Применение рентгеноструктурного анализа в молекулярной биологии. Рентгеновский структурный анализ

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П. Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³до10 5 эв.

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

1) Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

2) Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис.). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис.– Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис),так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис– схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис.). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяет расшифровывать самые простые структуры.

В методе вращения (рис.) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристаллравномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии.

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания , который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра . Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Метод рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Реферат выполнила студентка II курса 2-ой группы Сапегина Н.Л.

Министерство здравоохранения Украины

Национальная фармацевтическая академия Украины

Кафедра физики и математики

Курс биофизика и физические методы анализа

г. Харьков

Введение

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П.Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³ до 10 5 эв.

Рентгеновские спектры.

Различают два типа излучения: тормозное и характеристическое.

Тормозное излучение возникает при торможении электронов антикатодом рентгеновской трубки. Оно разлагается в сплошной спектр, имеющий резкую границу со стороны малых длин волн. Положение этой границы определяется энергией падающих на вещество электронов и не зависит от природы вещества. Интенсивность тормозного спектра быстро растёт с уменьшением массы бомбардирующих частиц и достигает значительной величины при возбуждении электронами.

Характеристические рентгеновские лучи образуются при выбивании электрона одного из внутренних слоёв атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внешнего слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов. Однако между теми и другими спектрами имеется принципиальная разница: структура характеристического спектра рентгеновских лучей (число, относительное расположение и относительная яркость линий), в отличие от оптического спектра газов, не зависит от вещества (элемента), дающего этот спектр.

Спектральные линии характеристического спектра рентгеновских лучей образуют закономерные последовательности или серии. Эти серии обозначаются буквами K, L, M, N…, причем длины волн этих серий возрастают от K к L, от L к М и т. д. Наличие этих серий теснейшим образом связано со строением электронных оболочек атомов.

Характеристические рентгеновские спектры испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (K-, L-, M-, … оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией (состояние с вакансией во внешней оболочке).

Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергия Е 1 начального и Е 2 конечного состояний атома квантованы, возникает линия рентгеновского спектра с частотой n=(Е 1 - Е 2)/h, где h постоянная Планка.

Все возможные излучательные квантовые переходы атома из начального K-состояния образуют наиболее жёсткую (коротковолновую) K-серию. Аналогично образуются L-, M-, N-серии (рис. 1).

Рис. 1. Схема K-, L-, M-уровней атома и основные линии K-, L-серий

Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в системе Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Г. Мозли в 1913 г. показал, что квадратный корень из частоты (или обратной длины волны) данной спектральной линии связан линейной зависимостью с атомным номером элемента Z. Закон Мозли сыграл весьма важную роль в физическом обосновании периодической системы Менделеева.

Другой весьма важной особенностью характеристических спектров рентгеновских лучей является то обстоятельство, что каждый элемент даёт свой спектр независимо от того, возбуждается ли этот элемент к испусканию рентгеновских лучей в свободном состоянии или в химическом соединении. Эта особенность характеристического спектра рентгеновских лучей используется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектрального анализа.

Рентгеноспектральный анализ

Рентгеноспектральный анализ это раздел аналитической химии, использующий рентгеновские спектры элементов для химического анализа веществ. Рентгеноспектральный анализ по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава вещества.

В рентгеновской спектроскопии для получения спектра используется явление дифракции лучей на кристаллах или, в области 15-150 Å, на дифракционных штриховых решётках, работающих при малых (1-12°) углах скольжения. Основой рентгеновской спектроскопии высокого разрешения является закон Вульфа-Брэга, который связывает длину волны рентгеновских лучей l, отраженных от кристалла в направлении q, с межплоскостным расстоянием кристалла d.

Угол q называется углом скольжения. Он направлением падающих на кристалл или отражённых от него лучей с отражающей поверхностью кристалла. Число n характеризует так называемый порядок отражения, в котором при заданных l и d может наблюдаться дифракционный максимум.

Частота колебания рентгеновских лучей (n=с/l), испущенных каким-либо элементом, линейно связана с его атомным номером:

Ö n/R=A(Z-s) (2)

где n - частота излучения, Z – атомный номер элемента, R – постоянная Ридберга, равная 109737,303 см -1 , s - средняя константа экранирования, в небольших пределах, зависящая от Z, А – постоянная для данной линии величина.

Рентгеноспектральный анализ основан на использовании зависимости частоты излучения линий характеристического спектра элемента от их атомного номера и связи между интенсивностью этих линий и числом атомов, принимающих участие в излучении.

Рентгеновское возбуждение атомов вещества может возникать в результате бомбардировки образца электронами больших энергий или при его облучении рентгеновскими лучами. Первый процесс называется прямым возбуждением, последний – вторичным или флуоресцентным. В обоих случаях энергия электрона или кванта первичной рентгеновской радиации, бомбардирующих излучающий атом, должна быть больше энергии, необходимой для вырывания электрона из определённой внутренней оболочки атома. Электронная бомбардировка исследуемого вещества приводит к появлению не только характеристического спектра элемента, но и, как правило, достаточно интенсивного непрерывного излучения. Флуоресцентное излучение содержит только линейчатый спектр.

В ходе первичного возбуждения спектра происходит интенсивное разогревание исследуемого вещества, отсутствующее при вторичном возбуждении. Первичный метод возбуждения лучей предполагает помещение исследуемого вещества внутрь откачанной до высокого вакуума рентгеновской трубки, в то время как для получения спектров флуоресценции исследуемые образцы могут располагаться на пути пучка первичных рентгеновских лучей вне вакуума и легко сменять друг друга. Поэтому приборы, использующие спектры, флуоресценции (несмотря на то, что интенсивность вторичного излучения в тысячи раз меньше интенсивности лучей, полученных первичным методом), в последнее время почти полностью вытеснили из практики установки, в которых осуществляется возбуждение рентгеновских лучей с помощью потока быстрых электронов.

Аппаратура для рентгеноспектрального анализа.

Рентгеновский флуоресцентный спектрометр (рис 2) состоит из трёх основных узлов: рентгеновской трубки, излучение которой возбуждает спектр флуоресценции исследуемого образца, кристалла – анализатора для разложения лучей в спектр и детектора для измерения интенсивности спектральных линий.

Рис. 2. Схема рентгеновского многоканального флуоресцентного спектрометра с плоским (а) изогнутым (б) кристаллами: 1 – рентгеновская трубка; 2 – анализируемый образец; 3 – диафрагма Соллера; 4 – плоский и изогнутый (радиус – 2R) кристалл – анализаторы; 5 – детектор излучения; 6 – так называемый монитор, дополнительное регистрирующее устройство, позволяющее осуществлять измерение относительной интенсивности спектральных линий при отсутствии стабилизации интенсивности источника рентгеновского излучения; R – радиус так называемой окружности изображения.

В наиболее часто используемой на практике конструкции спектрометра источник излучения и детектор располагаются на одной окружности, называемой окружностью изображения, а кристалл – в центре. Кристалл может вращаться вокруг оси, проходящей через центр этой окружности. При изменении угла скольжения на величину q детектор поворачивается на угол 2q

Наряду со спектрометрами с плоским кристаллом широкое распространение получили фокусирующие рентгеновские спектрометры, работающие «на отражение» (методы Капицы – Иоганна и Иогансона) и на «прохождение» (методы Коуша и Дю-Монда). Они могут быть одно- и многоканальными. Многоканальные, так называемые рентгеновские квантометры, аутрометры и другие, позволяют одновременно определять большое число элементов и автоматизировать процесс анализа. обычно они снабжаются специальными рентгеновскими трубками и устройствами, обеспечивающими высокую степень стабилизации интенсивности рентгеновских лучей. Область длин волн, в которой может использоваться спектрометр, определяется межплоскостным расстоянием кристалла – анализатора (d). В соответствии с уравнением (1) кристалл не может «отражать» лучи, длина волн, которых превосходит 2d.

Число кристаллов, используемых в рентгеноспектральном анализе, довольно велико. Наиболее часто применяют кварц, слюду, гипс и LiF.

В качестве детекторов рентгеновского излучения, в зависимости от области спектра, с успехом используют сётчики Гейгера, пропорциональные, кристаллические и сцинтилляционные счётчики квантов.

Применение рентгеноспектрального анализа.

Рентгеноспектральный анализ может быть использован для количественного определения элементов от Mg 12 до U 92 в материалах сложного химического состава – в металлах и сплавах, минералах, стекле, керамике, цементах, пластмассах, абразивах, пыли и различных продуктах химических технологий. Наиболее широко рентгеноспектральный анализ применяют в металлургии и геологии для определения макро- (1-100%) и микрокомпонентов (10 -1 – 10 -3 %).

Иногда для повышения чувствительности рентгеноспектрального анализа его комбинируют с химическими и радиометрическими методами. Предельная чувствительность рентгеноспектрального анализа зависит от атомного номера определяемого элемента и среднего атомного номера определяемого образца. Оптимальные условия реализуются при определении элементов среднего атомного номера в образце, содержащем лёгкие элементы. Точность рентгеноспектрального анализа обычно 2-5 относительных процента, вес образца – несколько граммов. Длительность анализа от нескольких минут до 1 – 2 часов. Наибольшие трудности возникают при анализе элементов с малым Z и работе в мягкой области спектра.

На результаты анализа влияют общий состав пробы (поглощение), эффекты селективного возбуждения и поглощения излучения элементами – спутниками, а также фазовый состав и зернистость образцов.

Рентгеноспектральный анализ хорошо зарекомендовал себя при определении Pb и Br в нефти и бензинах, серы в газолине, примесей в смазках и продуктах износа в машинах, при анализе катализаторов, при осуществлении экспрессных силикатных анализов и других.

Для возбужения мягкого излучения и его использования в анализе успешно применяется бомбардировка образцов a-частицами (например от полониевого источника).

Важной областью применения рентгеноспектрального анализа является определение толщины защитных покрытий без нарушения поверхности изделий.

В тех случаях, когда не требуется высокого разрешения в разделении характеристического излучения от образца и анализируемые элементы отличаются по атомному номеру более чем на два, с успехом может быть применён бескристальный метод рентгеноспектрального анализа. В нём используется прямая пропорциональность между энергией кванта и амплитудой импульса, который создаётся им в пропорциональном или сцинтилляционном счётчиках. Это позволяет выделить и исследовать импульсы, соответствующие спектральной линии элемента с помощью амплитудного анализатора.

Важным методом рентгеноспектрального анализа является анализ микрообъёмов вещества.

Основу микроанализатора (рис. 3) составляет микрофокусная рентгеновская трубка, объединённая с оптическим металл - микроскопом.

