Способы представления зависимостей между величинами. Open Library - открытая библиотека учебной информации

Предмет: математика
Класс: 4
Тема урока: Зависимости между скоростью, длиной пройденного пути и временем
движения.
Цель: выявить и обосновать зависимости между величинами: скорость, время,
расстояние;
Задачи: способствовать развитию нестандартного мышления, умение делать выводы,
рассуждать; содействовать воспитанию познавательной активности.
Оборудование: индивидуальные карточки разных цветов, критерии оценивания,
карточка для рефлексии, круги двух цветов.
Ход урока.
1. Орг.момент.
Карточка двух цветов: желтая и синяя. Показать с помощью карточки свое настроение
в начале и конце урока.
Заполнение карточки на начало урока (Приложение 1.)
№ Утверждение
Конец урока
Начало урока
Да
Нет
Не знаю Да
Нет Не
знаю
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
2. Повторение.
­ Как найти скорость? Время? Расстояние?
­ Назовите единицы измерения величины скорости, расстояние, время.
3. Сообщение темы урока.
­ Чему будем учиться на уроке?
4. Работа в группе.
­ Соединить объекты движения (Приложение 2)
Пешеход 70км/ч
Лыжник 5км/ч

Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Проверка работ.
5. Математическая головоломка(самостоятельная работа)
­ Во сколько скорость велосипедиста меньше скорости поезда?
­ На сколько км скорость лыжника больше скорости пешехода?
­ Во сколько раз скорость автомобиля меньше скорости реактивного самолета?
­ Найди общую скорость самого скоростного движущегося средства и самого
медленного.
­ Найди общую скорость поезда велосипедиста и лыжника.
6. Самопроверка работ по критериям.
7. Физминутка.
Красный цвет квадрата­ стоим
Зеленый – идем
Желтый – хлопаем 1 раз в ладоши
8. Работа в группе. (Карточка желтого цвета) (метод Джегсо)
Задача.
Две бабы­яги поспорили, что быстроходнее ступа или помело? Одну и ту же
дистанцию в 228км баба­яга в ступе пролетела за 4ч, а баба­яга на помеле за 3ч. Что
больше, скорость ступы или помела?
9. Работа в паре «Эксперимент».
Придумать задачу на движение, используя величины: 18км/ч, 4ч, 24 км, 3ч.
Проверка работ.
10. Тест.
1.Записать формулу нахождения скорости.
2. Записать формулу нахождения времени.
3. Как найти расстояние? Запиши формулу.
4. Запиши 8 км/мин в км/ч
5. Найди время, за которое пройдет пешеход 42 км, двигаясь со скоростью 5км/ч.
6. Какое расстояние пройдет пешеход, двигаясь со скоростью 5км/ч в течение 6 часов?
11. Итог урока.
Заполнить таблицу, с какими результатами мы пришли к концу урока.
Показать карточку, которая соответствует вашему настроению.

Начало урока
Да
Нет
Приложение 1.
Конец урока
Не знаю Да
№ Утверждение
1. Я знаю все формулы
задач на движение
2. Я понимаю решение
задач на движение
3. Я могу сам решать эти
задачи
4. Я умею составлять
схемы к задачам на
движение
5. Я знаю, какие ошибки
допускаю в решении
задач на движение
Соединить объекты движения.
Пешеход 70км/ч
Лыжник 5км/ч
Автомобиль 10км/ч
Реактивный самолет 12км/ч
Поезд 50км/ч
Улитка 900км/ч
Лошадь 90 км\ч
Нет Не
знаю
Приложение 2.

