Скорость испарения зависит. Расчет скорости испарения

Солнечная энергия приводит в действие невероятно сильную тепловую машину, которая, преодолевая гравитацию, без труда поднимает в воздух огромных размеров куб (каждая сторона составляет около восьмидесяти километров). Таким образом, с поверхности нашей планеты за год испаряется водяной слой метр толщиной.

Во время испарения жидкое вещество постепенно переходит в паро- или газообразное состояние после того, как мельчайшие частицы (молекулы или атомы), двигаясь на скорости, достаточной для того, чтобы преодолеть силы сцепления между частицами, отрываются от поверхности.

Несмотря на то, что процесс испарения известен больше как переход жидкого вещества в пар, существует сухое испарение, когда при минусовой температуре лёд переходит из твёрдого состояния в парообразное, минуя жидкую фазу. Например, если выстиранное сырое бельё развесить сушиться на морозе, оно, замерзнув, становится очень жёстким, но через какое-то время, размягчившись, становится сухим.

Как улетучивается жидкость

Молекулы жидкости расположены друг к другу практически впритык, и, несмотря на то, что связаны между собой силами притяжения, к определённым точкам не привязаны, а потому свободно перемещаются по всей площади вещества (они постоянно сталкиваются друг с другом и изменяют свою скорость).

Частицы, что уходят на поверхность, набирают во время движения темп, достаточный для того, чтобы покинуть вещество. Оказавшись наверху, своё движение они не останавливают и, преодолев притяжение нижних частиц, вылетают из воды, преобразовываясь в пар. При этом часть молекул из-за хаотического движения возвращается в жидкость, остальные уходят дальше, в атмосферу.

Испарение на этом не заканчивается, и на поверхность вырываются следующие молекулы (так происходит до тех пор, пока жидкость полностью не улетучивается).

Если речь идёт, например, о круговороте воды в природе, можно наблюдать за процессом конденсации, когда пар, сконцентрировавшись, при определённых условиях возвращается назад. Таким образом, испарение и конденсация в природе тесно связаны между собой, поскольку благодаря им осуществляется постоянный водообмен между землёй, сушей и атмосферой, благодаря чему окружающая среда снабжается огромным количеством полезных веществ.

Стоит заметить, что интенсивность испарения у каждого вещества различна, а потому основными физическими характеристиками, которые влияют на скорость испарения, являются:

  1. Плотность. Чем вещество плотнее, тем ближе молекулы находятся по отношению друг к другу, тем труднее верхним частицам преодолеть силу притяжения других атомов, следовательно, испарение жидкости происходит медленнее. Например, метиловый спирт улетучивается намного быстрее воды (метиловый спирт – 0,79 г/см3, вода – 0,99 г/см3).
  2. Температура. На скорость испарения также влияет теплота испарения. Несмотря на то, что процесс испарения происходит даже при минусовой температуре, чем больше температура вещества, тем выше теплота испарения, значит, тем быстрее двигаются частицы, которые, увеличивая интенсивность испарения, массово покидают жидкость (поэтому кипящая вода испаряется быстрее холодной).Из-за потери быстрых молекул внутренняя энергия жидкости уменьшается, а потому температура вещества во время испарения понижается. Если жидкость в это время будет находиться возле источника тепла или непосредственно нагреваться, её температура снижаться не будет, так же, как и не снизится интенсивность испарения.
  3. Площадь поверхности. Чем большую площадь поверхности занимает жидкость, тем больше молекул с неё улетучивается, тем выше скорость испарения. Например, если влить воду в кувшин с узким горлышком, жидкость будет исчезать очень медленно, поскольку испаряемые частицы начнут оседать на сужающихся стенках и спускаться. В то же время, если налить воду в миску, молекулы будут беспрепятственно уходить с поверхности жидкости, поскольку им будет не на чем конденсироваться, дабы вернуться в воду.
  4. Ветер. Процесс испарения окажется намного быстрее, если над ёмкостью, в которой находится вода, движется воздух. Чем быстрее он это делает, тем скорость испарения больше. Нельзя не учитывать взаимодействие ветра с испарением и конденсацией.Молекулы воды, поднимаясь с океанической поверхности, частично возвращаются назад, но большая часть высоко в небе конденсируется и образует облака, которые ветер перегоняет на сушу, где капли выпадают в виде дождя и, проникнув в грунт, через какое-то время возвращаются в океан, снабжая растущую в почве растительность влагой и растворёнными минеральными веществами.

