Определение средней абсолютной и относительной погрешности. Абсолютная погрешность измерений

У некоторых людей возникает вопрос куда смотреть при разговоре с собеседником. В процессе общения они просто не знают куда деть свой взгляд и на что посмотреть. Собеседник старательно что - то рассказывает и сверлит вас своими глазами и наверняка ждет от вас интересных историй, но вы не можете сосредоточиться и уже обшарили глазами все вокруг, но мысли продолжают путаться. Других мучает вопрос куда смотреть в метро, ведь они нос к носу находятся с незнакомыми людьми и их взгляды то и дело пересекаются.


Чтобы побороть этот недуг необходимо отработать свой взгляд.

Для начала вам потребуется близкий человек, если такового рядом не обнаружилось можете попытаться обойтись с помощью зеркала. Сядьте друг напротив друга и пытайтесь пересмотреть друг друга или самого себя, чем дольше вы сможете смотреть друг другу в глаза, не проявляя никаких эмоций, тем лучше. Периодически повышайте силу взгляда - как бы приказывая глазами вашему оппоненту совершить какое либо действие, либо подавляйте его своим напором и пытайтесь его подчинить. Соберите всю силу и энергию которая в вас есть и направляйте на вашего оппонента.

Это упражнение нужно периодически повторять и постепенно увеличивать его время. Нужно дойти до отметки хотя бы в 2 минуты чтобы вы смогли серьезно без улыбочек и усмешек, пристально глядеть в зеркало души сидящего напротив вас соперника.

Когда вы закончите с этим упражнением и легко будете выдерживать и противостоять чужому взгляду переходите к следующему этапу - поглащайте энергию и силу воли вашего собеседника переводя её в информацию и смотря на него. Изучайте его, впитывайте его взгляд, пытайтесь понять его настрой и мысли, чем он занимается, почему он с вами говорит на эту тему и пр., причем делайте это искреннее и доброжелательно. После этого можете начать изучать прохожих на улице, в метро, на работе, в кафе и в других - местах станьте своеобразным исследователем, но без излишнего фанатизма - это все только для того чтобы побороть вашу фобию.

Спустя какое то время и отработав эти навыки до совершенства у вас не возникнет более вопроса куда смотреть при разговоре - вы будете смотреть 70% времени общения в глаза вашему собеседнику и не будете испытывать никакого дискомфорта и зажатости, а станете думать только о предмете разговора, и наконец то, выбросите из головы лишние мысли, которые вам мешали до этого.

В обществе принято считать дурным тоном, когда человек не смотрит в глаза своему собеседнику при общении. Таких людей подозревают в том, что они что-то скрывают или недоговаривают, настроены недоброжелательно. Однако психологи утверждают, что такое поведение имеет самые разные причины.

Гнев и волнение

Не так давно путем проведения серии экспериментов британские ученые выяснили, что лишь за одну секунду, когда люди встречаются взглядами, они обмениваются объемом информации, сравнимым с тем, что получается за три часа живого общения. В психологии говорится, что из-за этого некоторым людям сложно смотреть в глаза собеседнику в течение длительного времени.

Тренируйтесь не отводить взгляд при разговоре. Это поможет вам быстрее завести новых друзей, а также построить благоприятные деловые отношения

Другая причина заключается уже в человеке, в глаза которому смотрят. Это может сильно досаждать, вызывать раздражение, заставлять нервничать. Кажется, что собеседник пытается «прочитать» вас, вслушивается в каждое слово и создает свое личное мнение. Едва ли такие моменты вызывают положительные эмоции, и человек стремится побыстрее отвести взгляд.

Очень сложно мужчинам или женщинам, которые словно нарочито буравят своим тяжелым взглядом, чтобы показать, к примеру, свое превосходство перед собеседником. Уже с первых секунд такого общения становится неуютно, возникает сильное желание опустить глаза в пол.

Неуверенность и скука

Очень часто отведение глаз при разговоре в сторону может быть признаком стеснительности. С помощью взгляда можно выразить к объекту свое отношение, показать интерес, продемонстрировать чувство влюбленности. Также во взгляде может читаться и то, что человеку трудно находить слова для разговора, его нервозность и прочее. Поэтому глаза отводят в сторону, чтобы не рассказать о себе слишком много раньше времени и показать себя не в лучшем виде.