Специальная электронно–оптическая система формирует тонкий электронный зонд, который бомбардирует небольшую, примерно 1 –2 мк, область исследуемого шлифа, помещённого на аноде, и возбуждает рентгеновские лучи, спектральный состав которых далее анализируется с помощью спектрографа с изогнутым кристаллом. Такой прибор позволяет проводить рентгеноспектральный анализ шлифа «в точке» на несколько элементов или исследовать распределение одного из них вдоль выбранного направления. В созданных позднее растровых микроанализаторах электронный зонд обегает заданную площадь поверхности анализируемого образца и позволяет наблюдать на экране монитора увеличенную в десятки раз картину распределения химических элементов на поверхности шлифа. Существуют как вакуумные (для мягкой области спектра), так и не вакуумные варианты таких приборов. Абсолютная чувствительность метода 10 -13 –10 -15 грамм. С его помощью с успехом анализируют фазовый состав легированных сплавов и исследуют степень их однородности, изучают распределения легирующих добавок в сплавах и их перераспределение в процессе старения, деформации или термообработки, исследуют процесс диффузии и структуры диффузионных и других промежуточных слоёв, изучают процессы, сопровождающие обработку и пайку жаропрочных сплавов, а также исследуют неметаллические объекты в химии, минералогии и геохимии. В последнем случае на поверхности шлифов предварительно напыляют тонкий слой (50-100Å) алюминия, бериллия или углерода.

Рис. 3. Схема рентгеновского микроанализатора Кастена и Гинье:

1 – электронная пушка; 2 – диафрагма; 3 – первая собирающая электростатическая линза; 4 – апертурная диафрагма; 5 – вторая собирающая электростатическая линза; 6 – исследуемый образец; 7 – рентгеновский спектрометр; 8 – зеркало; 9 – объектив металлографического оптического микроскопа; ВН – высокое напряжение.

Самостоятельным разделом рентгеноспектрального анализа является исследование тонкой структуры рентгеновских спектров поглощения и эмиссии атомов в химических соединениях и сплавах. Детальное изучение этого явления открывает пути для экспериментального исследования характера междуатомного взаимодействия в химических соединениях, металлах и сплавах и изучения энергетической структуры электронного спектра в них, определения эффективных зарядов, сосредоточенных на различных атомах в молекулах, и решения других вопросов химии и физики конденсированных сред.

Рентгеноструктурный анализ

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾ l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис. 4 а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.4 б) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис. 4. а – Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис 5.а), так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис 5.а – схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 5.б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяе расшифровывать самы простые структуры.

В методе вращения (рис. 6.а) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристалл равномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии (рис. 6.б).

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. 6.а – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра. Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга (рис. 7) все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. 7. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Список литературы

Жданов Г.С. Физика твёрдого тела, М., 1962.

Блохин М.А., Физика рентгеновских лучей, 2 изд., М., 1957.

Блохин М.А., Методы рентгеноспектральных исследований, М., 1959.

Ванштейн Э.Е., Рентгеновские спектры атомов в молекулах химических соединений и в сплавах, М.-Л., 1950.

Бокай Г.Б., Порай-Кошиц М.А., Рентгеноструктурный анализ, М., 1964.

Шишаков Н.А., Основные понятия структурного анализа, М., 1961.

Рентгеновский структурный анализ

методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией (См. Нейтронография) и электронографией (См. Электронография) является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает Дифракция рентгеновских лучей . Дифракционная картина зависит от длины волны используемых рентгеновских лучей (См. Рентгеновские лучи) и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны Рентгеновский структурный анализ1 Å, т. е. порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что Кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Историческая справка. Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ , В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма , полученная таким методом, носит название лауэграммы (См. Лауэграмма) (рис. 1 ).

Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны λ излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (α 0 , β 0 , γ 0) и дифракционного (α, β, γ) лучей соотношениями:

a (cosα- cosα 0) = h λ,

b (cosβ - cosβ 0) = k λ, (1)

c (cosγ - cosγ 0) =l λ,

В 50-х гг. начали бурно развиваться методы Р. с. а. с использованием ЭВМ в технике эксперимента и при обработке рентгеновской дифракционной информации.

Экспериментальные методы Р. с. а. Для создания условий дифракции и регистрации излучения служат рентгеновские камеры (См. Рентгеновская камера) и рентгеновские дифрактометры (См. Рентгеновский дифрактометр). Рассеянное рентгеновское излучение в них фиксируется на фотоплёнке или измеряется детекторами ядерных излучений (См. Детекторы ядерных излучений). В зависимости от состояния исследуемого образца и его свойств, а также от характера и объёма информации, которую необходимо получить, применяют различные методы Р. с. а. Монокристаллы, отбираемые для исследования атомной структуры, должны иметь размеры Рентгеновский структурный анализ 0,1 мм и по возможности обладать совершенной структурой. Исследованием дефектов в сравнительно крупных почти совершенных кристаллах занимается Рентгеновская топография , которую иногда относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм от монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентгеновское излучение имеет непрерывный спектр. Расположение дифракционных пятен на лауэграммах (рис. 1 ) зависит от симметрии кристалла (См. Симметрия кристаллов) и его ориентации относительно падающего луча. Метод Лауэ позволяет установить принадлежность исследуемого кристалла к одной и 11 лауэвских групп симметрии и ориентировать его (т. е. определять направление кристаллографических осей) с точностью до нескольких угловых минут. По характеру пятен на лауэграммах и особенно появлению Астеризм а можно выявить внутренние напряжения и некоторые др. дефекты кристаллической структуры. Методом Лауэ проверяют качество монокристаллов при выборе образца для его более полного структурного исследования.

Методы качания и вращения образца используют для определения периодов повторяемости (постоянной решётки) вдоль кристаллографического направления в монокристалле. Они позволяют, в частности, установить параметры а , b, с элементарной ячейки кристалла. В этом методе используют монохроматическое рентгеновское излучение, образец приводится в колебательное или вращательное движение вокруг оси, совпадающей с кристаллографическим направлением, вдоль которого и исследуют период повторяемости. Пятна на рентгенограммах качания и вращения, полученных в цилиндрических кассетах, располагаются на семействе параллельных линий. Расстояния между этими линиями, длина волны излучения и диаметр кассеты рентгеновской камеры позволяют вычислить искомый период повторяемости в кристалле. Условия Лауэ для дифракционных лучей в этом методе выполняются за счёт изменения углов, входящих в соотношения (1) при качании или вращении образца.

Рентгенгониометрические методы. Для полного исследования структуры монокристалла методами Р. с. а. необходимо не только установить положение, но и измерить интенсивности как можно большего числа дифракционных отражений, которые могут быть получены от кристалла при данной длине волны излучения и всех возможных ориентациях образца. Для этого дифракционную картину регистрируют на фотоплёнке в рентгеновском гониометре (См. Рентгеновский гониометр) и измеряют с помощью Микрофотометр а степень почернения каждого пятна на рентгенограмме. В рентгеновском дифрактометре (См. Рентгеновский дифрактометр) можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов. Чтобы иметь полный набор отражений, в рентгеновских гониометрах получают серию рентгенограмм. На каждой из них фиксируются дифракционные отражения, на миллеровские индексы которых накладывают определённые ограничения (например, на разных рентгенограммах регистрируются отражения типа hk 0, hk 1 и т.д.). Наиболее часто производят рентгеногониометрический эксперимент по методам Вайсенберга. Бюргера (рис. 2 ) и де Ионга - Боумена. Такую же информацию можно получить и с помощью рентгенограмм качания.

Для установления атомной структуры средней сложности (Рентгеновский структурный анализ 50-100 атомов в элементарной ячейке) необходимо измерить интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). Применением в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся значительно сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Метод исследования поликристаллов (Дебая - Шеррера метод). Металлы, сплавы, кристаллические порошки состоят из множества мелких монокристаллов данного вещества. Для их исследования используют монохроматическое излучение. Рентгенограмма (дебаеграмма) поликристаллов представляет собой несколько концентрических колец, в каждое из которых сливаются отражения от определённой системы плоскостей различно ориентированных монокристаллов. Дебаеграммы различных веществ имеют индивидуальный характер и широко используются для идентификации соединений (в том числе и в смесях). Р.с.а. поликристаллов позволяет определять фазовый состав образцов, устанавливать размеры и преимущественную ориентацию (текстурирование) зёрен в веществе, осуществлять контроль за напряжениями в образце и решать другие технические задачи.

Исследование аморфных материалов и частично упорядоченных объектов. Чёткую рентгенограмму с острыми дифракционными максимумами можно получить только при полной трёхмерной периодичности образца. Чем ниже степень упорядоченности атомного строения материала, тем более размытый, диффузный характер имеет рассеянное им рентгеновское излучение. Диаметр диффузного кольца на рентгенограмме аморфного вещества может служить для грубой оценки средних межатомных расстояний в нём. С ростом степени упорядоченности (см. Дальний порядок и ближний порядок) в строении объектов дифракционная картина усложняется и, следовательно, содержит больше структурной информации.

Метод малоуглового рассеяния позволяет изучать пространственные неоднородности вещества, размеры которых превышают межатомные расстояния, т.е. составляют от 5-10 Å до Рентгеновский структурный анализ 10 000 Å. Рассеянное рентгеновское излучение в этом случае концентрируется вблизи первичного пучка - в области малых углов рассеяния. Малоугловое рассеяние применяют для исследования пористых и мелкодисперсных материалов, сплавов и сложных биологических объектов: вирусов, клеточных мембран, хромосом. Для изолированных молекул белка и нуклеиновых кислот метод позволяет определить их форму, размеры, молекулярную массу; в вирусах - характер взаимной укладки составляющих их компонент: белка, нуклеиновых кислот, липидов; в синтетических полимерах - упаковку полимерных цепей; в порошках и сорбентах - распределение частиц и пор по размерам; в сплавах - возникновение и размеры фаз; в текстурах (в частности, в жидких кристаллах) - форму упаковки частиц (молекул) в различного рода надмолекулярные структуры. Рентгеновский малоугловой метод применяется и в промышленности при контроле процессов изготовления катализаторов, высокодисперсных углей и т.д. В зависимости от строения объекта измерения производят для углов рассеяния от долей минуты до нескольких градусов.

