Классическое определение вероятности – теория и решение задач. Классическая вероятность

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равно­возможных исходов опыта в котором может появиться это событие. Вероятность события А обозначают через Р(А) (здесь Р - первая буква французского слова probabilite - вероятность). В соответствии с определением
(1.2.1)
где - число элементарных исходов, благоприятствующих событию А; - число всех равновозможных элементарных исходов опыта, образующих полную группу событий.
Это определение вероятности называют классическим. Оно возникло на начальном этапе развития теории вероятностей.

Вероятность события имеет следующие свойства:
1. Вероятность достоверного события равна единице. Обозначим достоверное событие буквой . Для достоверного события , поэтому
(1.2.2)
2. Вероятность невозможного события равна нулю. Обозначим невозможное событие буквой . Для невозможного события , поэтому
(1.2.3)
3. Вероятность случайного события выражается положительным числом, меньшим единицы. Поскольку для случайного события выполняются неравенства , или , то
(1.2.4)
4. Вероятность любого события удовлетворяет неравенствам
(1.2.5)
Это следует из соотношений (1.2.2) -(1.2.4).

Пример 1. В урне 10 одинаковых по размерам и весу шаров, из ко­торых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?

Решение . Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой (1.2.1) получаем

Пример 2. Все натуральные числа от 1 до 30 записаны на одинако­вых карточках и помещены в урну. После тщательного перемешивания карточек из урны извлекается одна карточка. Какова вероятность того,что число на взятой карточке окажется кратным 5?

Решение. Обозначим через А событие "число на взятой карточке кратно 5". В данном испытании имеется 30 равновозможных элементар­ных исходов, из которых событию А благоприятствуют 6 исходов (числа 5, 10, 15, 20, 25, 30). Следовательно,

Пример 3. Подбрасываются два игральных кубика, подсчитывается сумма очков на верхних гранях. Найти вероятность события В, состоя­щего в том, что на верхних гранях кубиков в сумме будет 9 очков.

Решение. В этом испытании всего 6 2 = 36 равновозможных элемен­тарных исходов. Событию В благоприятствуют 4 исхода: (3;6), (4;5), (5;4), (6;3), поэтому

Пример 4 . Наудачу выбрано натуральное число, не превосходящее 10. Какова вероятность того, что это число является простым?

Решение. Обозначим буквой С событие "выбранное число является простым". В данном случае n = 10, m = 4 (простые числа 2, 3, 5, 7). Следовательно, искомая вероятность

Пример 5. Подбрасываются две симметричные монеты. Чему равна вероятность того, что на верхних сторонах обеих монет оказались цифры?

Решение. Обозначим буквой D событие "на верхней стороне каж­дой монеты оказалась цифра". В этом испытании 4 равновозможных элементарных исходов: (Г, Г), (Г, Ц), (Ц, Г), (Ц, Ц). (Запись (Г, Ц) озна­чает, что на первой монете герб, на второй - цифра). Событию D благо­приятствует один элементарный исход (Ц, Ц). Поскольку m = 1, n = 4 , то

Пример 6. Какова вероятность того, что в наудачу выбранном дву­значном числе цифры одинаковы?

Решение. Двузначными числами являются числа от 10 до 99; всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, 33, 44, 55, 66, 77, 88, 99). Так как в данном случае m = 9, n = 90, то
,
где А -событие "число с одинаковыми цифрами".

Пример 7. Из букв слова дифференциал наугад выбирается одна буква. Какова вероятность того, что эта буква будет: а) гласной, б) согласной, в) буквой ч ?

Решение . В слове дuфференцuал 12 букв, из них 5 гласных и 7 со­гласных. Буквы ч в этом слове нет. Обозначим события: А - "гласная буква", В - "согласная буква", С - "буква ч ". Число благоприятствующих элементарных исходов: -для события А, - для события В, - для события С. Поскольку n = 12 , то
, и .

Пример 8. Подбрасывается два игральных кубика, отмечается чис­ло очков на верхней грани каждого кубика. Найти вероятность того, на обоих кубиках выпало одинаковое число очков.

Решение. Обозначим это событие буквой А. Событюо А благопри­ятствуют 6 элементарных исходов: (1;]), (2;2), (3;3), (4;4), (5;5), (6;6). Всего равновозможных элементарных исходов, образующих полную группу событий, в данном случае n=6 2 =36. Значит, искомая вероятность

Пример 9. В книге 300 страниц. Чему равна вероятность того, что наугад открытая страница будет иметь порядковый номер, кратный 5?