Неуверенность и несобранность также часто заставляют людей не смотреть в глаза собеседнику. Иногда бывает сложно найти общий язык с тем или иным человеком, из-за чего собеседник опускает глаза, начинает что-то нервно перебирать в руках, теребить уши или волосы, выдавая тем самым свое волнение. Такие люди просто не уверены, что ведут себя и говорят правильно.

Допустим, что мы проводим серию из n измерений одной и той же величины х . Из-за наличия случайных ошибок отдельные значения х 1 , х 2 , х 3, х n неодинаковы, и в качестве наилучшего значения искомой величины выбирается среднее арифметическое , равное арифметической сумме всех измеренных значений, деленной на число измерений:

. (П.1)

где å - знак суммы, i - номер измерения, n - число измерений.

Итак, - значение, наиболее близкое к истинному. Истинного же значения никто не знает. Можно лишь рассчитать интервал Dх вблизи , в котором истинное значение может находиться с некоторой степенью вероятности р . Этот интервал называется доверительным интервалом . Вероятность, с которой истинное значение в него попадает, называется доверительной вероятностью, или коэффициентом надежности (так как знание доверительной вероятности позволяет оценить степь надежности полученного результата). При расчете доверительного интервала необходимая степень надежности задается заранее. Она определяется практическими потребностями (например, к деталям мотора самолета предъявляются более жесткие требования, чем к лодочному мотору). Очевидно, для получения большей надежности требуется увеличение числа измерений и их тщательности.

Благодаря тому, что случайные погрешности отдельных измерений подчиняются вероятностным закономерностям, методы математической статистики и теории вероятностей позволяют рассчитать среднюю квадратичную погрешность среднего арифметического значения сл. Запишем без доказательства формулу для расчета сл при малом числе измерений (n < 30).

Формулу называют формулой Стьюдента:

, (П.2)

где t n, p - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности р .

Коэффициент Стьюдента находят по таблице, приведенной ниже, предварительно определив, исходя из практических потребностей (как было сказано выше), величины n и р .

При обработке результатов лабораторных работ достаточно провести 3-5 измерений, а доверительную вероятность принять равной0,68.

Но бывает так, что при многократных измерениях получаются одинаковые значения величины х . Например, 5 раз измерили диаметр проволоки и 5 раз получили одно и то же значение. Так вот, это вовсе не значит, что погрешности нет. Это значит только то, что случайная погрешность каждого измерения меньше точности прибора d, которую также называют приборной ,или инструментальной , погрешностью. Инструментальная погрешность прибора d определятся по классу точности прибора, указанному в его паспорте, либо указывается на самом приборе. А иногда принимается равной цене деления прибора (цена деления прибора - значение его самого маленького деления) либо половине цены деления (если на глаз приблизительно можно определить половину цены деления прибора).


Так как каждое из значений х i получено с погрешностью d, то полный доверительный интервал , или абсолютную погрешность измерения, рассчитывают по формуле:

. (П.3)

Заметим, что если в формуле (П.3) одна из величин хотя бы в 3 раза больше другой, то меньшей пренебрегают.

Абсолютная погрешность сама по себе не отражает качества проведенных измерений. Например, только по информации абсолютная погрешность равна 0,002 м² нельзя судить о том, сколь хорошо было проведено данное измерение. Представление о качестве проведенных измерений дает относительная погрешность e, равная отношению абсолютной погрешности к среднему значению измеряемой величины. Относительная погрешность показывает, какую долю составляет абсолютная погрешность от измеренного значения. Как правило, относительную погрешность выражают в процентах:

Рассмотрим пример. Пусть диаметр шара измеряется с помощью микрометра, инструментальная погрешность которого d = 0,01 мм. В результате трех измерений получились следующие значения диаметра:

d 1 = 2,42 мм, d 2 = 2,44 мм, d 3 = 2,48 мм.

По формуле (П.1) определяют среднее арифметическое значение диаметра шара

Затем по таблице коэффициентов Стьюдента находят, что для доверительной вероятности 0,68 при трех измерениях t n, p = 1,3. После чего по формуле (П.2) рассчитывают случайную погрешность измерения Dd сл

Так как полученная случайная погрешность всего в два раза превышает приборную погрешность, то при нахождении абсолютной погрешности измерения Dd по (П.3) следует учитывать и случайную погрешность, и погрешность прибора, т. е.

Мм » ±0,03 мм.

Погрешность округлили до сотых миллиметра, так как точность результата не может превышать точность измерительного прибора, которая в данном случае составляет 0,01 мм.

Итак, диаметр проволоки равен

мм.