Определение атомной структуры по данным дифракции рентгеновских лучей. Расшифровка атомной структуры кристалла включает: установление размеров и формы его элементарной ячейки; определение принадлежности кристалла к одной из 230 федоровских (открытых Е. С. Федоровым (См. Фёдоров)) групп симметрии кристаллов (См. Симметрия кристаллов); получение координат базисных атомов структуры. Первую и частично вторую задачи можно решить методами Лауэ и качания или вращения кристалла. Окончательно установить группу симметрии и координаты базисных атомов сложных структур возможно только с помощью сложного анализа и трудоёмкой математической обработки значений интенсивностей всех дифракционных отражений от данного кристалла. Конечная цель такой обработки состоит в вычислении по экспериментальным данным значений электронной плотности ρ(х, у, z ) в любой точке ячейки кристалла с координатами x , у, z. Периодичность строения кристалла позволяет записать электронную плотность в нём через Фурье ряд :

где V - объём элементарной ячейки, F hkl - коэффициенты Фурье, которые в Р. с. а. называются структурными амплитудами, i = hkl и связана с тем дифракционным отражением, которое определяется условиями (1). Назначение суммирования (2) - математически собрать дифракционные рентгеновские отражения, чтобы получить изображение атомной структуры. Производить таким образом синтез изображения в Р. с. а. приходится из-за отсутствия в природе линз для рентгеновского излучения (в оптике видимого света для этого служит собирающая линза).

Дифракционное отражение - волновой процесс. Он характеризуется амплитудой, равной ∣F hkl ∣, и фазой α hkl (сдвигом фазы отражённой волны по отношению к падающей), через которую выражается структурная амплитуда: F hkl =∣F hkl ∣(cosα hkl + i sinα hkl ). Дифракционный эксперимент позволяет измерять только интенсивности отражений, пропорциональные ∣F hkl ∣ 2 , но не их фазы. Определение фаз составляет основную проблему расшифровки структуры кристалла. Определение фаз структурных амплитуд в принципиальном отношении одинаково как для кристаллов, состоящих из атомов, так и для кристаллов, состоящих из молекул. Определив координаты атомов в молекулярном кристаллическом веществе, можно выделить составляющие его молекулы и установить их размер и форму.

Легко решается задача, обратная структурной расшифровке: вычисление по известной атомной структуре структурных амплитуд, а по ним - интенсивностей дифракционных отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных ∣F hkl ∣ эксп, с вычисленными на основе пробной модели значениями ∣F hkl ∣ выч. В зависимости от величины фактора расходимости

Принципиально новый путь к расшифровке атомных структур монокристаллов открыло применение т. н. функций Патерсона (функций межатомных векторов). Для построения функции Патерсона некоторой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксированное начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положение N максимумов функции межатомных векторов, совокупность которых называется изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение которых укажет N векторов от второго атома, помещенного при параллельном переносе структуры в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 3 ), мы получим N 2 векторов. Функция, описывающая их положение, и есть функция Патерсона.

Для функции Патерсона Р (u, υ, ω ) (u, υ, ω - координаты точек в пространстве межатомных векторов) можно получить выражение:

из которого следует, что она определяется модулями структурных амплитуд, не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракционного эксперимента. Трудность интерпретации функции Р (u, υ, ω ) состоит в необходимости нахождения координат N атомов из N 2 её максимумов, многие из которых сливаются из-за перекрытий, возникающих при построении функции межатомных векторов. Наиболее прост для расшифровки Р (u, υ, ω ) случай, когда в структуре содержится один тяжёлый атом и несколько лёгких. Изображение такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди различных методик, позволяющих определить модель исследуемой структуры по функции Патерсона, наиболее эффективными оказались так называемые суперпозиционные методы, которые позволили формализовать её анализ и выполнять его на ЭВМ.

Методы функции Патерсона сталкиваются с серьёзными трудностями при исследовании структур кристаллов, состоящих из одинаковых пли близких по атомному номеру атомов. В этом случае более эффективными оказались Так называемые прямые методы определения фаз структурных амплитуд. Учитывая тот факт, что значение электронной плотности в кристалле всегда положительно (или равно нулю), можно получить большое число неравенств, которым подчиняются коэффициенты Фурье (структурные амплитуды) функции ρ(x , у, z ). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20-40 атомов в элементарной ячейке кристалла. Для более сложных структур применяются методы, основанные на вероятностном подходе к проблеме: структурные амплитуды и их фазы рассматриваются как случайные величины; из физических представлений выводятся функции распределения этих случайных величин, которые дают возможность оценить с учётом экспериментальных значений модулей структурных амплитуд наиболее вероятные значения фаз. Эти методы также реализованы на ЭВМ и позволяют расшифровать структуры, содержащие 100-200 и более атомов в элементарной ячейке кристалла.

Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 4 ). Заключительное уточнение координат атомов проводится на ЭВМ Наименьших квадратов метод ом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Å (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.

Вершина достижений Р. с. а. - расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.

О многочисленных применениях методов Р. с. а. для исследования различных нарушений структуры твёрдых тел под влиянием всевозможных воздействий см. в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Жданов Г. С., Основы рентгеноструктурного анализа, М. - Л., 1940; Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., М., 1950; Бокий Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, М., 1964; Порай-Кошиц М. А., Практический курс рентгеноструктурного анализа, М., 1960: Китайгородский А. И., Теория структурного анализа, М., 1957; Липеон Г., Кокрен В., Определение структуры кристаллов, пер. с англ., М., 1961; Вайнштейн Б. К., Структурная электронография, М., 1956; Бэкон Дж., Дифракция нейтронов, пер. с англ., М., 1957; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Woolfson М. М., An introduction to X-ray crystallography, Camb., 1970: Ramachandran G. N., Srinivasan R., Fourier methode in crystallography, N. Y., 1970; Crystallographic computing, ed. F. R. Ahmed, Cph., 1970; Stout G. H., Jensen L. H., X-ray structure determination, N. Y. - L., .

В. И. Симонов.

Рис. 9. а. Проекция на плоскость ab функции межатомных векторов минерала баотита O 16 Cl]. Линии проведены через одинаковые интервалы значений функции межатомных векторов (линии равного уровня). б. Проекция электронной плотности баотита на плоскость ab, полученная расшифровкой функции межатомных векторов (a). Максимумы электронной плотности (сгущения линий равного уровня) отвечают положениям атомов в структуре. в. Изображение модели атомной структуры баотита. Каждый атом Si расположен внутри тетраэдра, образованного четырьмя атомами O; атомы Ti и Nb - в октаэдрах, составленных атомами O. Тетраэдры SiO 4 и октаэдры Ti(Nb)O 6 в структуре баотита соединены, как показано на рисунке. Часть элементарной ячейки кристалла, соответствующая рис. а и б, выделена штриховой линией. Точечные линии на рис. а и б определяют нулевые уровни значений соответствующих функций.

Физическая энциклопедия - РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, исследование атомной структуры образца вещества по картине дифракции на нем рентгеновского излучения. Позволяет установить распределение электронной плотности вещества, по которому определяют род атомов и их… … Иллюстрированный энциклопедический словарь

- (рентгеноструктурный анализ), совокупность методов исследования атомной структуры вещества с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а по ней род атомов и их… … Энциклопедический словарь

- (рентгено структурный анализ), метод исследования атомно мол. строения в в, гл. обр. кристаллов, основанный на изучении дифракции, возникающей при взаимод. с исследуемым образцом рентгеновского излучения длины волны ок. 0,1 нм. Используют гл. обр … Химическая энциклопедия - (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, НЕЙТРОНОГРАФИЯ, ЭЛЕКТРОНОГРАФИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

Определение строения в в и материалов, т. е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов). В узком смысле С. а. определение геометрии молекул и мол. систем, к рую обычно описывают набором длин… … Химическая энциклопедия

Брест, 2010

В рентгеноструктурном анализе в основном используются три метода

1. Метод Лауэ. В этом методе пучок излучения с непрерывным спектром падает на неподвижный монокристалл. Дифракционная картина регистрируется на неподвижную фотопленку.

2. Метод вращения монокристалла. Пучок монохроматического излучения падает на кристалл, вращающийся (или колеблющийся) вокруг некоторого кристаллографического направления. Дифракционная картина регистрируется на неподвижную фотопленку. В ряде случаев фотопленка движется синхронно с вращением кристалла; такая разновидность метода вращения носит название метода развертки слоевой линии.

3. Метод порошков или поликристаллов (метод Дебая-Шеррера-Хэлла). В этом методе используется монохроматический пучок лучей. Образец состоит из кристаллического порошка или представляет собой поликристаллический агрегат.

Метод Лауэ

Метод Лауэ применяется на первом этапе изучения атомной структуры кристаллов. С его помощью определяют сингонию кристалла и лауэвский класс (кристаллический класс Фриделя с точностью до центра инверсии). По закону Фриделя никогда невозможно обнаружить отсутствие центра симметрии на лауэграмме и поэтому добавление центра симметрии к 32-м кристаллическим классам уменьшает их количество до 11. Метод Лауэ применяется главным образом для исследования монокристаллов или крупнокристаллических образцов. В методе Лауэ неподвижный монокристалл освещается параллельным пучком лучей со сплошным спектром. Образцом может служить как изолированный кристалл, так и достаточно крупное зерно в поликристаллическом агрегате.

Формирование дифракционной картины происходит при рассеянии излучения с длинами волн от l min = l 0 = 12,4/U , где U- напряжение на рентгеновской трубке, до l m - длины волны, дающей интенсивность рефлекса (дифракционного максимума), превышающую фон хоть бы на 5 %. l m зависит не только от интенсивности первичного пучка (атомного номера анода, напряжения и тока через трубку), но и от поглощения рентгеновских лучей в образце и кассете с пленкой. Спектру l min - l m соответствует набор сфер Эвальда с радиусами от 1/ l m до 1/l min , которые касаются узла 000 и ОР исследуемого кристалла (рис.1).

Тогда для всех узлов ОР, лежащих между этими сферами, будет выполняться условие Лауэ (для какой-то определенной длины волны в интервале (l m ¸ l min)) и, следовательно, возникает дифракционный максимум - рефлекс на пленке. Для съемки по методу Лауэ применяется камера РКСО (рис.2).

Рис. 2 Камера РКСО


Здесь пучок первичных рентгеновских лучей вырезается диафрагмой 1 с двумя отверстиями диаметрами 0,5 - 1,0 мм. Размер отверстий диафрагмы подбирается таким образом, чтобы сечение первичного пучка было больше поперечного сечения исследуемого кристалла. Кристалл 2 устанавливается на гониометрической головке 3, состоящей из системы двух взаимно перпендикулярных дуг. Держатель кристалла на этой головке может перемещаться относительно этих дуг, а сама гониометрическая головка может быть повернута на любой угол вокруг оси, перпендикулярной к первичному пучку. Гониометрическая головка позволяет менять ориентацию кристалла по отношению к первичному пучку и устанавливать определенное кристаллографическое направление кристалла вдоль этого пучка. Дифракционная картина регистрируется на фотопленку 4, помещенную в кассету, плоскость которой расположена перпендикулярно к первичному пучку. На кассете перед фотопленкой натянута тонкая проволока, расположенная параллельно оси гониометрической головки. Тень от этой проволоки дает возможность определить ориентацию фотопленки по отношению к оси гониометрической головки. Если образец 2 располагается перед пленкой 4, то рентгенограммы, полученные таким образом называются лауэграммами. Дифракционная картина, регистрируемая на фотопленку, расположенную перед кристаллом, называется эпиграммой. На лауэграммах дифракционные пятна располагаются по зональным кривым (эллипсам, параболам, гиперболам, прямым). Эти кривые являются сечениями дифракционных конусов плоскостью и касаются первичного пятна. На эпиграммах дифракционные пятна располагаются по гиперболам, не проходящим через первичный луч.