Решение. Из условия задачи следует, что всех равновозможных элементарных исходов, образующих полную группу событий, будет n = 300. Из них m = 60 благоприятствуют наступлению указанного со­бытия. Действительно, номер, кратный 5, имеет вид 5k, где k -натураль­ное число, причем , откуда . Следовательно,
, где А - событие "страница" имеет порядковый номер, кратный 5".

Пример 10 . Подбрасываются два игральных кубика, подсчитыва­ется сумма очков на верхних гранях. Что вероятнее -получить в сумме 7 или 8?

Решение . Обозначим события: А - "выпало 7 очков", В - "выпало 8 очков". Событию А благоприятствуют 6 элементарных исходов: (1; 6), (2; 5),(3; 4), (4; 3), (5; 2), (6; 1), а событию В - 5 исходов: (2; 6), (3; 5), (4; 4), (5; 3), (6; 2). Всех равновозможных элементарных исходов n = 6 2 = 36. Значит, и .

Итак, Р(А)>Р(В), то есть получить в сумме 7 очков - более вероятное собы­тие, чем получить в сумме 8 очков.

Задачи

1. Наудачу выбрано натуральное число, не превосходящее 30. Како­ва вероятность того, что это число кратно 3?
2. В урне a красных и b голубых шаров, одинаковых по размерам и весу. Чему равна вероятность того, что наудачу извлеченный шар из этой урны окажется голубым?
3. Наудачу· выбрано число, не превосходящее 30. Какова вероятность того, что это число является делителем зо?
4. В урне а голубых и b красных шаров, одинаковых по размерам и весу. Из этой урны извлекают один шар и откладывают в сторону. Этот шар оказался красным. После этого из урны вынимают еще один шар. Найти вероятность того, что второй шар также красный.
5. Наудачу выбрано наryральное число, не превосходящее 50. Какова вероятность того, что это число является простым?
6. Подбрасывается три игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее - получить в сумме 9 или 10 оч­ков?
7. Подбрасывается три игральных кубика, подсчитывается сумма выпавших очков. Что вероятнее - получить в сумме 11 (событие А) или 12 очков (событие В)?

Ответы

1. 1/3. 2 . b /(a +b ). 3 . 0,2. 4 . (b -1)/(a +b -1). 5 .0,3.6 . p 1 = 25/216 - вероятность получить в сумме 9 очков; p 2 = 27/216 - вероятность получить в сумме 10 очков; p 2 > p 1 7 . Р(А) = 27/216, Р(В) = 25/216, Р(А) > Р(В).

Вопросы

1. Что называют вероятностью события?
2. Чему равна вероятность достоверного события?
3. Чему равна вероятность невозможного события?
4. В каких пределах заключена вероятность случайного события?
5. В каких пределах заключена вероятность любого события?
6. Какое определение вероятности называют классическим?

Под вероятностью события понимается некоторая числовая характеристика возможности наступления этого события. Существует несколько подходов к определению вероятности.

Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

где m – число элементарных исходов, благоприятствующих А , n – число всех возможных элементарных исходов испытания.

Пример 3.1. В опыте с бросанием игральной кости число всех исходов n равно 6 и все они равновозможны. Пусть событие А означает появление четного числа. Тогда для этого события благоприятными исходами будут появление чисел 2, 4, 6. Их количество равно 3. Поэтому вероятность события А равна

Пример 3.2. Какова вероятность того, что в наудачу выбранном двузначном числе цифры одинаковы?

Двузначными числами являются числа от 10 до 99, всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, …, 99). Так как в данном случае m =9, n =90, то

где А – событие, «число с одинаковыми цифрами».

Пример 3.3. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. числу сочетаний из 10 элементов по 6 элементов. Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять из семи стандартных деталей способами; при этом остальные 6-4=2 детали должны быть нестандартными, взять же две нестандартные детали из 10-7=3 нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно .

Тогда искомая вероятность равна

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n, следовательно

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае значит

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае < m < n, значит 0 < m/n < 1, т. е. 0 < Р(А) < 1. Итак, вероятность любого события удовлетворяет двойному неравенству


Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопределяемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р(А) . Это число называется вероятностью события А .