Роль в жизни растений

Значение испарения в жизни растительности трудно переоценить, особенно учитывая, что живое растение на восемьдесят процентов состоит из воды. Поэтому если растению не хватает влаги, оно может погибнуть, так как вместе с водой в него не будут поступать также нужные для жизнедеятельности питательные вещества и микроэлементы.

Вода, передвигаясь по растительному организму, переносит и образует внутри него органические вещества, для образования которых растение нуждается в солнечном свете.

А вот тут немаловажная роль отводится испарению, так как солнечные лучи имеют способность чрезвычайно сильно нагревать предметы, а потому способны вызвать гибель растения от перегрева (особенно в жаркие летние дни). Чтобы этого избежать, происходит испарение воды листьями, через которые в это время выделяется много жидкости (например, из кукурузы за сутки испаряется от одного до четырёх стаканов воды).


Это значит, что чем больше в организм растения поступит воды, тем испарение воды листьями будет интенсивнее, растение будет больше охлаждаться и нормально расти. Испарение воды растениями можно ощутить, если во время прогулки в знойный день прикоснуться к зелёным листьям: они обязательно окажутся прохладными.

Связь с человеком

Не менее велика роль испарения в жизнедеятельности человеческого организма: он борется с нагреванием посредством потоотделения. Испарение происходит обычно через кожу, а также через дыхательные пути. Это можно легко заметить во время болезни, когда температура тела поднимается или в период занятий спортом, когда повышается интенсивность испарения.

Если нагрузка невелика, из организма уходит от одного до двух литров жидкости в час, при более интенсивном занятии спортом, особенно когда температура внешней среды превышает 25 градусов, интенсивность испарения увеличивается и с потом может выйти от трёх до шести литров жидкости.

Через кожу и дыхательные пути вода не только покидает организм, но и поступает в него вместе с испарениями окружающей среды (не зря своим пациентам врачи часто прописывают отдых на море). К сожалению, вместе с полезными элементами в него нередко попадают и вредные частицы, среди них – химические вещества, вредные испарения, которые наносят здоровью непоправимый ущерб.

Одни из них токсичны, другие, вызывают аллергию, третьи – канцерогенны, четвёртые вызывают онкологические и другие не менее опасные заболевания, при этом многие обладают сразу несколькими вредными свойствами. Вредные испарения оказываются в организме в основном через органы дыхания и кожу, после чего, оказавшись внутри, моментально всасываются в кровь и разносятся по всему телу, оказывая токсическое воздействие и вызывая серьёзные заболевания.

В данном случае много зависит от местности, где обитает человек (возле фабрики или завода), помещения, в котором живёт или работает, а также времени пребывания в опасных для здоровья условиях.

Вредные испарения могут попадать в организм из предметов быта, например, линолеума, мебели, окон и пр. Дабы сохранить жизнь и здоровье, таких ситуаций желательно избегать и наилучшим выходом будет покинуть опасную территорию, вплоть до обмена квартиры или работы, а при обустройстве жилища обращайте внимание на сертификаты качества покупаемых материалов.

Разбираясь с вопросом, от чего зависит скорость испарения жидкости, нужно рассматривать закономерности влагообмена, встречающиеся в повседневной жизни. Так, теплообмен напрямую влияет на улетучивание молекул любого раствора. Частицы легче отрываются от поверхности при достаточном запасе кинетической энергии. Последняя сообщается в процессе, когда мы пытаемся остудить чашку кофе или чая, обдувая поверхность стакана.