Для рассмотрения особенностей дифракционной картины в методе Лауэ пользуются геометрической интерпретацией с помощью обратной решетки. Лауэграммы и эпиграммы являются отображением обратной решетки кристалла. Построенная по лауэграмме гномоническая проекция позволяет судить о взаимном расположении в пространстве нормалей к отражающим плоскостям и получить представление о симметрии обратной решетки кристалла. По форме пятен лауэграммы судят о степени совершенства кристалла. Хороший кристалл дает на лауэграмме четкие пятна. Симметрию кристаллов по лауэграмме определяют по взаимному расположению пятен (симметричному расположению атомных плоскостей должно отвечать симметричное расположение отраженных лучей). (См. рис. 3)


Рис. 3 Схема съемки рентгенограмм по методу Лауэ (а – на просвет, б – на отражение, F – фокус рентгеновской трубки, К – диафрагмы, O – образец, Пл - пленка)

Метод вращения монокристалла

Метод вращения является основным при определении атомной структуры кристаллов. Этим методом определяют размеры элементарной ячейки, число атомов или молекул, приходящихся на одну ячейку. По погасаниям отражений находят пространственную группу (с точностью до центра инверсии). Данные по измерению интенсивности дифракционных максимумов используют при вычислениях, связанных с определением атомной структуры. При съемке рентгенограмм методом вращения кристалл вращается или покачивается вокруг определенного кристаллографического направления при облучении его монохроматическим или характеристическим рентгеновским излучением. Первичный пучок вырезается диафрагмой (с двумя круглыми отверстиями) и попадает на кристалл. Кристалл устанавливается на гониометрической головке так, чтобы одно из его важных направлений (типа , , ) было ориентировано вдоль оси вращения гониометрической головки. Гониометрическая головка представляет собой систему двух взаимно перпендикулярных дуг, которая позволяет устанавливать кристалл под нужным углом по отношению к оси вращения и к первичному пучку рентгеновских лучей. Гониометрическая головка приводится в медленное вращение через систему шестерен с помощью мотора. Дифракционная картина регистрируется на фотопленке, расположенной по оси цилиндрической поверхности кассеты определенного диаметра (86,6 или 57,3 мм).

При отсутствии внешней огранки ориентация кристаллов производится методом Лауэ. Для этой цели в камере вращения предусмотрена возможность установки кассеты с плоской пленкой. Дифракционные максимумы на рентгенограмме вращения располагаются вдоль прямых, называемых слоевыми линиями. Максимумы на рентгенограмме располагаются симметрично относительно вертикальной линии, проходящей через первичное пятно. Часто на рентгенограммах вращения наблюдаются непрерывные полосы, проходящие через дифракционные максимумы. Появление этих полос обусловлено присутствием в излучении рентгеновской трубки непрерывного спектра наряду с характеристическим.

При вращении кристалла вокруг главного кристаллографического направления вращается связанная с ним обратная решетка. При пересечении узлами обратной решетки сферы распространения возникают дифракционные лучи, располагающиеся по образующим конусов, оси которых совпадают с осью вращения кристалла. Все узлы обратной решетки, пересекаемые сферой распространения при ее вращении, составляют эффективную, область, т.е. определяют область индексов дифракционных максимумов, возникающих от данного кристалла при его вращении. Для установления атомной структуры вещества необходимо индицирование рентгенограмм вращения. Индицирование обычно проводится графически с использованием представлений обратной решетки. Методом вращения определяют периоды решетки кристалла, которые вместе с определенными методом Лауэ углами позволяют найти объем элементарной ячейки. Используя данные о плотности, химическом составе и объеме элементарной ячейки, находят число атомов в элементарной ячейке.

Метод порошка

При обычном методе исследования поликристаллических материалов тонкий столбик из измельченного порошка или другого мелкозернистого материала освещается узким пучком рентгеновских лучей с определенной длиной волны. Картина дифракции лучей фиксируется на узкую полоску фотопленки, свернутую в виде цилиндра, по оси которого располагается исследуемый образец. Сравнительно реже применяется съемка на плоскую фотографическую пленку.

Принципиальная схема метода дана на рис. 4.

Рис. 4 Принципиальная схема съемки по методу порошка:

1 – диафрагма; 2 - место входа лучей;

3 - образец: 4 - место выхода лучей;

5 - корпус камеры; 6 - (фотопленка)

Когда пучок монохроматических лучей падает на образец, состоящий из множества мелких кристалликов с разнообразной ориентировкой, то в образце всегда найдется известное количество кристалликов, которые будут расположены таким образом, что некоторые группы плоскостей будут образовывать с падающим лучом угол q, удовлетворяющий условиям отражения.

15.1 Физические особенности рентгеноструктурного анализа

Рентгеноструктурный анализ основан на явлении дифракции рентгеновских лучей, возникающих при рассеянии рентгеновских лучей кристаллическими веществами. Изучают расположение атомов в кристаллических материалах и процессы, связанные с перестройкой атомов в кристаллах. С помощью рентгеноструктурного анализа изучаются диаграммы состояния сплавов, определяются внутренние напряжения, размеры и ориентация кристаллитов, распад пересыщенных твёрдых растворов и решаются многие другие практически важные задачи.

Рентгеноструктурный анализ широко используется при изучении структурных несовершенств в кристаллах, присутствие которых определяет многие свойства материалов. Рентгеновская дифракция позволяет изучать мозаичную структуру кристаллов, выявлять дислокации, определять размеры субструктурных составляющих, их разориентировку, тип субзёренных границ.

Рентгеноструктурные методы изучения кристаллической структуры твёрдых тел сыграли большую роль в развитии материаловедения. Метод рентгенографии позволил определять атомно-кристаллическую структуру твёрдых тел и изучать стабильные и метастабильные состояния металлов и сплавов, а также явления, происходящие при их термической и механической обработке, и, таким образом, понять механизм структурных процессов.

Большое количество работ проведено, с целью установить связь между атомно-кристаллической структурой и свойствами материалов. В результате данные атомно-кристаллической структуры сделались необходимой характеристикой материалов. Структурные характеристики, рассчитанные по данным рентгеноструктурного анализа, широко используют при разработке режимов обработки металлов и для контроля технологических процессов.

Методики рентгеноструктурного анализа разнообразны, что позволяет получать богатую информацию о различных деталях строения материалов и его изменениях при различных методах обработке.

Рентгеновское излучение образуется при бомбардировке вещества быстро движущимися электронами. В дифракционных методах используются рентгеновские лучи с длиной волны порядка 10 -10 м = 10 -8 см = 0,1 нм, что примерно равно величине межатомных расстояний в кристаллическом веществе.

Для рентгеновской дифракции используется разность потенциалов до 50 кВ. в момент достижения электроном анода энергия электронов будет равна eU, где e - заряд электрона, U - разность потенциалов, приложенная к электродам.

При торможении электронов в мишени - зеркало анода, электрон потеряет энергию Е 1 – Е 2 , где е и Е 2 - энергии электрона до и после столкновения. Если торможение произошло достаточно быстро, то эта потеря энергии превратится в излучение в соответствии с законом:



hν = E 1 – E 2 , (15.1)

где h - постоянная Планка; ν - частота испускаемого рентгеновского излучения.

Если электрон теряет всю свою энергию при одном столкновении, то
максимальная частота возникшего излучения определяется уравнением:
hν max = eU. (15.2)

Поскольку , где с - скорость света, λ- длина волны излучения, то отсюда вытекает, что минимальное значение длины волны будет равно:

При U = 50 кВ длина λ min примерно равна 0,025нм. В большинстве случаев на своём пути электрон сталкивается с несколькими атомами, теряя при каждом соударении часть энергии, и таким образом порождая несколько фотонов, причём каждому из них соответствует волна, длина которой превышает λ min .

Таким образом, образуется белое излучение - сплошной (непрерывный) спектр, который имеет резкую границу в коротковолновой части и лишь постепенно уменьшается в сторону более длинных волн. Рисунок 15.1.

Фактически в рентгеновское излучение преобразуется менее 1 % кинетической энергии электронов. Эффективность этого превращения зависит от вещества зеркала анода и возрастает с увеличением атомного номера Z, составляющих его атомов. Комбинируя этот эффект с тем, который получается при увеличении напряжения U, можно установить, что суммарная интенсивность рентгеновского излучения примерно пропорциональна ZU 2 .

Для трубок с вольфрамовым анодом при U = 20 кВ η = 0,12%, при U = 50 кВ η = 0,27% . Чрезвычайно малые η возбуждения непрерывного спектра при относительно низком напряжении объясняются тем, что большая часть электронов (≈99%) постепенно растрачивает свою энергию при взаимодействии с атомами вещества анода на их ионизацию и повышение температуры анода.



При определённом ускоряющем напряжении возникает рентгеновское характеристическое излучение. Рисунок 15.2.

Рисунок 15.1. Непрерывный спектр, полученный от

вольфрамовой мишени

Рисунок 15.2. К-спектры Мо и Сu при 35 кВ,

α-линия представляет собой дуплет.

Интенсивность этих линий может в сотни раз превышать интенсивность всякой другой линии непрерывного спектра в том же интервале длин волн. Характеристическое излучение возникает, когда падающий электрон обладает достаточно большой энергией для того, чтобы выбить электрон с одной из внутренних электронных оболочек атома зеркала анода, и получившееся вакантное место занимает электрон с более высокого энергетического уровня, избыток энергии реализуется в виде излучения. Длина испускаемой волны определяется разностью энергий этих двух уровней, и, таким образом, повышение напряжения хотя и способствует увеличению интенсивности, но не изменяет длину волны характеристического излучения анода.

Спектры характеристических волн достаточно просты и классифицируются в порядке возрастания длин волн К, L, М - серии в соответствии с уровнем, с которого был выбит электрон. Линии К-серии получаются, если электрон выбит с наиболее глубокого К-уровня, и образовавшаяся таким образом вакансия заполняется электроном с более высокого уровня, например L или М. Если электрон выбит со следующего по глубине уровня L и замещён электроном с уровня М или N, возникают линии L-серии. Рисунок 15.3.