2. Вероятность достоверного события равна единице.

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

Вопросы для самопроверки

1. Как называется числовая характеристика возможности наступления события?

2. Что называется вероятностью события?

3. Чему равна вероятность достоверного события?

4. Чему равна вероятность невозможного события?

5. В каких пределах заключена вероятность случайного события?

6. В каких пределах заключена вероятность любого события?

7. Какое определение вероятности называется классическим?

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ГИМНАЗИЯ № 6

на тему «Классическое определение вероятности».

Выполнила ученица 8 «Б» класса

Климантова Александра.

Учитель по математике: Виденькина В. А.

Воронеж, 2008

Во многих играх используют игральный кубик. У кубика 6 граней, на каждой грани отмечено различное количество точек—от 1 до 6. Играющий бросает кубик и смотрит, сколько точек имеется на выпавшей грани (на той грани, которая располагается сверху). Довольно часто точки на грани кубика заменяют соответствующим числом и тогда говорят о выпадении 1, 2 или 6. Бросание кубика можно считать опытом, экспериментом, испытанием, а полученный результат—исходом испытания или элементарным событием. Людям интересно угадывать наступление того или иного события, предсказывать его исход. Какие предсказания они могут сделать, когда бросают игральный кубик? Например, такие:

  1. событие А—выпадает цифра 1, 2, 3, 4, 5 или 6;
  2. событие В—выпадает цифра 7, 8 или 9;
  3. событие С—выпадает цифра 1.

Событие А, предсказанное в первом случае, обязательно наступит. Вообще, событие, которое в данном опыте обязательно наступит, называют достоверным событием .

Событие В, предсказанное во втором случае, никогда не наступит, это просто невозможно. Вообще, событие, которое в данном опыте наступить не может, называют невозможным событием .

А событие С, предсказанное в третьем случае, наступит или не наступит? На этот вопрос мы с полной уверенностью ответить не в состоянии, поскольку 1 может выпасть, а может и не выпасть. Событие, которое в данном опыте может как наступить, так и не наступить, называют случайным событием .

Думая про наступление достоверного события, мы слово «вероятно» использовать, скорее всего, не будем. Например, если сегодня среда, то завтра четверг, это—достоверное событие. Мы в среду не станем говорить: «Вероятно, завтра четверг», мы скажем коротко и ясно: «Завтра четверг». Правда, если мы склонны к красивым фразам, то можем сказать так: «Со стопроцентной вероятностью утверждаю, что завтра четверг». Напротив, если сегодня среда, то наступление назавтра пятницы—невозможное событие. Оценивая это событие в среду, мы можем сказать так: «Уверен, что завтра не пятница». Или так: «Невероятно, что завтра пятница». Ну а если мы склонны к красивым фразам, то можем сказать так: «Вероятность того, что завтра пятница, равна нулю». Итак, достоверное событие—это событие, наступающее при данных условиях со стопроцентной вероятностью (т. е. наступающее в 10 случаях из 10, в 100 случаях из 100 и т. д.). Невозможное событие—это событие, не наступающее при данных условиях никогда, событие с нулевой вероятностью .

Но, к сожалению (а может быть, и к счастью), не все в жизни так четко и ясно: это будет всегда (достоверное событие), этого не будет никогда (невозможное событие). Чаще всего мы сталкиваемся именно со случайными событиями, одни из которых более вероятны, другие менее вероятны. Обычно люди используют слова «более вероятно» или «менее вероятно», как говорится, по наитию, опираясь на то, что называют здравым смыслом. Но очень часто такие оценки оказываются недостаточными, поскольку бывает важно знать, на сколько процентов вероятно случайное событие или во сколько раз одно случайное событие вероятнее другого. Иными словами, нужны точные количественные характеристики, нужно уметь охарактеризовать вероятность числом.

Первые шаги в этом направлении мы уже сделали. Мы говорили, что вероятность наступления достоверного события характеризуется как стопроцентная , а вероятность наступления невозможного события—как нулевая . Учитывая, что 100 % равно 1, люди договорились о следующем:

  1. вероятность достоверного события считается равной 1;
  2. вероятность невозможного события считается равной 0.

А как подсчитать вероятность случайного события? Ведь оно произошло случайно , значит, не подчиняется закономерностям, алгоритмам, формулам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности. Этим занимается раздел математики, который так и называется-теория вероятностей .