Физические процессы

Рассмотрим, от чего зависит скорость испарения жидкости при различных условиях. Влияние оказывают свет от солнца, ветер, состав раствора, температура. Сам физический процесс испарения можно представить как хаотичное движение невесомых шариков. Каждый из них обладает определенным запасом кинетической энергии. Получать последнюю они могут извне или от соседствующих молекул.

В результате выхода молекул из раствора получается газообразное вещество. Отсюда следует первое, от чего зависит скорость испарения жидкости — от плотности мельчайших частичек над поверхностью любого жидкого вещества. Но на весь процесс влияет и плотность самого раствора. Молекулам легче оторваться в очищенном от солей дистилляте, чем преодолевать давление тяжелых частиц.

Процесс испарения наблюдают из любого вещества: твердого, жидкого. Разрежение в воздухе облегчает выход частиц с поверхности, повышенная влажность тормозит их движение. Подогрев раствора на огне повышает обмен кинетической энергии между молекулами, помогая разрушать установившиеся связи.

От чего зависит скорость испарения жидкости? От площади поверхности, с которой будут вылетать молекулы. Так, с разлитой лужи вода исчезнет быстрее, чем из бутылки с узким горлышком. Ветер поможет высвободить наиболее кинетически заряженные частички.

Опыт № 1. Площадь

Скорость испарения жидкости зависит от площади поверхности сосуда, в котором она находится. Доказательством этому служит опыт, в котором подбирают несколько видов емкостей, различающихся по форме горлышка. Везде наливают одинаковое количество однородного раствора.

Горлышки открытые. Засекают время и по его истечении производят замер оставшегося объема жидкости в каждом сосуде. Составляется таблица, и по результатам несложно заметить, что наименьшее количество будет в самой широкой емкости. Однако учитывается еще много факторов: температура, движение и плотность воздуха в помещении.

Еще один простой опыт позволяет проверить, как зависит скорость испарения жидкости от площади. Нужно просто вылить воду из сосуда на пол и засечь время. Соответственно, можно увидеть, что разлитый объем практически моментально исчезнет, в отличие от жидкости в сосуде.

Опыт № 2. Источник движения воздуха

Скорость испарения увеличивается, если напротив поверхности установить источник движения воздуха. Помочь в этом может вентилятор или другой аналогичный прибор. Время сократится при использовании нагревательных элементов.

Фен способен испарить значительный объем за минуты, тогда как под воздействием вентилятора вода аналогичного объема будет исчезать целые сутки. Не только колебания воздуха влияют на выход молекул жидкости с поверхности, но и движение самого объема с жидкостью облегчает такой процесс.

Постоянное перемешивание жидкости в стакане помогает перераспределять энергию между частицами. Движение ускоряет процесс теплоотдачи от раствора воздушной среде, а это, соответственно, влияет на скорость испарения. Так, при помешивании горячего чая часть жидкости поднимается в виде пара.

Опыт № 3. Плотность среды

На скорость испарения влияет плотность среды — как самой жидкости, так и воздуха над ней. Проводят эксперимент: в одном сосуде будет вода с солью, во втором — отфильтрованная вода аналогичного объема. Через сутки соляной раствор изменит свой объем на незначительную часть по сравнению с количеством жидкости во втором сосуде.

В домах на морском побережье можно заметить, что постиранные вещи сохнут довольно долго. Это связано с повышенной влажностью воздуха. Соответственно, и испарение из сосуда в таком месте более длительное, чем вдалеке от моря, реки, озера.

Нам всем с детства хорошо известен один серьёзный жизненный факт. Для того чтобы остудить горячий чай, необходимо налить его в холодное блюдце и продолжительно дуть над его поверхностью. Когда тебе шесть-семь лет, особо не задумываешься над законами физики, просто принимаешь их как данное или, выражаясь физически, принимаешь их за аксиому. Однако, постигая со временем науки, мы обнаруживаем интересные сходства аксиом и последовательных доказательств, плавно переводя наши детские предположения во взрослые теоремы. То же самое и с горячим чаем. Никто из нас и подумать не мог, что такой способ его охлаждения напрямую связан с испарением жидкости.