Данная запись говорит о том, что истинное значение диаметра шара с вероятностью 68 % лежит в интервале (2,42 ¸ 2,48) мм.

Относительная погрешность e полученного значения согласно (П.4) составляет

%.

Абсолютная и относительная погрешность

Элементы теории погрешностей

Точные и приближенные числа

Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

Различают следующие основные источники погрешностей:

1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


Абсолютная и относительная погрешность

Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

(1.1.2-2)

Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

, то , а если и ,

то тогда .

Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

· при сложении и вычитании чисел абсолютные погрешности чисел складываются

· при умножении и делении чисел друг на друга складываются их относительные погрешности


· при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

(1.1.2-3)

где и – известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

Если величина известна, то , а если известна величина , то

Вследствие погрешностей, присущих средству измерений, выбранному методу и методике измерений, отличия внешних условий, в которых выполняется измерение, от установленных, и других причин результат практически каждого измерения отягощен погрешностью. Эта погрешность вычисляется или оценивается и приписывается полученному результату.

Погрешность результата измерений (кратко — погрешность измерений) — отклонение результата измерения от истинного значения измеряемой величины.

Истинное значение величины вследствие наличия погрешностей остается неизвестным. Его применяют при решении теоретических задач метрологии. На практике пользуются действительным значением величины, которое заменяет истинное значение.

Погрешность измерения (Δх) находят по формуле:

x = x изм. - x действ. (1.3)

где х изм. — значение величины, полученное на основании измерений; х действ. — значение величины, принятое за действительное.

За действительное значение при однократных измерениях нередко принимают значение, полученное с помощью образцового средства измерений, при многократных измерениях — среднее арифметическое из значений отдельных измерений, входящих в данный ряд.

Погрешности измерения могут быть классифицированы по следующим признакам:

По характеру проявления — систематические и случайные;

По способу выражения — абсолютные и относительные;

По условиям изменения измеряемой величины — статические и динамические;

По способу обработки ряда измерений — средние арифметические и средние квадратические;

По полноте охвата измерительной задачи — частные и полные;

По отношению к единице физической величины — погрешности воспроизведения единицы, хранения единицы и передачи размера единицы.

Систематическая погрешность измерения (кратко — систематическая погрешность) — составляющая погрешности результата измерения, остающаяся постоянной для данного ряда измерений или же закономерно изменяющаяся при повторных измерениях одной и той же физической величины.

По характеру проявления систематические погрешности подразделяются на постоянные, прогрессивные и периодические. Постоянные систематические погрешности (кратко — постоянные погрешности) — погрешности, длительное время сохраняющие свое значение (например, в течение всей серии измерений). Это наиболее часто встречающийся вид погрешности.

Прогрессивные систематические погрешности (кратко — прогрессивные погрешности) — непрерывно возрастающие или убывающие погрешности (например, погрешности от износа измерительных наконечников, контактирующих в процессе шлифования с деталью при контроле ее прибором активного контроля).


Периодическая систематическая погрешность (кратко — периодическая погрешность) — погрешность, значение которой является функцией времени или функцией перемещения указателя измерительного прибора (например, наличие эксцентриситета в угломерных приборах с круговой шкалой вызывает систематическую погрешность, изменяющуюся по периодическому закону).

Исходя из причин появления систематических погрешностей, различают инструментальные погрешности, погрешности метода, субъективные погрешности и погрешности вследствие отклонения внешних условий измерения от установленных методиками.

Инструментальная погрешность измерения (кратко — инструментальная погрешность) является следствием ряда причин: износ деталей прибора, излишнее трение в механизме прибора, неточное нанесение штрихов на шкалу, несоответствие действительного и номинального значений меры и др.

Погрешность метода измерений (кратко — погрешность метода) может возникнуть из-за несовершенства метода измерений или допущенных его упрощений, установленных методикой измерений. Например, такая погрешность может быть обусловлена недостаточным быстродействием применяемых средств измерений при измерении параметров быстропротекающих процессов или неучтенными примесями при определении плотности вещества по результатам измерения его массы и объема.

Субъективная погрешность измерения (кратко — субъективная погрешность) обусловлена индивидуальными погрешностями оператора. Иногда эту погрешность называют личной разностью. Она вызывается, например, запаздыванием или опережением принятия оператором сигнала.

Погрешность вследствие отклонения (в одну сторону) внешних условий измерения от установленных методикой измерения приводит к возникновению систематической составляющей погрешности измерения.