Рисунок 15.3. Переходы между энергетическими

уровнями, формирующие рентгеновские спектры

Каждая серия возникает только тогда, когда ускоряющее напряжение превышает определенное критическое значение U 0 , которое называется потенциалом возбуждения.

Значение потенциала возбуждения U 0 связано с самой меньшей длиной волны данной серии λ min:

Потенциалы возбуждения серий располагаются в следующем порядке: U N < U M < U L < U K . Например, для вольфрама U N = 2,81 кВ; U L = 12,1 кВ и U K = 69,3 кВ. Потенциал возбуждения данной серии растёт с увеличением атомного номера материала анода. Спектры характеристического излучения различных элементов одинаковы по своему строению.

В практике рентгеноструктурного анализа наиболее часто используется К-серия, которая состоит из четырёх линий: α 1 , α 2 , β 1, β 2 . Длины волн этих линий располагаются в последовательности λ α 1 > λ α > λ β 1 > λ β . Отношение интенсивностей этих линий для всех элементов примерно одинаково и приблизительно равно I α 1: I α 2: I β 1: I β 2 .

С увеличением атомного номера элемента спектры характеристического излучения смещаются в сторону коротких длин волн (Закон Мозли).

где σ - постоянная экранирования; ; n и m - целые числа для К-серии n = 1, для L-серии n = 2.

15.2 Источники рентгеновского характеристического излучения

Рентгеновская трубка является источником рентгеновских лучей, возникающих в ней в результате взаимодействия быстро летящих электронов с

атомами анода, установленного на пути электронов.

Для возбуждения рентгеновского излучения в рентгеновских трубках должно быть обеспечено: получение свободных электронов; сообщение свободным электронам большой кинетической энергии, от
нескольких тысяч до 1-2 миллионов электрон-вольт; взаимодействие быстро летящих электронов с атомами анода.

Рентгеновские трубки классифицируют по определённым признакам. По способу получения свободных электронов. При этом различают трубки ионные и электронные. В ионных трубках свободные электроны создаются в результате бомбардировки холодного катода положительными ионами, возникающими в разреженном до 10 -3 – 10 -4 мм рт.ст. в газе при приложении к ним высокого напряжения. В электронных трубках свободные электроны образуются вследствие термоэлектронной эмиссии катода, накаливаемого током.

По способу создания и поддержания вакуума. Используются трубки запаянные и разборные. В запаянных трубках высокий вакуум создаётся при изготовлении и сохраняется в течение всего периода эксплуатации. Нарушение вакуума вызывает выход трубки из строя. В разборных трубках вакуум создаётся и поддерживается вакуумным насосом в процессе эксплуатации.

По назначению трубки применяют для просвечивания материалов -рентгеновская дефектоскопия. Для структурного анализа – метод рентгеновской дифракции. Для медицинских целей - диагностические и терапевтические.

Основным типом трубок, применяемых в рентгеноструктурном анализе, являются запаянные электронные трубки. Рисунок 15.4.

Представляют собой стеклянный баллон, в который введены два электрода - катод в виде накаливаемой проволочной вольфрамовой спирали и анод в виде массивной медной трубки. В баллоне создаётся высокий вакуум 10 -5 – 10 -7 мм рт.ст., обеспечивающий свободное движение электронов от катода к аноду, тепловую и химическую изоляцию катода, и предотвращающий возникновение газового разряда между электродами.

Когда вольфрамовая спираль, разогретая током накала до 2100 - 2200°С, испускает электроны, то они, находясь в поле приложенного к полюсам трубки высокого напряжения, устремляются с большой скоростью к аноду. Ударяясь о площадку в торце анода (зеркало анода), электроны резко тормозятся. Примерно 1 % их кинетической энергии при этом превращается в энергию электромагнитных колебаний - рентгеновское характеристическое излучение, остальная энергия трансформируется в тепло, выделяющееся на аноде.

Рисунок 15.4. Схема запаянной электронной

рентгеновской трубки БСВ-2 для структурного

анализа: 1- катод; 2 - анод; 3 - окна для выпуска

рентгеновских лучей; 4 - защитный цилиндр;

5 - фокусирующий колпачок

Относительно мягкие лучи, испускаемые обычно трубками для структурного анализа с длиной волн 0,1 нм и больше, очень сильно поглощаются стеклом. Поэтому для выпуска рентгеновских лучей в баллоны этих трубок впаивают специальные окна, изготовленные либо из сплава гетан, содержащего легкие элементы (бериллий, литий, бор), либо из металлического бериллия.

Фокусом трубки называют площадку на аноде, на которую падают электроны и от которой излучаются рентгеновские лучи. Современные рентгеновские трубки имеют круглый или линейчатый фокус. Соответственно катод выполняют либо в виде спирали, помещённый внутри фокусирующей чашки, либо в виде винтовой линии, находящейся внутри полуцилиндра.

Анод рентгеновской трубки для структурного анализа представляет собой полый массивный цилиндр, изготовленный из материала с высокой теплопроводностью, чаще всего из меди. В торцовую стенку анода впрессовывают пластинку - антикатод (зеркало анода), который тормозит электроны, эмитированные с катода. В трубках для структурного анализа зеркало анода изготавливают из того металла, характеристическое излучение которого используют для получения дифракционной картины при решении конкретных задач рентгеноструктурного анализа.

Наиболее распространены трубки с анодами из хрома, железа, ванадия, кобальта, никеля, меди, молибдена, вольфрама, применяют трубки с серебряным и марганцевым анодами. Торец анода в трубках для структурного анализа срезан под углом 90° к оси анода.

Важнейшей характеристикой трубки является предельная мощность:

P = U·I Вт (15.6)

где U - значение высокого напряжения, В; I - ток трубки, А.

В некоторых задачах рентгеноструктурного анализа, особенно требующих получения рентгенограмм с высоким разрешением, эффективность съёмки зависит от размеров фокуса и, значит, определяется удельной мощностью трубки - мощностью, испускаемой единицей площади антикатода. Для таких условий предназначены острофокусные трубки, например, БСВ-7, БСВ-8, БСВ-9 и микрофокусная трубка БСВ-5.

15.3 Методы регистрации характеристического

рентгеновского излучения

Для регистрации рентгеновских лучей применяют ионизационный, фотографический, электрофотографический и люминесцентный методы.

Ионизационный метод позволяет с большой точностью измерять интенсивность рентгеновских лучей на сравнительно небольшой площади, ограничиваемой измерительными щелями. Метод широко применяется в рентгеноструктурном анализе, когда необходимо знание точного соотношения интенсивностей и профиля дифракционных максимумов.

Фотографический метод регистрации дифракционных максимумов получил широкое распространение. Обладает документальностью и высокой чувствительностью. К недостаткам метода относится необходимость использовать фотографический материал, что усложняет регистрацию рентгеновского излучения.

Электрофотографический метод (ксерорадиография) - сравнительно простой метод, преимущество которого заключается в возможности последовательно получать на одну пластинку большое число снимков.

Метод наблюдения изображения на светящемся экране обладает большой производительностью, не требует затрат на фотоматериалы. Одним из недостатков метода является малая чувствительность при выявлении дефектов, (тсутствие документальности.

Ионизационный метод.

Рентгеновские лучи, проходя через газ, ионизуют его молекулы. В результате образуется одинаковое число ионов различного знака. При наличии электрического поля возникающие ионы начинают двигаться к соответствующим электродам. Ионы, достигшие электродов, нейтрализуются, и во внешней цепи появится ток, который регистрируется. Рисунок 15.5.

Рисунок 15.5. Зависимость ионизационного тока i

от напряжения на электродах U: I - область насыщения;

II - область полной пропорциональности; III – область

неполной пропорциональности; IV - область равных импульсов

Дальнейшее увеличение напряжения до U = U 2 не вызывает увеличения ионизационного тока, возрастает лишь скорость ионов. При U ≥ U 2 скорость ионов становится достаточной для ионизации молекул газа через столкновение - ударная ионизация и ток начинает возрастать с увеличением напряжения за счёт газового усиления. Коэффициент газового усиления до U ≤ U 3 линейно зависит от приложенного напряжения - область полной пропорциональности, и может достигать 10 2 – 10 4 .

При U ≥ U 3 наблюдается нарушение линейности газового усиления -область неполной пропорциональности. При U ≥ U 4 в случае прохождения между электродами фотона с энергией, достаточной для образования хотя бы одной пары ионов, возникает лавинный разряд - область равных импульсов, при котором прохождению ионизирующих частиц различной энергии отвечает возникновение одинаковых импульсов тока. Дальнейшее повышение напряжения приводит к возникновению самостоятельного разряда.

Ионизирующее действие рентгеновских лучей используют для их регистрации. Применяют приборы, работающие в различных областях газового разряда:

Ионизационные камеры - в области насыщения;

Пропорциональные счётчики - в режиме полной пропорциональности;

Газоразрядные счётчики - в области равных импульсов.

Ионизационные камеры.

Работают в режиме насыщения. Напряжение насыщения зависит от формы электродов и расстояния между ними. Для абсолютных измерений дозы рентгеновского излучения используют нормальные камеры, которые могут быть цилиндрической или плоской формы. Камера имеет три изолированных от корпуса электрода, выполненных в виде стержней или трубочек диаметром несколько миллиметров: один измерительный «А» и два защитных «В».

Пропорциональные счётчики.

При увеличении напряженности электрического поля в ионизационной камере образующиеся под действием рентгеновских лучей электроны могут приобрести энергию достаточную для ударной ионизации нейтральных молекул газа. Возникающие при вторичной ионизации электроны могут создавать дальнейшую ионизацию. Коэффициент газового усиления 10 4 – 10 6 .

Камеры, работающие в условиях газового усиления, называют пропорциональными счётчиками, так как при попадании в них кванта ионизирующего излучения на электродах возникает импульс, пропорциональный энергии этого кванта. Особенно широко применяют пропорциональные счетчики для регистрации длинноволнового рентгеновского излучения.

Счётчики Гейгера.

Если напряжение на аноде пропорционального счётчика достаточно велико, то выходные импульсы не будут пропорциональны первичной ионизации и их амплитуда, при определенном напряжении, достигает постоянного значения, не зависящего от типа ионизирующих частиц. Этот режим работы счётчика называют областью равных импульсов или областью Гейгера.

В области равных импульсов при попадании в счётчик кванта излучения возникает электронная лавина, которая при движении к аноду возбуждает атомы благородного газа, наполняющего счётчик. Возбужденные атомы испускают кванты ультрафиолетового излучения, которое способствует дальнейшему распространению разряда вдоль нити анода. Счётчики с органической добавкой имеют ограниченный срок службы из-за за разложения гасящей добавки 10 8 – 10 9 отсчётов. Галогенные счётчики могут отсчитывать до 10 12 – 10 13 импульсов.