Физика процесса

Для того чтобы ответить на вопрос, от чего зависит скорость испарения жидкости, надо разобраться в самой физике процесса. Испарение - это процесс фазового перехода вещества из жидкого агрегатного состояния в газообразное. Испаряться может любое в том числе очень вязкое. С виду и не скажешь, что некая желеобразная жижа может терять часть своей массы за счет испарения, но при определённых условиях именно это и происходит. Твердое тело также может испаряться, только такой процесс называется сублимацией.

Как происходит

Начав разбираться, от чего зависит скорость испарения жидкости, следует отталкиваться от того, что это эндотермический процесс, то есть процесс, проходящий с поглощением теплоты. Теплота (теплота испарения) передаёт энергию молекулам вещества, увеличивая их скорость и повышая вероятность их отрыва, ослабляя при этом силы молекулярного сцепления. Отрываясь от основной массы вещества, самые быстрые молекулы вырываются за его границы, и вещество теряет свою массу. При этом вылетевшие молекулы жидкости мгновенно вскипают, осуществляя при отрыве процесс фазового перехода, и их выход идёт уже в газообразном состоянии.

Применение

Понимая, от каких причин зависит скорость испарения жидкости, можно грамотно регулировать технологические процессы, происходящие на их основе. Например, работу кондиционера, в теплообменнике-испарителе которого кипит хладагент, забирая теплоту из охлаждаемого помещения, или вскипание воды в трубах промышленного котла, теплота которой передается на нужды отопления и ГВС. Осознание того, от каких условий зависит скорость испарения жидкости, предоставляет возможность конструировать и производить современное и технологичное оборудование компактных размеров и с повышенным коэффициентом теплопередачи.

Температура

Жидкое агрегатное состояние крайне неустойчиво. При наших земных н. у. (понятие "нормальных условий", т.е. пригодных для жизни людей) оно периодически стремится перейти в твердую или газообразную фазу. Как это происходит? От чего зависит скорость испарения жидкости?

Первичный критерий - это, естественно, температура. Чем сильнее мы нагреваем жидкость, тем больше энергии мы подводим к молекулам вещества, тем больше молекулярных связей мы разрываем, тем быстрее идёт процесс фазового перехода. Апофеоз достигается при устойчивом пузырьковом кипении. Вода кипит при 100 ºС при атмосферном давлении. Поверхность кастрюли или, например, чайника, где она кипит, только на первый взгляд идеально гладкая. При многократном увеличении картинки мы увидим бесконечные острые пики, как в горах. Теплота точечно подводится к каждому из этих пиков, и из-за малой поверхности теплообмена вода моментально вскипает, образуя пузырёк воздуха, который поднимается к поверхности, где и схлопывается. Именно поэтому такое кипение называют пузырьковым. Скорость при этом максимальная.

Давление

Второй важный параметр, от чего зависит скорость испарения жидкости, - это давление. При снижении давления ниже атмосферного вода начинает закипать при меньших температурах. На этом принципе основана работа знаменитых скороварок - специальных кастрюль, откуда откачивался воздух, и вода кипела уже при 70-80 ºС. Повышение давления, наоборот, увеличивает температуру закипания. Это полезное свойство используется при подаче перегретой воды от ТЭЦ в ЦТП и ИТП, где для сохранения потенциала переносимой теплоты воду подогревают до температур 150-180 градусов, когда надо исключить возможность её вскипания в трубах.