Математика имеет дело с моделью некоторого явления окружающей нас действительности. Из всех моделей, используемых в теории вероятностей, мы ограничимся самой простой.

Классическая вероятностная схема

Для нахождения вероятности события А при проведении некоторого опыта следует:

1) найти число N всех возможных исходов данного опыта;

2) принять предположение о равновероятности (равновозможности) всех этих исходов;

3) найти количество N(А) тех исходов опыта, в которых наступает событие А;

4) найти частное ; оно и будет равно вероятности события А.

Принято вероятность события А обозначать: Р(А). Объяснение такого обозначения очень простое: слово «вероятность» по-французски-probabilite , по-английски-probability .В обозначении используется первая буква слова.

Используя это обозначение, вероятность события А по классической схеме можно найти с помощью формулы

Р(А)=.

Часто все пункты приведенной классической вероятностной схемы выражают одной довольно длинной фразой.

Классическое определение вероятности

Вероятностью события А при проведении некоторого испытания называют отношение числа исходов, в результате которых наступает событие А, к общему числу всех равновозможных между собой исходов этого испытания.

Пример 1 . Найти вероятность того, что при одном бросании игрального кубика выпадет: а) 4; б) 5; в) четное число очков; г) число очков, большее 4; д) число очков, не кратное трем.

Решение . Всего имеется N=6 возможных исходов: выпадение грани куба с числом очков, равным 1, 2, 3, 4, 5 или 6. Мы считаем, что ни один из них не имеет никаких преимуществ перед другими, т. е. принимаем предположение о равновероятности этих исходов.

а) Ровно в одном из исходов произойдет интересующее нас событие А-выпадение числа 4. Значит, N(A)=1 и

P (A )= =.

б) Решение и ответ такие же, как и в предыдущем пункте.

в) Интересующее нас событие В произойдёт ровно в трёх случаях, когда выпадает число очков 2, 4 или 6. Значит,

N (B )=3 и P (B )==.

г) Интересующее нас событие С произойдет ровно в двух случаях, когда выпадет число очков 5 или 6. Значит,

N (C ) =2 и Р(С)=.

д) Из шести возможных выпавших чисел четыре (1, 2, 4 и 5) не кратны трем, а остальные два (3 и 6) делятся на три. Значит, интересующее нас событие наступает ровно в четырех из шести возможных и равновероятных между собой и равновероятных между собой исходах опыта. Поэтому в ответе получается .

Ответ: а) ; б) ; в) ; г) ; д).

Реальный игральный кубик вполне может отличаться от идеального (модельного) кубика, поэтому для описания его поведения требуется более точная и детальная модель, учитывающая преимущества одной грани перед другой, возможное наличие магнитов и т. п. Но «дьявол кроется в деталях», а большая точность ведет, как правило, к большей сложности, и получение ответа становится проблемой. Мы же ограничиваемся рассмотрением простейшей вероятностной модели, где все возможные исходы равновероятны.

Замечание 1 . Рассмотрим еще пример. Был задан вопрос: «Какова вероятность выпадения тройки при одном бросании кубика?» Ученик ответил так: «Вероятность равна 0, 5». И объяснил свой ответ: «Тройка или выпадет, или нет. Значит, всего есть два исхода и ровно в одном наступает интересующее нас событие. По классической вероятностной схеме получаем ответ 0, 5». Есть в этом рассуждении ошибка? На первый взгляд-нет. Однако она все же есть, причем в принципиальном моменте. Да, действительно, тройка или выпадет, или нет, т. е. при таком определении исхода бросания N=2. Правда и то, что N(A)=1 и уж, разумеется, верно, что =0, 5, т. е. три пункта вероятностной схемы учтены, а вот выполнение пункта 2) вызывает сомнения. Конечно, с чисто юридической точки зрения, мы имеем право считать, что выпадение тройки равновероятно ее невыпадению. Но вот можем ли мы так считать, не нарушая свои же естественные предположения об «одинаковости» граней? Конечно, нет! Здесь мы имеем дело с правильным рассуждением внутри некоторой модели. Только вот сама эта модель «неправильная», не соответствующая реальному явлению.