Счётчики характеризуются параметрами: эффективностью, мёртвым временем и стабильностью.

Промежуток времени, в течение которого счётчик не способен зарегистрировать вновь поступающие кванты излучения, называют мёртвым временем, которое определяется временем движения к катоду положительных ионов, в счётчиках Гейгера составляет 150-300 мкс.

Для рентгеноструктурного анализа выпускают счётчики типа МСТР-3 для длинноволновой области спектра, λ = 0,15 – 0,55 нм, МСТР-5 для коротковолновой области спектра, λ = 0,05 – 0,2 нм и счётчик МСТР-4.

Сцинтилляционные счётчики.

Сцинтилляционные счётчики являются одними из наиболее совершенных приборов для измерения интенсивности рентгеновского излучения. Счётчики состоят из прозрачного люминесцирующего кристалла - сцинтиллятора и фотоэлектронного умножителя (ФЭУ). В качестве сцинтилляторов применяют кристаллы NaI или КI, активированные небольшой примесью таллия. Условное обозначения - NaI (TI) или КI (ТI).

Особенностью сцинтилляционных счётчиков является пропорциональна зависимость между ионизирующей способностью частицы и, следовательно энергией и амплитудой импульса напряжения на выходе фотоумножителя Наличие такой зависимости позволяет с помощью амплитудных анализаторов выделять импульсы, отвечающие квантам определённой энергии - измерять интенсивность излучения, отвечающего определенной длине волны. Мёртвое время счётчиков составляет 1-3 мкс, что позволяет доводить скорость счёта до 5·10 4 без заметного просчёта.

Полупроводниковые счётчики.

Для регистрации рентгеновского излучения нашли применение полупроводниковые (германиевые и кремниевые) счётчики. Счётчиком является полупроводниковый диод с р-п-переходом, к которому приложено в непроводящем направлении напряжение смещения. Напряжение смещения расширяет слой, обедненный носителями заряда, создавая достаточно чувствительный эффективный объём для детектирования ионизирующих частиц.

Фотографический метод регистрации.

Для фотографической регистрации рентгеновских лучей применяется специальная рентгеновская плёнка. Фотографическое действие рентгеновских лучей производит лишь та их доля, которая поглощается в фотоэмульсии. Эта доля зависит от длины волны рентгеновских лучей и понижается с уменьшением длины волны. Слой эмульсии рентгеновской плёнки поглощает ~30% энергии рентгеновских лучей при длине волны 0.11 нм и только 1% при длине волны 0,04 нм. Повышение чувствительности плёнки к коротковолновому излучению может быть достигнуто применением усиливающих экранов.

Ксерорадиографический метод (ксерография).

Этот метод сохраняет основные преимущества фотографического метода, но более экономичен. В методе применяют специальные пластинки из алюминия, на которые способом вакуумного напыления наносят слой аморфного селена толщиной 100 мкм. Перед рентгеновской съёмкой пластинку помещают в специальное зарядное устройство.

Люминесцентный метод.

Некоторые вещества под действием рентгеновских лучей светятся видимым светом. Энергетический выход такого свечения невелик и составляет несколько процентов от поглощенной энергии рентгеновских лучей.

Особый интерес представляют люминофоры - вещества, дающие наибольший выход видимого свечения. Наилучшим люминофором с желто-зеленым свечением является смесь Zs + CdS. Эта смесь при различных соотношениях между компонентами позволяет получать свечение с различным спектральным составом.

15.4 Дифракция рентгеновского излучения

По отношению к дифракции рентгеновских лучей кристалл

рассматривается как трехмерная дифракционная решётка. На линейную дифракционную решётку падает плоская монохроматическая волна. Рисунок 15.6.

Рисунок 15.6. Дифракция от плоской решётки

Каждое отверстие в решётке становится источником излучения той же длины волны λ. В результате интерференции волн, испускаемых всеми отверстиями в решётке, образуются дифракционные спектральные линии различных порядков: нулевого, первого, ...n-го. Если разность хода лучей, идущих от соседних отверстий в каком-либо направлении составляет одну длину волны, то в этом направлении возникает спектральная линия 1-го порядка. Спектральная линия 2-го порядка возникает при разности хода 2λ, спектр n-го порядка - при разности хода nλ. Для возникновения дифракционного максимума разность хода должна быть равна nА, где n - целое число, должно выполняться соотношение: а(соsα ± соsλ 0) = nλ

В кристалле а,b, с - длины осей кристаллической решётки, α 0 , β 0 , γ 0 , α, β, γ - углы, образуемые с осями первичным и дифрагированным лучами.

Возникновение дифракционного максимума от трёхмерной кристаллической решётки определяется системой уравнений Лауэ:

где h, k, l - целые числа, называемые индексами отражения или индексами Лауэ.

Уравнение Брега определяет условие дифракции рентгеновского излучения, возникающее при прохождении рентгеновских лучей через кристалл, и имеют такое направление, что их можно рассматривать как результат отражения падающего пучка от одной из систем плоскостей решётки. Отражение происходит, когда удовлетворяется условие:

2d sinθ = nλ, (15.8)

где θ - угол падения первичного пучка рентгеновских лучей на кристаллографическую плоскость, d - межплоскостное расстояние, n - целое число. Рисунок 15.7.

Рисунок 15.7. Схема вывода закона Брегга

В соответствии с уравнениями Лауэ каждое отражение характеризуется индексами (hkl), индексы Миллера () определяют систему кристаллографических плоскостей в решётке. Индексы Миллера не имеют общего множителя. Имеются соотношения между индексами Лауэ (hkl) и индексами Миллера (h’k’l’): h = nh’, k = nk", l = n1"

Система индексов Лауэ с общим множителем n, означает, что наблюдается отражение n-го порядка от плоскостей решётки с индексами Миллера (h’ k’ l’).

Например, отражения с индексами Лауэ (231), (462), (693) являются отражениями 1-го, 2-го и 3-го порядков от плоскостей решетки с индексами Миллера (231).

В случае кубической системы межплоскостное расстояние d и параметр элементарной ячейки «а» связаны соотношением:

где (h’k’l’) ксы Миллера.

Таким образом, для кубического кристалла уравнение Брегга может быть написано в виде:

При использовании индексов Лауэ уравнение (15.10) будет выглядеть более просто:

Значения индексов Лауэ и Миллера для кристаллов разных кристаллических групп (сингоний) приводятся в различной справочной литературе по рентгеноструктурному анализу.

15.5 Методы индицирования дифракционных спектров

Межплоскостные расстояния d i отвечающие отдельным значениям углов отражения в θ i , связаны между собой следующим уравнением:

В уравнении (15.12) a, b, c, α, β, γ обозначают периоды элементарной ячейки и осевые углы, hkl - индексы рассматриваемой плоскости кристаллической решётки.

Зная периоды элементарной ячейки любого вещества, можно для каждой плоскости, характеризуемой определенными значениями индексов (hkl) подсчитать из уравнения (15.12) соответствующие межплоскостные расстояния d hkl .

На практике определяют периоды элементарной ячейки, исходя из известных значений d i . Проблема была бы относительно простой, если бы были известны три целые числа (индексы), соответствующие отдельным значениям d i . Тогда можно было бы использовать шесть значений d hkl из системы уравнений (15.12) и подсчитать неизвестные постоянные: a, b, с, α, β, γ.

Уравнение (15.12) значительно упрощается для кристаллических веществ с высокой симметрией. Поэтому следует начинать с индицирования рентгенограммы материала с кубической структурой.

Индицирование материалов с кубической структурой

Для кубической решётки a = b = с, α = β = γ =90°. После подстановки в уравнение (15.12) и после вычисления определителей, уравнение преобразуется к виду:

Из уравнения Вульфа-Бреггов следует:

Следовательно:

В результате измерений рентгенограммы после пересчёта дуг на углы получаем ряд значений θ i , и sinθ i ;. Эти величины можно обозначить порядковыми «i», в порядке их возрастания, но нельзя применить свойственные им индексы hkl. Экспериментально известны значения sin 2 θ i , не sin 2 θ hkl .

Проблема расшифровки рентгенограмм материалов с кубической структурой сводится к подбору значений ряда целых значений. Эту задачу невозможно решить однозначно без дополнительных условий.

Поэтому используются различные методы индицирования полученных рентгенограмм: метод разностей, веерные диаграммы, различные номограммы и многое другие специальные методы.

15.6 Качественный рентгеновский фазовый анализ

Фазовым анализом называется установление числа фаз в данной системе и их идентификация. Рентгеновский метод фазового анализа основан на том, что каждое кристаллическое вещество даёт специфическую интерференционную картину с определенным количеством, расположением и интенсивностью интерференционных линий, которые определяются природой и расположением атомов в данном веществе.

Каждая фаза обладает своей кристаллической решёткой. Семейства атомных плоскостей, образующих эту решётку, обладают своим, характерным только для данной решётки набором значений межплоскостных расстояний d hkl . Знание межплоскостных расстояний объекта позволяет охарактеризовать его кристаллическую решётку и установить во многих случаях вещество или фазу. Данные о межплоскостных расстояниях для различных фаз приводятся в справочной литературе.

Определение фазового состава поликристаллических веществ по их межплоскостным расстояниям является одной из наиболее распространённых и сравнительно легко решаемых задач рентгеноструктурного анализа.

Эта задача может быть решена для любого поликристаллического вещества независимо от типа его кристаллической решётки.

Из формулы Вульфа- Брэгга (nλ = 2dsinθ) следует:

λ - длина волны характеристического излучения, в котором получена рентгенограмма, величина известная, то задача определения межплоскостных расстояний сводится к определению дифракционных углов θ.

Практически нет двух кристаллических веществ, которые обладали бы одинаковой во всех отношениях кристаллической структурой, поэтому рентгенограммы почти однозначно характеризуют данное вещество и никакое другое. В смеси нескольких веществ каждое из них даёт свою картину рентгеновской дифракции независимо от других. Полученная рентгенограмма смеси представляет собой сумму ряда рентгенограмм, которые получились бы, если бы поочередно снимали каждое вещество в отдельности.

Дифракционный рентгеновский анализ - единственный прямой способ идентификации фаз, которые может иметь даже одно и то же вещество. Например, анализ шести модификаций SiO 2 , модификаций оксидов железа, кристаллических структур сталей и других металлов и сплавов.

Рентгеновский фазовый анализ широко используется в металлургическом производстве для изучения исходных материалов: руды, продуктов обогащения флюсов, агломератов; продуктов плавки при получении сталей; для анализа сплавов при их термической и механической обработке; для анализа различных покрытий из металлов и их соединений; для анализа продуктов окисления и во многих других отраслях промышленности.