Другие факторы

Интенсивный обдув поверхности жидкости с температурой выше, чем температура подаваемой воздушной струи, - это ещё один фактор, от чего зависит скорость испарения жидкости. Примеры этого можно взять из повседневной жизни. Обдув ветром глади озера или тот пример, с которого мы начали повествование: обдув горячего чая, налитого в блюдце. Он остывает за счет того, что, отрываясь от основной массы вещества, молекулы забирают часть энергии с собой, охлаждая его. Здесь можно увидеть еще и влияние площади поверхности. Блюдце шире, чем кружка, поэтому с её квадратуры потенциально может уйти большее количество массы воды.

На скорость испарения также влияет тип самой жидкости: какие-то жидкости испаряются быстрее, другие, наоборот, медленнее. Важное влияние на процесс испарения оказывает и состояние окружающего воздуха. При высоком абсолютном влагосодержании (сильно влажном воздухе, например, рядом с морем) процесс испарения пойдёт медленнее.

В природе вещества могут быть в одном из трех агрегатных состояний: твердом, жидком и газообразном. Переход из первого во второе и наоборот можно наблюдать ежедневно, особенно зимой. Однако превращение жидкости в пар, которое известно как процесс испарения, часто не видно глазу. При кажущейся незначительности оно играет важную роль в жизни человека. Итак, давайте узнаем об этом подробнее.

Испарение - это что такое

Каждый раз, решив вскипятить чайник для чая или кофе, можно наблюдать, как, достигнув 100 °С, вода превращается в пар. Именно это и является практическим примером процесса парообразования (перехода определенного вещества в газообразное состояние).

Парообразование бывает двух видов: кипение и испарение. На первый взгляд они идентичны, но это распространенное заблуждение.

Испарение - это парообразование с поверхности вещества, а кипение - со всего его объема.

Испарение и кипение: в чем разница

Хотя и процесс испарения, и кипение, оба способствуют переходу жидкости в газообразное состояние, стоит помнить о двух важных отличиях между ними.

  • Кипение - это активный процесс, который происходит при определенной температуре. Для каждого вещества она уникальна и может меняться только при понижении атмосферного давления. При нормальных условиях для кипения воды нужно 100 °С, для рафинированного подсолнечного масла - 227 °С, для нерафинированного - 107 °С. Спирту, чтобы закипеть, наоборот, нужна более низкая температура - 78 °С. Температура же испарения может быть любой и оно, в отличие от кипения, происходит постоянно.
  • Вторым существенным отличием между процессами является то, что при кипении парообразование происходит по всей толще жидкости. Тогда как испарение воды или других веществ происходит только с их поверхности. Кстати, процесс кипения всегда одновременно сопровождается и испарением.

Процесс сублимации

Считается, что испарение - это переход из жидкого в газообразное агрегатное состояние. Однако в редких случаях, минуя жидкое, возможно испарение прямо из твердого состояния в газообразное. Такой процесс называется сублимацией.

Это слово знакомо всем, кто хоть раз заказывал кружку или футболку с любимой фотографией в фотосалоне. Для перманентного нанесения изображения на ткань или керамику как раз и используется этот вид испарения, в честь него печать такого рода называется сублимационной.

Также такое испарение часто используется для промышленной сушки фруктов и овощей, изготовления кофе.

Хотя сублимация встречается намного реже, нежели испарение жидкости, иногда ее можно наблюдать в быту. Так, вывешенное сушиться зимой постиранное влажное белье - мгновенно замерзает и становится твердым. Однако постепенно эта жесткость уходит, и вещи становятся сухими. В данном случае вода из состояния льда, минуя жидкую фазу, переходит сразу в пар.

Как происходит испарение

Как и большинство физических и химических процессов, главную роль в процессе испарения играют молекулы.

В жидкостях они расположены очень близко друг к другу, но при этом они не имеют фиксированного места расположения. Благодаря этому они могут «путешествовать» по всей площади жидкости, причем с разными скоростями. Это достигается благодаря тому, что во время движения они сталкиваются между собой и от этих столкновений их скорость меняется. Став достаточно быстрыми, самые активные молекулы получают возможность подняться на поверхность вещества и, преодолев силу притяжения других молекул, покинуть жидкость. Так происходит испарение воды или другого вещества и образуется пар. Не правда ли, немного напоминает полет ракеты в космос?

