной среды в другую. Физический смысл показателя преломления - это отношение скорости распространения волн в первой среде υ 1 к скорости их распространения во второй среде υ 2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Рис 3.1.1 иллюстрирует законы отражения и преломления света.

Среду с меньшим абсолютным показателем преломления называют оптически менее плотной.

При переходе света из оптически более плотной среды в оптически менее плотную n 2 < n 1 (например, из стекла в воздух) можно наблюдать явление полного отражения , то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол α пр, который называется предельным углом полного внутреннего отражения (см. рис. 3.1.2).

Для угла падения α = α пр sin β = 1; значение sin α пр = n 2 / n 1 < 1.

Если второй средой является воздух (n 2 ≈ 1), то формулу удобно переписать в виде

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов , которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей (рис 3.1.3). Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой .

При практическом рассмотрении вопросов формирования изображений в оптических системах большая часть результатов может быть получена на основе представлений геометрической оптики . Одним из основных понятий геометрической оптики является понятие луча света как линии, вдоль которой распространяется энергия оптического излучения. Среда, в которой распространяется свет, характеризуется абсолютным показателем преломления n ,равным отношению скорости распространения света в вакууме c к фазовойскорости распространения света в среде v: n = c/v .

Основными законами геометрической оптики являются:

1. Закон прямолинейного распространения света -в однородной средесвет распространяется по прямым линиям (отступление от закона - явление дифракции).

2. Закон независимости световых пучков -распространение всякогосветового пучка в среде не зависит от наличия других пучков (отступление от закона - явление интерференции).

3. Закон отражения света от поверхности раздела двух сред - падающий и отраженный лучи света лежат в одной плоскости с нормалью к границе раздела двух сред в точке падения, называемой плоскостью падения , причем угол падения равен углу отражения.

4. Закон преломления света на границе раздела прозрачных сред -

падающий и преломленный лучи лежат в плоскости падения, причем для угла падения j 1 и угла преломления j 2 справедливо соотношение:

где n 1 и n 2 - абсолютные показатели преломления света соответственно первой и второй оптически однородных и изотропных сред.

Законы геометрической оптики могут быть получены из уравнений Максвелла, если длину волны излучения l устремить к нулю (l®0).



Источник света представляется как совокупность светящихся точек, каждая из которых является вершиной расходящегося пучка лучей, называемого гомоцентрическим ,т.е.имеющим общий центр.Если свет от точечногоисточника после прохождения оптической системы вновь собирается в одной точке, то эту точку называют точечным или стигматическим изображением источника. Две точки (источник и его изображение) называются сопряженными точками данной оптической системы. Вследствие обратимости хода световых лучей источник и его изображение можно поменять местами. Изображение называется действительным , если лучи действительно пересекаются в точке. Если пересекаются не сами лучи, а их продолжения, проведенные в направлении, противоположном направлению распространения света, то такое изображение называют мнимым . Аналогично действительным и мнимым может быть и точечный источник света (рис.1).

Рис.1. Схема прохождения лучей через оптическую систему: а )действительный источник А ,мнимое изображение А ’; б )мнимый источник A ,действительное изображение A ’.

Основным элементом большинства оптических систем является сферическая линза ¾ прозрачное однородное тело, ограниченное двумя сферическими поверхностями (или одной сферической и одной плоской), имеющими общую ось. Линза считается тонкой , если ее толщина пренебрежимо мала по сравнению с радиусами кривизны ограничивающих поверхностей. Таким образом, тонкую линзу можно считать лежащей в плоскости.

Линзы могут быть также параболическими, цилиндрическими и т.д.

Линия, проходящая через центры кривизны обеих сферических поверхностей линзы, называется главной оптической осью . Точка пересечения главной оптической оси с плоскостью, в которой расположена тонкая линза, называется оптическим центром линзы. Любой луч, проходящий через оптический центр тонкой линзы, не испытывает преломления и не меняет направления распространения. Любая линия, проходящая через оптический центр линзы, называется оптической осью линзы (побочной оптической осью ).

Рассмотрим оптическую систему, состоящую из одной тонкой линзы. Пусть свет от источников падает на линзу слева. Тогда полупространство слева от плоскости линзы (т.е. откуда идут лучи) называют пространством источников (или предметов),справа- пространством изображений .

Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения линзы все лучи соберутся в одной точке, называемой главным фокусом линзы.Фокус линзы может быть как действительным,так имнимым. Фокусным расстоянием F линзы называется расстояние от центра линзы до ее фокуса. Фокусное расстояние сферической линзы можно найти по формуле:

где R 1 и R 2 - радиусы кривизны сферических поверхностей линзы; n 21 - относительный показатель преломления материала линзы, равный отношению абсолютных показателей преломления материала линзы и окружающей среды. При этом, если поверхность линзы выпуклая, то R > 0, если вогнутая, то R < 0, а если плоская, то R =∞. Линза, у которой фокусное расстояние положительно, называется собирающей , линза с отрицательным фокусным расстоянием называется рассеивающей . Таким образом, при n 21 > 1, если обе поверхности линзы - выпуклые, то F > 0 (линза собирающая), если вогнутые, то F < 0 (линза рассеивающая). Если одна из поверхностей выпуклая, а вторая –вогнутая, то линза в зависимости от соотношения радиусов кривизны может быть как собирающей, так и рассеивающей.

Каждая тонкая линза имеет два главных фокуса, находящихся на одинаковом расстоянии от центра линзы. В заднем фокусе линзы собираются лучи (для собирающей линзы) или их продолжения (для рассеивающей линзы) в случае, когда источник света действительный и находится на бесконечном расстоянии от линзы. Иными словами, задний фокус является сопряженной точкой для бесконечно удаленной точки в пространстве источников. Аналогично, передний фокус сопряжен с бесконечно удаленной точки в пространстве изображений. Таким образом, для собирающей линзы задний фокус находится в пространстве изображений (действительный), а для рассеивающей линзы – в пространстве источников (мнимый).

Плоскость, перпендикулярная главной оптической оси и находящаяся от центра линзы на расстоянии, равном |F |, называется фокальной плоскостью линзы. Таких плоскостей две ¾ передняя и задняя. Если на линзу вдоль какой-либо ее оптической оси направить параллельный пучок света, то все лучи или их продолжения соберутся в точке пересечения этой оси с фокальной плоскостью линзы (соответственно, передней или задней).

Вводится также понятие оптической силы линзы D как величины, обратной фокусному расстоянию F , выраженному в метрах: D = 1/F . Оптическая сила измеряется в диоптриях (1 дптр = м –1). Для собирающих линз D > 0, для рассеивающих D <0.

В рамках геометрической оптики ограничиваются, как правило, рассмотрением центрированных систем и параксиальных лучей. Система называется центрированной , если центры кривизны всех сферических поверхностей расположены на одной прямой, т.е. главные оптические оси всех линз совпадают. Параксиальными называются лучи, образующие малые углы с главной оптической осью и нормалями к преломляющим поверхностям системы. Для идеальных центрированных систем можно доказать, что любой источник в виде плоскости, прямой или точки будет давать изображение также в виде соответственно плоскости, прямой или точки , за исключением источников в фокальной плоскости.

Для тонкой линзы справедлива следующая формула, называемая формулой тонкой линзы :

где а - расстояние от источника до линзы, b - расстояние от линзы до изображения. Величины a и b могут быть как положительными, так и отрицательными. Если источник и его изображение являются действительными, т.е. источник расположен в пространстве источников, а изображение - соответственно в пространстве изображений, то a >0 и b >0. Если же источник или его изображение - мнимые, то и соответствующие значения a или b отрицательны.