К достоинствам рентгеновского фазового анализа следует отнести: высокую достоверность и экспрессность метода. Метод прямой, основан не на косвенном сравнении с какими-либо эталонами или изменениями свойств, а непосредственно даёт информацию о кристаллической структуре вещества, характеризует каждую фазы. Не требует большого количества вещества, анализ можно проводить без разрушения образца или детали, метод допускает оценку количества фаз в смеси.

Применение дифрактометров с ионизационной регистрацией интерференционных линий, например, установок УРС-50ИМ, ДРОН-1, ДРОН-2.0 и других приборов, приводит к повышению чувствительности фазового анализа. Это связано с тем, что при фокусировке по Брэггу - Брентанно рассеянные лучи не фокусируются, и поэтому уровень фона здесь значительно ниже, чем при фотографическом методе регистрации.

15.7. Количественный рентгеновский фазовый анализ

Все разработанные методы количественного фазового анализа основаны на устранении, или на учёте причин, вызывающих отклонение от пропорциональности между концентрацией фазы и интенсивностью интерференционной линии, по которой определяется содержание фазы.

15.7.1 Метод гомологических пар.

Метод используется при фотографической регистрации рентгенограммы и не требует применения эталонного образца и может использоваться для двухфазных систем при условии, что коэффициент поглощения определяемой фазы заметно не отличается от коэффициента поглощения смеси.

Это условие может выполняться в некоторых сплавах, например в двухфазной (α+β)-латуни, в закаленной стали, содержащей остаточный аустенит и мартенсит. Метод может быть применен также к анализу трёхфазной смеси, если содержание третей фазы не выше 5%.

Принцип, положенный в основу метода - коэффициент поглощения анализируемой фазы не отличается от коэффициента поглощения смеси и плотность почернения интерференционной линии D на плёнке находится в линейной части характеристической кривой фотографической эмульсии:

D 1 = k 1 x 1 Q 1 , (15.17)

где k 1 - коэффициент пропорциональности, зависящий от фотообработки и условий получения рентгенограммы; x 1 - массовая доля фазы; Q 1 - отражательная способность кристаллической плоскости (h 1 k 1 l 1).

Если пара близких линий от фаз имеет одинаковые плотности почернений, то, поскольку обе линии находятся на одной рентгенограмме, можно считать k 1 = k 2 и поэтому x 1 Q 1 = x 2 Q 2 , где x 1 и х 2 содержание фаз, входящих в состав материала, Q 1 и Q 2 - отражательные способности соответствующих плоскостей. Учитывая, что x 1 + х 2 = 1 получаем:

Погрешность количественного фазового анализа, при использовании гомологических пар составляет ~ 20%. Использование специальных методов для оценки интенсивности линий снижает относительную погрешность анализа до 5%.

15.7.2 Метод внутреннего стандарта (метод подмешивания).

Количественный фазовый анализ двух- и многофазных смесей можно проводить, подмешивая в порошкообразный образец определенное количество х s эталонного вещества (10 - 20%), с интерференционными линиями которого сравнивают линии определяемой фазы. Метод использовать как при фотографической, так и при ионизационной регистрации дифракционной картины.

Необходимо, чтобы эталонное вещество удовлетворяло следующим условиям: линии эталона не должны совпадать с сильными линиями определяемой фазы; массовый коэффициент поглощения для эталонного вещества μ a должен быть близок к коэффициенту поглощения ц.а анализируемого образца; размер кристаллитов должен составлять 5 - 25 мкм.

Принцип метода - на рентгенограмме, полученной после подмешивания эталонного вещества, интенсивность интерференционной линии анализируемой фазы рассчитывается по уравнению:

Отношение I a /I s представляет собой линейную функцию от х a . Определив отношение для ряда смесей с известным содержанием анализируемой фазы, строят градуировочный график. Для сравнения интенсивностей выбирают определенную пару линий с индексами (h 1 k 1 l 1) определяемой фазы и (h 2 k 2 l 2) эталонного вещества.

15.7.3 Фазовый анализ при наложении линий определяемых фаз.

В некоторых случаях невозможно получить линии определяемой фазы без наложения других линий, в частности линий стандартного вещества. Измеряют суммарную интенсивность наложенной линии I i и сравнивают интенсивности хорошо разрешенной линии стандартного вещества I 1 . Расчёт проводится по формуле:

где х a - массовая доля анализируемой фазы.

Для проведения анализа строят прямолинейный график, который не проходит через начало координат. Для его построения нужны три эталонные смеси.

15.7.4 Метод измерения отношений интенсивностей аналитических линий.

Метод применим для анализа многофазных смесей, когда все компоненты являются кристаллическими фазами. На дифрактометре измеряют интенсивность аналитических (реперных) линий I 1 , I 2 ...1 n по одной для каждой фазы. Составляют систему (n - 1) уравнений:

где х 1 х 2 , ... х n - массовые доли фаз.

Этим методом проводится количественный фазовый анализ сложных по составы материалов с относительной погрешностью 1 - 3%.

15.7.5 Метод измерения массового коэффициента поглощения.

Для чистой фазы для смеси , для отношения

интенсивностей:

где μ - коэффициент поглощения образца; μ 1 - коэффициент поглощения 1-й фазы.

Измерив, коэффициент поглощения образца μ и интенсивность линий I 1 1-й фазы, можно определить массовую долю фазы х i . Значения (I i) 0 и μ i находят из однократного измерения на эталонном образце из чистой фазы. Погрешность определения ц, этим методом составляет 2 - 3%.

15.7.6 Метод «внешнего стандарта» (независимого эталона).

Метод применяют в тех случаях, когда образец нельзя превратить в порошок, также часто используют для стандартизации условий съёмки.

Отношение времени съёмки эталона τ s и образца τ a определяется отношением дуг, занимаемых эталоном I s и образцом I a на окружности цилиндра радиусом, равным радиусу образца.

Таким образом, меняя I s можно изменять отношение линий эталона и образца. Строится градуировочный график для определенного отношения I s /I a и определенной пары интерференционных линий. Для этого производят съёмку смесей с известным содержанием фазы и промеряют интенсивности линий образца (I h 1 k 1 l 1) и эталона (I h 2 k 2 l 2) s . Неизвестное содержание фазы определяется по градуировочному графику из отношения интенсивностей.

При использовании дифрактометра проводится периодическая съёмка эталонного вещества. Анализ проводят с помощью построенного по эталонным смесям градуировочного графика .

Метод внешнего стандарта целесообразно использовать там, где требуется проведение серийного фазового анализа с большой экспрессностью, и где анализируемые образцы имеют качественно однородный и сравнительно постоянный количественный состав.

15.7.7 Метод наложения.

Метод наложения разработан для двухфазного вещества и основан на визуальном сравнении рентгенограмм изучаемого и эталонного вещества. Рентгенограмма наложения получается попеременным экспонированием на одну рентгенограмму чистых компонентов сплава, один из которых экспонируется в течение времени τ 1 другой - в течение времени τ 2 .

Для получения рентгенограмм наложения можно использовать образец в виде шлифа, состоящего из двух цилиндрических секторов, один из которых представляет собой чистую фазу 1, другой - фазу 2. Шлиф ориентирован под углом ψ по отношению к первичному пучку s 0 и вращается вокруг оси АА, перпендикулярной к поверхности шлифа. Рисунок 15.8.

Рисунок 15.8. Схема съёмки методом наложения

При вращении шлифа фазы 1 и 2 попеременно попадают под первичный пучок. Время экспонирования каждой фазы определяется углом раствора соответствующего сектора:

Меняя угол α, можно получить рентгенограммы, соответствующие различным концентрациям фаз 1 и 2.

При съёмке рентгенограмм наложения по методу шлифа интенсивность линии I 1 ’ структурного компонента сплава определяется формулой:

где Q 1 - отражающая способность плоскости с индексами (h 1 k 1 l 1); μ 1 - линейный коэффициент поглощения фазы 1; k 1 - коэффициент, зависящий от брегговского угла θ и условий съемки; ν 1 = соsecψ + соsec(2ν 1 – ψ); ψ - угол между первичным лучом и плоскостью шлифа.

Аналогично для фазы 2. Абсолютная погрешность метода наложения Δc ~ 5% в интервале концентраций 10 - 90%. Достоинством метода является его экспрессность.

15.8. Методы практического расчёта параметров элементарной ячейки

Для определения периодов кристаллической решётки необходимо рассчитать межплоскостные расстояния выбранных дифракционных отражений, определить их индексы интерференции - индицирование отражений. После индицирования рентгеновских максимумов по записанной дифрактограмме период кристалла кубической сингонии определяется по формуле:

Период кристаллической решётки основной фазовой составляющей сплава рассчитывается по нескольким отражениям с достаточно большими дифракционными углам θ > 60°. Ошибка при расчёте периодов определяется для используемых отражений по формуле:

Δa = a·ctgθΔθ (15.25)

Δа зависит от угла θ, поэтому значения периода, полученные от разных дифракционных максимумов нельзя усреднять. За окончательную величину периода кристалла принимают значения для отражений с максимальным дифракционным углом, либо среднее из значений отражений под углом больше 70°. Наиболее точное значение периода получают методом графической экстраполяции с построением графика зависимости a = f(θ) и экстраполяцией величины периода до угла θ = 90°. Используются различные экстраполяционные зависимости.

Для кристаллов кубических сингонии наиболее лучшие результаты даёт экстраполяционная функция Нельсона-Райли. Рисунок 15.9.

Рисунок 15.9. Экстраполяция при определении периода

кубических сингоний: а – алюминий; б - медь

При правильном выборе экстраполяционных функций экспериментальные точки отклоняются от прямой, величина этих отклонений определяется случайной ошибкой эксперимента. Вид экстраполяционной прямой характеризует систематическую погрешность.

Поскольку ошибка в определении периода элементарной ячейки существенно зависит от угла дифракции, поэтому для точного определения периодов решётки следует подбирать подходящие характеристическое излучение (аноды рентгеновских трубок). Углы дифракции в прецизионной области для кубических кристаллов с периодами 0,3 - 0,5 нм в зависимости от длины волны применяемого излучения приводятся в справочной литературе.

Для кристаллов всех сингоний, кроме кубической, межплоскостные расстояния в общем случае зависят от всех линейных параметров решётки. Для определения периодов необходимо использовать столько линий, сколько различных линейных параметров в решётке данной сингоний.