Замечание 2 . Рассуждая о вероятности, не упускайте из виду следующее важное обстоятельство. Если мы говорим, что при бросании кубика вероятность выпадения одного очка равна , это совсем не значит, что, кинув кубик 6 раз, вы получите одно очко ровно один раз, бросив кубик 12 раз, вы получите одно очко ровно два раза, бросив кубик 18 раз, вы получите одно очко ровно три раза и т. д. Слово вероятно носит предположительный характер. Мы предполагаем, что скорее всего может произойти. Вероятно, если мы бросим кубик 600 раз, одно очко выпадет 100 раз или около 100.

Теория вероятностей возникла в XVII веке при анализе различных азартных игр. Неудивительно поэтому, что первые примеры носят игровой характер. От примеров с игральными кубиками перейдем к случайному вытаскиванию игральных карт из колоды.

Пример 2 . Из колоды в 36 карт случайным образом одновременно вытаскивают 3 карты. Какова вероятность того, что среди них нет пиковой дамы?

Решение . У нас имеется множество из 36 элементов. Мы производим выбор трех элементов, порядок которых не важен. Значит, возможно получение N=C исходов. Будем действовать по классической вероятностной схеме, т. е. предположим, что все эти исходы равновероятны.

Осталось вычислить нужную вероятность по классическому определению:

А чему равна вероятность того, что среди выбранных трех карт есть пиковая дама? Число всех таких исходов нетрудно посчитать, надо просто из всех исходов N вычесть все те исходы, в которых дамы пик нет, т. е. вычесть найденное в примере 3 число N(A). Затем эту разность N—N(A) в соответствии с классической вероятностной схемой следует поделить на N. Вот что получим:

Мы видим, что между вероятностями двух событий имеется определенная связь. Если событие А заключается в отсутствии дамы пик, а событие В состоит в ее наличии среди выбранных трех карт, то

Р(В)= 1—Р(А),

Р(А)+Р(В)=1.

К сожалению, в равенстве Р(А)+Р(В)=1 нет никакой информации о связи событий А и В между собой; эту связь нам приходится держать в уме. Удобнее было бы заранее дать событию В название и обозначение, явно указывающие на его связь с А.

Определение 1 . Событие В называют противоположным событию А и обозначают В=Ā, если событие В происходит тогда и только тогда, когда не происходит событие А.

Т еорема 1 . Для нахождения вероятности противоположного события следует из единицы вычесть вероятность самого события: Р(Ā)= 1—Р(А). В самом деле,

На практике вычисляют то, что проще найти: или Р(А), или Р(Ā). После этого пользуются формулой из теоремы и находят, соответственно, или Р(Ā)= 1—Р(А), или Р(А)= 1—Р(Ā).

Часто используется способ решения той или иной задачи «перебором случаев», когда условия задачи разбиваются на взаимоисключающие друг друга случаи, каждый из которых рассматривается отдельно. Например, «направо пойдешь—коня потеряешь, прямо пойдешь—задачу по теории вероятности решать будешь, налево пойдешь—…». Или при построении графика функции у=│х+1│—│2х—5│расматривают случаи х

Пример 3 . Из 50 точек 17 закрашены в синий цвет, а 13—в оранжевый цвет. Найти вероятность того, что случайным образом выбранная точка окажется закрашенной.

Решение . Всего закрашено 30 точек из 50. Значит, вероятность равна = 0,6.

Ответ: 0,6.

Рассмотрим, однако, этот простой пример более внимательно. Пусть событие А состоит в том, что выбранная точка—синяя, а событие В состоит в том, что выбранная точка—оранжевая. По условию, события А и В не могут произойти одновременно.

Обозначим буквой С интересующее нас событие. Событие С наступает тогда и только тогда, когда происходит хотя бы одно из событий А или В . Ясно, что N(C)= N(A)+N(B).

Поделим обе части этого равенства на N—число всех возможных исходов данного опыта; получим

Мы на простом примере разобрали важную и часто встречающуюся ситуацию. Для нее есть специальное название.

Определение 2 . События А и В называют несовместными , если они не могут происходить одновременно.

Теорема 2 . Вероятность наступления хотя бы одного из двух несовместных событий равна сумме их вероятностей.

При переводе этой теоремы на математический язык, возникает необходимость как-то назвать и обозначить событие, состоящее в наступлении хотя бы одного из двух данных событий А и В. Такое событие называют суммой событий А и В и обозначают А+В.