Хотя из жидкости в пар переходят самые активные молекулы, однако оставшиеся их «собратья» продолжают пребывать в постоянном движении. Постепенно и они приобретают необходимую скорость, чтобы преодолеть притяжение и перейти в другое агрегатное состояние.

Постепенно и постоянно покидая жидкость, молекулы задействуют для этого ее внутреннюю энергию и она уменьшается. А это напрямую влияет на температуру вещества - она понижается. Именно поэтому количество остывающего чая в чашке немного уменьшается.

Условия испарения

Наблюдая за лужами после дождя, можно заметить, что некоторые из них высыхают быстрее, а некоторые дольше. Поскольку их высыхание является процессом испарения, то можно на данном примере разобраться с условиями, необходимыми для этого.

  • Скорость испарения зависит от типа испаряемого вещества, ведь каждое из них имеет уникальные особенности, влияющие на время, за которое его молекулы полностью перейдут в газообразное состояние. Если оставить открытыми 2 идентичных флакона, наполненных одинаковым количеством жидкости (в одном спирт С2Н5ОН, в другом - вода Н2О), то первая емкость опустеет быстрее. Поскольку, как уже было сказано выше, температура испарения у спирта ниже, а значит, он быстрее испарится.
  • Второе, от чего зависит испарение, - температура окружающей среды и температура кипения испаряемого вещества. Чем выше первая и ниже вторая, тем быстрее жидкость сможет ее достигнуть и перейти в газообразное состояние. Именно поэтому при проведении некоторых химических реакций с участием испарения вещества специально нагреваются.
  • Еще одним условием, от чего зависит испарение, является площадь поверхности вещества, с которого оно происходит. Чем она больше, тем быстрее происходит процесс. Рассматривая различные примеры испарения, можно снова вспомнить о чае. Его часто переливают в блюдце, чтобы охладить. Там напиток быстрее остывал, потому что увеличивалась площадь поверхности жидкости (диаметр блюдца больше диаметра чашки).
  • И снова о чае. Известен еще одни способ быстрее его остудить - подуть на него. Каким образом можно заметить, что наличие ветра (движения воздуха) - это то, от чего также зависит испарение. Чем выше скорость ветра, тем быстрее молекулы жидкости перейдут в пар.
  • Также влияет на интенсивность испарения атмосферное давление: чем оно ниже, тем быстрее молекулы переходят из одного состояния в другое.

Конденсация и десублимация

Превратившись в пар, молекулы не перестают двигаться. В новом агрегатном состоянии они начинают сталкиваться с молекулами воздуха. Из-за этого иногда они могут возвращаться в жидкое (конденсация) или твердое (десублимация) состояние.

Когда процессы испарения и конденсации (десублимации) равносильны между собой, это называют динамическим равновесием. Если газообразное вещество находится в динамическом равновесии со своей жидкостью аналогичного состава, его называют насыщенным паром.

Испарение и человек

Рассматривая различные примеры испарения, нельзя не вспомнить влияние этого процесса на организм человека.

Как известно, при температуре тела 42,2 °С белок в крови человека сворачивается, что ведет к смерти. Нагреваться человеческое тело может не только из-за инфекции, но и при выполнении физического труда, занятий спортом или во время пребывания в жарком помещении.

Организму удается сохранить приемлемую для нормальной жизнедеятельности температуру, благодаря системе самоохлаждения - потоотделению. Если температура тела повышается, через поры кожи выделяется пот, а потом происходит его испарение. Этот процесс помогает «сжечь» лишнюю энергию и способствует охлаждению организма и нормализации его температуры.