Систематические погрешности искажают результат измерения, поэтому они подлежат исключению, насколько это возможно, путем введения поправок или юстировкой прибора с доведением систематических погрешностей до допустимого минимума.

Неисключенная систематическая погрешность (кратко — неисключенная погрешность) — это погрешность результата измерений, обусловленная погрешностью вычисления и введения поправки на действие систематической погрешности, или небольшой систематической погрешностью, поправка на действие которой не введена вследствие малости.

Иногда этот вид погрешности называют неисключенными остатками систематической погрешности (кратко — неисключенные остатки). Например, при измерении длины штрихового метра в длинах волн эталонного излучения выявлено несколько неисключенных систематических погрешностей (i): из-за неточного измерения температуры — 1 ; из-за неточного определения показателя преломления воздуха — 2 , из-за неточного значения длины волны — 3 .

Обычно учитывают сумму неисключенных систематических погрешностей (устанавливают их границы). При числе слагаемых N ≤ 3 границы неисключенных систематических погрешностей вычисляют по формуле

При числе слагаемых N ≥ 4 для вычислений используют формулу

(1.5)

где k — коэффициент зависимости неисключенных систематических погрешностей от выбранной доверительной вероятности Р при их равномерном распределении. При Р = 0,99, k = 1,4, при Р = 0,95, k = 1,1.

Случайная погрешность измерения (кратко — случайная погрешность) — составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) в серии измерений одного и того же размера физической величины. Причины случайных погрешностей: погрешности округления при отсчете показаний, вариация показаний, изменение условий измерений случайного характера и др.

Случайные погрешности вызывают рассеяние результатов измерений в серии.

В основе теории погрешностей лежат два положения, подтверждаемые практикой:

1. При большом числе измерений случайные погрешности одинакового числового значения, но разного знака, встречаются одинаково часто;

2. Большие (по абсолютному значению) погрешности встречаются реже, чем малые.

Из первого положения следует важный для практики вывод: при увеличении числа измерений случайная погрешность результата, полученного из серии измерений, уменьшается, так как сумма погрешностей отдельных измерений данной серии стремится к нулю, т. е.

(1.6)

Например, в результате измерений получен ряд значений электрического сопротивления (в которые введены поправки на действия систематических погрешностей): R 1 = 15,5 Ом, R 2 = 15,6 Ом, R 3 = 15,4 Ом, R 4 = 15,6 Ом и R 5 = 15,4 Ом. Отсюда R = 15,5 Ом. Отклонения от R (R 1 = 0,0; R 2 = +0,1 Ом, R 3 = -0,1 Ом, R 4 = +0,1 Ом и R 5 = -0,1 Ом) представляют собой случайные погрешности отдельных измерений в данной серии. Нетрудно убедиться, что сумма R i = 0,0. Это свидетельствует о том, что погрешности отдельных измерений данного ряда вычислены правильно.

Несмотря на то, что с увеличением числа измерений сумма случайных погрешностей стремится к нулю (в данном примере она случайно получилась равной нулю), обязательно производится оценка случайной погрешности результата измерений. В теории случайных величин характеристикой рассеяния значений случайной величины служит дисперсия о2. "|/о2 = а называют средним квадратическим отклонением генеральной совокупности или стандартным отклонением.

Оно более удобно, чем дисперсия, так как его размерность совпадает с размерностью измеряемой величины (например, значение величины получено в вольтах, среднее квадратическое отклонение тоже будет в вольтах). Так как в практике измерений имеют дело с термином «погрешность», для характеристики ряда измерений следует применять производный от него термин «средняя квадратическая погрешность». Характеристикой ряда измерений может служить средняя арифметическая погрешность или размах результатов измерений.

Размах результатов измерений (кратко — размах) — алгебраическая разность наибольшего и наименьшего результатов отдельных измерений, образующих ряд (или выборку) из n измерений:

R n = X max - Х min (1.7)

где R n — размах; X max и Х min — наибольшее и наименьшее значения величины в данном ряду измерений.

Например, из пяти измерений диаметра d отверстия значения R 5 = 25,56 мм и R 1 = 25,51 мм оказались максимальным и минимальным его значением. В этом случае R n = d 5 — d 1 = 25,56 мм — 25,51 мм = 0,05 мм. Это означает, что остальные погрешности данного ряда менее 0,05 мм.

Средняя арифметическая погрешность отдельного измерения в серии (кратко — средняя арифметическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из n равноточных независимых измерений, вычисляется по формуле

(1.8)

где Х і — результат і-го измерения, входящего в серию; х — среднее арифметическое из n значений величины: |Х і - X| — абсолютное значение погрешности i-го измерения; r — средняя арифметическая погрешность.