Если А и В несовместны, то Р(А+В)= Р(А)+Р(В).

В самом деле,

Несовместность событий А и В удобно иллюстрировать рисунком. Если все исходы опыта—некоторое множество точек на рисунке, то события А и В—это некоторые подмножества данного множества . Несовместность А и В означает, что эти два подмножества не пересекаются между собой. Типичный пример несовместных событий—любое событие А и противоположное событие Ā.

Разумеется, указанная теорема верна и для трех, и для четырех, и для любого конечного числа попарно несовместных событий. Вероятность суммы любого числа попарно несовместных событий равна сумме вероятностей этих событий. Это важное утверждение как раз и соответствует способу решения задач «перебором случаев».

Между событиями, происходящими в результате некоторого опыта, и между вероятностями этих событий могут быть какие-то соотношения, зависимости, связи и т. п. Например, события можно «складывать», а вероятность суммы несовместных событий равна сумме их вероятностей.

В заключение обсудим следующий принципиальный вопрос: можно ли доказать , что вероятность выпадения «решки» при одном бросании монеты равна

Ответ отрицательный. Вообще говоря, сам вопрос не корректен, неясен точный смысл слова «доказать». Ведь доказываем мы что-либо всегда в рамках некоторой модели , в которой уже известны правила, законы, аксиомы, формулы, теоремы и т. п. Если речь идет о воображаемой, «идеальной» монете, то потому-то она и считается идеальной, что, по определению , вероятность выпадения «решки» равна вероятности выпадения «орла». А, в принципе, можно рассмотреть модель, в которой вероятность выпадения «решки» в два раза больше вероятности выпадения «орла» или в три раза меньше и т. п. Тогда возникает вопрос: по какой причине из различных возможных моделей бросания монеты мы выбираем ту, в которой оба исхода бросания равновероятны между собой?

Совсем лобовой ответ таков: «А нам так проще, понятнее и естественнее!» Но есть и более содержательные аргументы. Они приходят из практики. В подавляющем большинстве учебников по теории вероятностей приводят примеры французского естествоиспытателя Ж. Бюффона (XVIII в.) и английского математика-статистика К. Пирсона (конец XIX в.), которые бросали монету, соответственно, 4040 и 24000 раз и подсчитывали число выпадений «орла» или «решки». У них «решка» выпала, соответственно, 1992 и 11998 раз. Если подсчитать частоту выпадения «решки», то получится = =0,493069… у Бюффона и = 0,4995 у Пирсона. Возникает естественное предположение , что при неограниченном увеличении числа бросаний монеты частота выпадения «решки», как и частота выпадения «орла», все больше и больше будет приближаться к 0,5. Именно это предположение, основанное на практических данных, является основой выбора в пользу модели с равновероятными исходами.

Сейчас можно подвести итоги. Основное понятие—вероятность случайного события , подсчет которой производится в рамках простейшей модели—классической вероятностной схемы . Важное значение и в теории, и в практике имеет понятие противоположного события и формула Р(Ā)= 1—Р(А) для нахождения вероятности такого события.

Наконец, мы познакомились с несовместными событиями и с формулами.

Р(А+В)= Р(А)+Р(В),

Р(А+В+С)= Р(А)+Р(В)+Р(С),

позволяющими находить вероятности суммы таких событий.

Список литературы

1.События. Вероятности. Статистическая обработка данных: Доп. параграфы к курсу алгебры 7—9 кл. общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов.—4-е изд.—М.: Мнемозина, 2006.—112 с.: ил.

2.Ю. Н. Макарычев, Н. Г. Миндюк «Алгебра. Элементы статистики и теории вероятностей».—Москва, «Просвещение», 2006.

Полезная страница? Сохрани или расскажи друзьям

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным , если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу , если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами или элементарными событиями . Исход называется благоприятствующим появлению события $А$, если появление этого исхода влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу $$P(A)=\frac{m}{n}. \quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 \le P(A) \le 1$ .

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров...)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей...)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов...)

Примеры решений задач на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m =n =10. Следовательно, Р (А )=1. Событие А достоверное .

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m =0, n =15. Следовательно, искомая вероятность р =0. Событие, заключающееся в вынимании синего шара, невозможное .

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение . Количество элементарных исходов (количество карт) n =36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А , m =9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.