Кстати, именно поэтому не стоит безоговорочно верить рекламам, которые преподносят пот как главное бедствие современного общества и пытаются продать наивным покупателям всевозможные вещества для избавления от него. Заставить организм меньше потеть, не нарушая его нормальной работы, нельзя, а хороший дезодорант способен лишь маскировать неприятный запах пота. Поэтому, используя антиперспиранты, различные присыпки и пудры, можно нанести организму непоправимый вред. Ведь эти вещества забивают поры или сужают выводные протоки потовых желез, а значит, лишают тело возможности контролировать свою температуру. В случаях, если использование антиперспирантов все же необходимо, предварительно стоит проконсультироваться с врачом.

Роль испарения в жизни растений

Как известно, не только человек на 70% состоит из воды, но и растения, а некоторые, вроде редиса, и на все 90%. Поэтому испарение также важно и для них.

Вода является одним из главных источников попадания полезных (и вредных тоже) веществ в организм растения. Однако, чтобы эти вещества могли усвоиться, необходим солнечный свет. Вот только в жаркие дни солнце способно не просто нагреть растение, но и перегреть, тем самым погубив его.

Чтобы этого не произошло, представители флоры способны самоохлаждаться (похоже на человеческий процесс потоотделения). Иными словами при перегреве растения испаряют воду и таким образом охлаждаются. Поэтому поливу садов и огородов уделяется летом так много внимания.

Как используют испарение в промышленности и в быту

Для химической и пищевой промышленности испарение - это незаменимый процесс. Как уже было сказано выше, оно не только помогает производить дегидратацию многих продуктов (испарять влагу из них), что увеличивает срок их хранения; но также помогает изготавливать идеальные диетические продукты (меньше веса и калорий, при большем содержании полезных веществ).

Также испарение (в особенности сублимация) используется для очистки различных веществ.

Еще одной сферой применения является кондиционирование воздуха.

Не стоит забывать и о медицине. Ведь процесс ингаляции (вдыхание пара, насыщенного лечебными препаратами) основан тоже на процессе испарения.

Опасные испарения

Однако, как и у всякого процесса, у этого есть и негативные стороны. Ведь превращаться в пар и вдыхаться людьми и животными могут не только полезные вещества, но и смертельно опасные. А самое печальное в том, что они - невидимы, а значит, человек не всегда знает, что подвергся воздействию токсина. Именно поэтому стоит избегать пребывания без защитных масок и костюмов, на заводах и предприятиях, работающих с опасными веществами.

К сожалению, вредные испарения могут подстерегать и дома. Ведь если мебель, обои, линолеум или другие предметы изготовлены из дешевых материалов с нарушениями технологии, они способны выделять токсины в воздух, которые и будут постепенно «травить» своих хозяев. Поэтому при покупке любой вещи, стоит просматривать сертификат качества материалов, из которых она изготовлена.

Происходящее со свободной поверхности жидкости.

Сублимацию, или возгонку, т.е. переход вещества из твердого состояния в газообразное, так-же называют испарением.

Из повседневных наблюдений известно, что количество любой жидкости (бензина, эфира, воды), находящейся в открытом сосуде, постепенно уменьшается. Жидкость не исчезает бесследно — она превращается в пар. Испарение — это один из видов парообразования . Другой вид — это кипение.

Механизм испарения.

Как происходит испарение? Молекулы любой жидкости находятся в не-прерывном и беспорядочном движении, причем, чем выше температура жидкости, тем больше кинетическая энергия молекул. Среднее значение кинетической энергии имеет определенную величину. Но у каждой молекулы кинетическая энергия может быть как больше, так и меньше средней. Если вблизи поверхности окажется молекула с кинетической энергией , достаточной для преодоления сил межмолекулярного притяжения, она вылетит из жидкости. То же самое пов-торится с другой быстрой молекулой, со второй, третьей и т. д. Вылетая наружу, эти молекулы образуют над жидкостью пар. Образование этого пара и есть испарение.

Поглощение энергии при испарении.