Истинное значение средней арифметической погрешности р определяется из соотношения

р = lim r, (1.9)

При числе измерений n > 30 между средней арифметической (r) и средней квадратической (s) погрешностями существуют соотношения

s = 1,25 r; r и= 0,80 s. (1.10)

Преимущество средней арифметической погрешности — простота ее вычисления. Но все же чаще определяют среднюю квадратическую погрешность.

Средняя квадратическая погрешность отдельного измерения в серии (кратко — средняя квадратическая погрешность) — обобщенная характеристика рассеяния (вследствие случайных причин) отдельных результатов измерений (одной и той же величины), входящих в серию из п равноточных независимых измерений, вычисляемая по формуле

(1.11)

Средняя квадратическая погрешность для генеральной выборки о, являющаяся статистическим пределом S, может быть вычислена при /і-мх > по формуле:

Σ = lim S (1.12)

В действительности число измерений всегда ограничено, поэтому вычисляется не σ, а ее приближенное значение (или оценка), которым является s. Чем больше п, тем s ближе к своему пределу σ.

При нормальном законе распределения вероятность того, что погрешность отдельного измерения в серии не превзойдет вычисленную среднюю квадратическую погрешность, невелика: 0,68. Следовательно, в 32 случаях из 100 или 3 случаях из 10 действительная погрешность может быть больше вычисленной.


Рисунок 1.2 Уменьшение значения случайной погрешности результата многократного измерения при увеличении числа измерений в серии

В серии измерений существует зависимость между средней квадратической погрешностью отдельного измерения s и средней квадратической погрешностью арифметического среднего S x:

которую нередко называют «правилом У n». Из этого правила следует, что погрешность измерений вследствие действия случайных причин может быть уменьшена в уn раз, если выполнять n измерений одного размера какой-либо величины, а за окончательный результат принимать среднее арифметическое значение (рис. 1.2).

Выполнение не менее 5 измерений в серии дает возможность уменьшить влияние случайных погрешностей более чем в 2 раза. При 10 измерениях влияние случайной погрешности уменьшается в 3 раза. Дальнейшее увеличение числа измерений не всегда экономически целесообразно и, как правило, осуществляется лишь при ответственных измерениях, требующих высокой точности.

Средняя квадратическая погрешность отдельного измерения из ряда однородных двойных измерений S α вычисляется по формуле

(1.14)

где x" i и х"" i — і-ые результаты измерений одного размера величины при прямом и обратном направлениях одним средством измерений.

При неравноточных измерениях среднюю квадратическую погрешность арифметического среднего в серии определяют по формуле

(1.15)

где p i — вес і-го измерения в серии неравноточных измерений.

Среднюю квадратическую погрешность результата косвенных измерений величины Y, являющейся функцией Y = F (X 1 , X 2 , X n), вычисляют по формуле

(1.16)

где S 1 , S 2 , S n — средние квадратические погрешности результатов измерений величин X 1 , X 2 , X n .

Если для большей надежности получения удовлетворительного результата проводят несколько серий измерений, среднюю квадратическую погрешность отдельного измерения из m серий (S m) находят по формуле

(1.17)

Где n — число измерений в серии; N — общее число измерений во всех сериях; m — число серий.

При ограниченном числе измерений часто необходимо знать погрешность средней квадратической погрешности. Для определения погрешности S, вычисляемой по формуле (2.7), и погрешности S m , вычисляемой по формуле (2.12), можно воспользоваться следующими выражениями

(1.18)

(1.19)

где S и S m — средние квадратические погрешности соответственно S и S m .

Например, при обработке результатов ряда измерений длины х получены

= 86 мм 2 при n = 10,

= 3,1 мм

= 0,7 мм или S = ±0,7 мм

Значение S = ±0,7 мм означает, что из-за погрешности вычисления s находится в пределах от 2,4 до 3,8 мм, следовательно, десятые доли миллиметра здесь ненадежны. В рассмотренном случае надо записать: S = ±3 мм.

Чтобы иметь большую уверенность в оценке погрешности результата измерений, вычисляют доверительную погрешность или доверительные границы погрешности. При нормальном законе распределения доверительные границы погрешности вычисляют как ±t-s или ±t-s x , где s и s x — средние квадратические погрешности соответственно отдельного измерения в серии и среднего арифметического; t — число, зависящее от доверительной вероятности Р и числа измерений n.