Для тетрагональной сингонии расчёт параметров проводится по формулам:

Для гексагональной сингонии расчёт периодов проводится по формулам:

Ошибка в расчёте параметров элементарной ячейки:

Графический метод для точного определения размеров элементарной ячейки кубических и одноосных кристаллов даёт результаты достаточно высокой точности, но для кристаллов с более низкой симметрией рациональный использовать аналитический метод (метод Когена). Для кристаллов - ромбических, моноклинных или триклинных, может оказаться неприменимым и метод Когена, так как наличие большого числа линий делает невозможным однозначное индицирование отражений высших порядков. Это затруднение можно свести к минимуму, используя длинноволновое излучение, тогда увеличение угла - расстояния между линиями, приводит к уменьшению их общего числа и, следовательно, к повышению вероятности однозначного индицирования.

Метод Когена - это обработка экспериментальных данных с помощью алгоритма наименьших квадратов, что позволяет свести к минимуму случайные ошибки, при этом систематические ошибки исключают, применяя подходящую экстраполяционную функцию. В методе не принимается во внимание увеличивающаяся точность экспериментальных данных при приближении брегговского угла θ к 90°.

Таким образом, разработано и используется различные методы прецизионного расчёта параметров элементарных ячеек, которые имеют большое практическое применение при изучении формирования твёрдых растворов металлических сплавов, фазовых и структурных превращений при различных методах термической обработки и во многих других технически важных случаях в материаловедении, физики, твёрдого тела.

Положения линий рентгеновской дифракции от образца при работе на дифрактометре со счётчиком устанавливают по распределению интенсивности в дифрагируемом излучении.

За максимум можно принять точку пересечения с дифракционным профилем линии, соединяющей середины горизонтальных хорд, которые проведены на разных высотах. Если дифракционный профиль линии асимметричен, то все эти приёмы дадут неодинаковые значения для дифракционного угла.

Использование центра тяжести дифракционного пика наиболее точный метод, поскольку расчёт максимума дифракционной линии не зависит от симметрии линии. Для правильного отсчёта нужно иметь полный дифракционный профиль линии.

Для нахождения положения максимумов интенсивности определяют положение середины отрезков (хорд), соединяющих точки профиля линии, лежащие по разные стороны от максимума и имеющие равные интенсивности. Интенсивность линии определяют как разность между измеренной интенсивностью и интенсивностью фона, изменение которого в пределах линии считается линейным. Полученные точки соединяют кривой, которая экстраполируется до профиля линии. Рисунок 15.10.

Рисунок 15.10. Определение максимума интенсивности

рентгеновского отражения методом хорд

Рисунок 15.11. Схема определения центра тяжести

дифракционного максимума

Определение центра тяжести дифракционного максимума является более трудоёмкой операцией. Рисунок 15.11.

Положение центра тяжести определяют в единицах х, затем переводят в единицы 2θ по формуле:

где θ 1 и θ 2 - значение углов (в градусах), соответствующих началу и концу

участка измерений.

Определение центра тяжести состоит из следующих операций: разбиение интервала углов, в котором интенсивность линии отлична от нуля на n отрезков; измерение интенсивности в каждой точке х i расчёт положения центра тяжести по формуле (15.30).

15.9 Методы расчёта структурных параметров

кристаллических материалов

15.9.1 Особенности расчёта структурных параметров

Внутренние напряжений, отличаются объёмами, в которых они уравновешиваются:

Макронапряжения, которые уравновешиваются в объёме всего образца или изделия, при наличии макронапряжений удаление какой-либо части детали приводит к нарушению равновесия между остальными частями, что вызывает деформирование (коробление и растрескивание) изделия;

Микронапряжения уравновешиваются в пределах отдельных кристаллов и могут быть как неориентированными, так и ориентированными в направлении усилия, вызвавшего пластическую деформацию;

Статические искажения кристаллической решётки, которые уравновешиваются в пределах небольших групп атомов. В деформированных металлах статические искажения уравновешиваются в группах атомов, лежащих у границ зёрен, плоскостей скольжения и других типах границ. Такие искажения могут быть связаны с дислокациями.

Смещения атомов из идеальных положений (узлов решётки) могут возникать в твёрдых растворах из-за различия размеров атомов и химического взаимодействия между одноименными и разноименными атомами, образующими твёрдый раствор.

Напряжения разных типов приводят к различным изменениям рентгенограмм и дифрактограмм, что позволяет изучать внутренние напряжения рентгенографическим методом.

Результаты, полученные методами рентгеноструктурного анализа, широко используются при разработке новых сплавов, при назначении параметров обработки, контроле технологических процессов. Изучение структуры материалов даёт возможность выявить влияние структурных характеристик на физико-механические свойства материалов. Методы рентгеноструктурного анализа разнообразны, что позволяет получать ценную информацию о структуре металлов и сплавов, которую получить другими методами невозможно.

15.9.2 Методы определения величины микронапряжений

и кристаллических блоков методом аппроксимации

Микроискажения кристаллитов приводят к уширению интерференционных линий на рентгенограммах, которое можно характеризовать величиной Δd/d, где Δd максимальное отклонение межплоскостного расстояния для данной интерференционной линии от его среднего значения d. Рисунок 15.12.

Рисунок 15.12. Расположение семейства атомных плоскостей:

а - отсутствие микронапряжений; б - при наличии микронапряжений

При наличии микронапряжений каждая система атомных плоскостей с одинаковыми индексами интерференции (hkl) имеет вместо строго определённого межплоскостного расстояний d hkl межплоскостное расстояние d + Δd. Величина микронапряжений оценивается по величине относительной деформации кристаллической решётки металлов: . Для кристаллов кубической сингонии: .

Эффект расширения линий на дифрактограмме вызывают также дисперсность кристаллических блоков (ОКР). На ширину линий влияет расходимость первичного рентгеновского характеристического излучения, поглощение материалом образца, расположение и размеры осветительных и аналитических диафрагм - геометрический фактор, наложение или неполное разделение α 1 – α 2 дуплета.

Если известно физическое состояние образца, из которого можно заключить, что физическое уширение линии β с индексами интерференции (hkl) вызвано только наличием микронапряжений или только дисперсностью блоков когерентного рассеяние D hkl меньше 0,1 мкм, то величина искажений решётки в направлении перпендикулярном плоскости отражения (hkl) и размер кристаллических блоков, рассчитываются по формулам:

где λ - длина волны рентгеновского характеристического излучения.

В большинстве случаев в изучаемых металлических сплавах уширение дифракционных отражений вызвано, кроме геометрических факторов наличием микронапряжений и дисперсностью кристаллических блоков. В этом случае расчёт по формулам (15.31) возможен только после выделения факторов m -дисперсность кристаллических блоков и n - наличие микронапряжений в физическом уширении β каждого выбранного дифракционного максимума.

Анализ распределения интенсивности в рентгеновском отражении даёт возможность установить, что величина В - истинное уширение линии, свободное от наложения дуплета α 1 – α 2 связана с физическим уширением линии и b - истинное геометрическое уширение эталона свободное от наложения дуплета, определяются выражением:

Функции g(х) и f(х) определяют угловое распределение интенсивности дифракционного отражения из-за одновременного воздействия геометрии съёмки, наличия микронапряжений и дисперсности областей когерентного рассеяния. Эти функции аппроксимируются различными выражениями, которые с различной степенью точности описывают распределение интенсивности в рентгеновских отражениях. Для металлов с кубическими решётками Бравэ результаты достаточно большой точности даёт аппроксимация по выражению:

При известной аппроксимирующей функции истинное физическое уширение β определяется при съёмке на дифрактометре или фотометодом двух максимумов от изучаемого образца и эталона. Одна из линий имеет небольшой угол отражения с небольшой суммой квадратов индексов интерференции, второй максимум записывается с максимально возможным углом отражения с большой суммой квадратов индексов Миллера, аналогичные максимумы записываются от образца-эталона.

Определив полуширину дифракционных отражений, получают экспериментальное уширение и изучаемого образца «В» и эталона «b».

Экспериментальные общие уширения В и b, полученные при съёмке в характеристическом рентгеновском излучении, являются наложением дуплета α 1 – α 2 . Поэтому необходимо ввести поправку на дуплетность, которая рассчитывается по уравнению:

Схематически метод выделения из экспериментальной ширины рентгеновского максимума компоненты α 1 приводится на рисунке 15.13 (метод Решингера).

Экстропаляционная функция выбирается в зависимости от формы профиля дифракционных максимумов. По исправленным на дуплетность максимумов находят физическое уширение β:

Рисунок 15.13. Схема введения поправки на

дуплетность дифракционного отражения

После выделения физического фактора уширения рентгеновских максимумов следует провести оценку доли влияния дисперсности кристаллических блоков и наличия микронапряжений.

В случае, если кристаллические блоки крупнее 0,1 мкм, то физическое уширение вызвано только микронапряжениями:

из которой следует, что уширение пропорционально tgθ.

В случае, если в образце нет микронапряжений, но кристаллические блоки меньше 0,1 мкм, то физическое уширение вызвано только дисперсностью блоков:

Уширение обратно, пропорционально соsθ.

В большинстве случаев, в металлических сплавах уширение рентгеновских максимумов вызвано обоими факторами: микронапряжениями и дисперсностью кристаллических блоков. В этом случае из физического фактора уширения β нужно выделить m - уширение, вызванное малостью блоков и n - уширение, вызванное наличием микронапряжений:

где N(х) - функция наличия микронапряжений; М(х) - функция, определяющая дисперсность кристаллических блоков.

Уравнение (15.38) с двумя неизвестными неразрешимо, поэтому необходимо использовать две линии дифрактограммы или рентгенограммы, для которых физические факторы уширения будут равны:

Разделим кривую физического уширения на элементы с основанием dу и высотой f(y). На каждый такой элемент действует функция геометрического уширения g(х), что приводит к его размытию в кривую, подобную, g(х). Площадь этого элемента по-прежнему равна f(y)dy. Экспериментальная кривая h(х), полученная от образца, представляет собой наложение множества таких размытых элементов:

Уравнение (15.41) - свёртка функций f(х) и g(х), из симметрии уравнения следует:

Функции h(х), g(х) и f(х) можно выразить через интегралы Фурье:

В уравнениях (15.43) коэффициенты h(х), g(х) и f(х) представляют собой трансформанты Фурье и могут быть выражены уравнениями:

Уравнение (15.45) можно представить в виде:

Учитывая, что lgA БЛ зависит от L, поэтому если получить по нескольким линиям дифрактограммы графики в координатах lgA БЛ для разных дифракционных отражений, то можно определить lgA БЛ и lgA МК.

Номер коэффициента Фурье n связан с расстоянием в кристаллической решётке L уравнением:

где Δ(2θ) - величина интервала разложения экспериментального максимума в радианах для выбранных линий дифрактограммы.

Таким образом, построив график A n = f(L n) и проведя касательную (или секущую) при разных значениях L n , определяется величина