Поскольку при испарении из жидкости вылетают более быстрые молекулы, средняя кинетическая энергия оставшихся в жидкости молекул становится все меньше и меньше. Это значит, что внутренняя энергия испаряющейся жидкости уменьшает-ся. Поэтому если нет притока энергии к жидкости извне, температура испаряющейся жидкости понижается, жидкость охлаждается (именно поэтому, в частности, человеку в мокрой одежде холоднее, чем в сухой, особенно при ветре).

Однако при испарении воды, налитой в стакан, мы не замечаем понижения ее температуры. Чем это объяснить? Дело в том, что испарение в данном случае происходит медленно, и темпера-тура воды поддерживается постоянной за счет теплообмена с окружающим воздухом, из которого в жидкость поступает необходимое количество теплоты. Значит, чтобы испарение жидкости про исходило без изменения ее температуры, жидкости необходимо сообщать энергию.

Количество теплоты, которое необходимо сообщить жидкости для образования единицы массы пара при постоянной температуре, называется теплотой парообразования.

Скорость испарения жидкости.

В отличие от кипения , испарение происходит при любой темпе-ратуре, однако с повышением температуры жидкости скорость испарения возрастает. Чем выше температура жидкости, тем больше быстро движущихся молекул имеет достаточную кинетичес-кую энергию , чтобы преодолеть силы притяжения соседних частиц и вылететь за пределы жид-кости, и тем быстрее идет испарение.

Скорость испарения зависит от рода жидкости. Быстро испаряются летучие жидкости, у кото-рых силы межмолекулярного взаимодействия малы (например, эфир, спирт, бензин). Если кап-нуть такой жидкостью на руку, мы ощутим холод. Испаряясь с поверхности руки, такая жид-кость будет охлаждаться и отбирать у нее некоторое количество теплоты.

Скорость испарения жидкости зависит от площади ее свободной поверхности. Это объясняется тем, что жидкость испаряется с поверхности, и чем больше площадь свободной поверхности жид-кости, тем большее количество молекул одновременно вылетает в воздух.

В открытом сосуде масса жидкости вследствие испарения постепенно уменьшается. Это свя-зано с тем, что большинство молекул пара рассеивается в воздухе, не возвращаясь в жидкость (в отличие от того, что происходит в закрытом сосуде). Но небольшая часть их возвращается в жидкость, замедляя тем самым испарение. Поэтому при ветре, который уносит молекулы пара, испарение жидкости происходит быстрее.

Применение испарения в технике.

Испарение играет важную роль в энергетике, холодильной технике, в процессах сушки, испарительного охлаждения. Например, в космической технике быстроиспаряющимися веществами покрывают спускаемые аппараты. При прохождении через атмосферу планеты корпус аппарата в результате трения нагревается, и покрывающее его вещество начи-нает испаряться. Испаряясь, оно охлаждает космический аппарат, спасая его тем самым от пере-грева.

Конденсация.

Конденсация (от лат. condensatio — уплотнение, сгущение) — переход вещества из газообраз-ного состояния (пара) в жидкое или твердое состояние.

Известно, что при наличии ветра жидкость испаряется быстрее. Почему? Дело в том, что од-новременно с испарением с поверхности жидкости идет и конденсация. Конденсация происходит из-за того, что часть молекул пара, беспорядочно перемещаясь над жидкостью, снова возвраща-ется в нее. Ветер же выносит вылетевшие из жидкости молекулы и не дает им возвращаться.

Конденсация может происходить и тогда, когда пар не соприкасается с жидкостью. Именно конденсацией объясняется, например, образование облаков: молекулы водяного пара, поднима-ющиеся над землей, в более холодных слоях атмосферы группируются в мельчайшие капельки воды, скопления которых и представляют собой облака . Следствием конденсации водяного пара в атмосфере являются также дождь и роса.

При испарении жидкость охлаждается и, став более холодной, чем окружающая среда, начи-нает поглощать ее энергию. При конденсации же, наоборот, происходит выделение некоторого количества теплоты в окружающую среду, и ее температура несколько повышается. Количество теплоты, выделяющееся при конденсации единицы массы, равно теплоте испарения.