Важным понятием является надежность результата измерений (α), т.е. вероятность того, что искомое значение измеряемой величины попадет в данный доверительный интервал.

Например, при обработке деталей на станках в устойчивом технологическом режиме распределение погрешностей подчиняется нормальному закону. Предположим, что установлен допуск на длину детали, равный 2а. В этом случае доверительным интервалом, в котором находится искомое значение длины детали а, будет (а - а, а + а).

Если 2a = ±3s, то надежность результата a = 0,68, т. е. в 32 случаях из 100 следует ожидать выхода размера детали за допуск 2а. При оценивании качества детали по допуску 2a = ±3s надежность результата составит 0,997. В этом случае можно ожидать выхода за установленный допуск только трех деталей из 1000. Однако увеличение надежности возможно лишь при уменьшении погрешности длины детали. Так, для повышения надежности с a = 0,68 до a = 0,997 погрешность длины детали необходимо уменьшить в три раза.

В последнее время получил широкое распространение термин «достоверность измерений». В некоторых случаях он необоснованно применяется вместо термина «точность измерений». Например, в некоторых источниках можно встретить выражение «установление единства и достоверности измерений в стране». Тогда как правильнее сказать «установление единства и требуемой точности измерений». Достоверность нами рассматривается как качественная характеристика, отражающая близость к нулю случайных погрешностей. Количественно она может быть определена через недостоверность измерений.

Недостоверность измерений (кратко — недостоверность)— оценка несовпадения результатов в серии измерений вследствие влияния суммарного воздействия случайных погрешностей (определяемых статистическими и нестатистическими методами), характеризуемая областью значений, в которой находится истинное значение измеряемой величины.

В соответствии с рекомендациями Международного бюро мер и весов недостоверность выражается в виде суммарной средней квадратической погрешности измерений — Su включающей среднюю квадратическую погрешность S (определяемую статистическими методами) и среднюю квадратическую погрешность u (определяемую нестатистическими методами), т.е.

(1.20)

Предельная погрешность измерения (кратко — предельная погрешность) — максимальная погрешность измерения (плюс, минус), вероятность которой не превышает значение Р, при этом разность 1 - Р незначительная.

Например, при нормальном законе распределения вероятность появления случайной погрешности, равной ±3s, составляет 0,997, а разность 1-Р = 0,003 незначительна. Поэтому во многих случаях доверительную погрешность ±3s, принимают за предельную, т.е. пр = ±3s. В случае необходимости пр может иметь и другие соотношения с s при достаточно большом Р (2s, 2,5s, 4s и т.д.).

В связи с тем, в стандартах ГСИ вместо термина «средняя квадратическая погрешность» применен термин «среднее квадратическое откланение», в дальнейших рассуждениях мы будим придерживаться именно этого термина.

Абсолютная погрешность измерения (кратко — абсолютная погрешность) — погрешность измерения, выраженная в единицах измеряемой величины. Так, погрешность Х измерения длины детали Х, выраженная в микрометрах, представляет собой абсолютную погрешность.

Не следует путать термины «абсолютная погрешность» и «абсолютное значение погрешности», под которым понимают значение погрешности без учета знака. Так, если абсолютная погрешность измерения равна ±2мкВ, то абсолютное значение погрешности будет 0,2 мкВ.

Относительная погрешность измерения (кратко — относительная погрешность) — погрешность измерения, выраженная в долях значения измеряемой величины или в процентах. Относительную погрешность δ находят из отношений:

(1.21)

Например, имеется действительное значение длины детали х = 10,00 мм и абсолютное значение погрешности х = 0,01мм. Относительная погрешность составит

Статическая погрешность — погрешность результата измерения, обусловленная условиями статического измерения.

Динамическая погрешность — погрешность результата измерения, обусловленная условиями динамического измерения.

Погрешность воспроизведения единицы — погрешность результата измерений, выполняемых при воспроизведении единицы физической величины. Так, погрешность воспроизведения единицы при помощи государственного эталона указывают в виде ее составляющих: неисключенной систематической погрешности, характеризуемой ее границей; случайной погрешностью, характеризуемой средним квадратическим отклонением s и нестабильностью за год ν.

Погрешность передачи размера единицы — погрешность результата измерений, выполняемых при передаче размера единицы. В погрешность передачи размера единицы входят неисключенные систематические погрешности и случайные погрешности метода и средств передачи размера единицы (например, компаратора).