Конспект урока по информатике и ИКТ в 11 классе

Самарин Александр Александрович, учитель информатики МБОУ Савинской СОШ, п. Савино, Ивановской области.
Тема: «Моделирование зависимостей между величинами».
Описание материала: данный конспект урока будет полезен учителям информатики и ИКТ, реализующих общеобразовательные программы в 11 классах. В ходе урока обучающиеся знакомятся с математическим моделированием и способами моделирования величин. Данный урок является вводным к теме «Технологии информационного моделирования».
Цель: создание условий для овладения детьми знаниями математического моделирования и закрепить умения работы в программе Microsoft Exсеl.
Задачи:
- сформировать знания о математическом моделировании;
- закрепить навыки работы в программе Microsoft Exсel.
Планируемые результаты:
Предметные:
- сформировать представления о математическом моделировании;
- сформировать представления о функциональном, табличном и графическом способах моделированиях.
Метапредметные:
- сформировать умения и навыки использования средств информационных и коммуникационных технологий для создания табличных и графических моделей;
- сформировать навыки рационального использования имеющихся инструментов.
Личностные:
- понимать роль фундаментальных знаний как основы современных информационных технологий.
Ход урока:
Организационный момент и актуализация знаний
Учитель: «Здравствуйте, ребята. Сегодня мы с вами начинаем новую большую тему «Технологии информационного моделирования». Но сначала давайте запишем домашнее задание § 36, вопросы 1,3 подготовить устно, вопрос №2 письменно в тетради». На экран проецируется домашнее задание.
Дети открывают дневники и записывают задание. Учитель объясняет домашнее задание.
Учитель: «Ребята, давайте вспомним, что такое «Модель», «Моделирование», «Компьютерное моделирование». На экран проецируется слайд «Давайте вспомним».
Дети: «Модель – это объект-заменитель, который в определенных условиях может заменять объект-оригинал. Модель воспроизводит интересующие нас свойства и характеристики оригинала.
Моделирование – это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.
Компьютерное моделирование – это моделирование, реализующееся с помощью компьютерной техники».
Учитель: «Как вы думаете, а что такое математическое моделирование? Что оно собой представляет?»
Дети: «Это модели, построенные с помощью математических формул».
Учитель: «Приведите примеры математической модели».
Дети приводят примеры различных формул.
Учитель: «Давайте рассмотрим пример. На экран проецируются примеры.
«Время падения тела зависит от его первоначальной высоты. Уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе». На слайде приведены зависимости одних величин от других. Тема нашего сегодняшнего занятия «Моделирование зависимостей между величинами». На экран проецируется тема занятия «Моделирование зависимостей между величинами».
Дети записывают тему в тетрадь.
Изучение нового материала
Учитель: «Чтобы реализовать математическую модель на компьютере необходимо владеть приемами представления зависимостей между величинами. Рассмотрим различные методы представления зависимостей. Любое исследование необходимо начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами. На экран проецируется определение «величины».
Давайте вспомним, какими тремя основными свойствами обладает величина?»
Дети: «Имя, значение, тип»
Учитель: «Правильно. Имя величины может быть смысловым и символическим. Например, «время» - это смысловое имя, а «t» - символическое имя. Ребята, приведите примеры смыслового и символического имен». На экран проецируются виды имён и их примеры.
Примеры детей.
Учитель: «Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы – скорость света в вакууме – с = 2,998*10^8м/с. На экран проецируются значения величины.
А какие постоянные величины вы знаете, ребята?»
Ответы детей.
Учитель: А как вы думаете, какая величина называется переменной?
Ответы детей.
Учитель: Итак, переменная величина – величина, значение которой может меняться. Например, в описании процесса падения тела переменными величинами являются высота H и время падения t.
Третьим свойством величины является ее тип. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Мы будем рассматривать величины, числового типа. На экран проецируются основные типы величин.
А теперь вернемся, к примеру, падения тела на землю. Обозначим все переменные величины, также укажем их размерности (размерности определяют единицы, в которых представляются значения величин). Итак, t (с) – время падения, Н (м) – высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с2) будем считать константой. В данном примере зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t. На экран проецируется пример 1.
Теперь подробнее рассмотрим пример про уровень заболеваемости жителей города бронхиальной астмой. Загрязнённость воздуха будем характеризовать концентрацией примесей – С (мг/м2), уровень заболеваемости – число хронически больных астмой, приходящихся на 1000 жителей данного города – Р (бол./тыс.). В данном примере зависимость между значениями носит более сложный характер, так как при одном и том же уровне загрязнённости в разные месяцы в одном и том же городе уровень заболеваемости может быть разным, так как на него влияют и другие факторы. На экран проецируется пример 2.
Рассмотрев два этих примера, делаем вывод, в первом примере зависимость является функциональной, а во втором нет. Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель. На экран проецируется вывод.
Математическая модель – это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики. Первый пример отражает физический закон. Данная зависимость является корневой. В более сложных задачах математические модели представляются в виде уравнения или систем уравнений. Во втором примере зависимость можно представить не в функциональной форме, а в иной (это мы будем рассматривать на следующих уроках). На экран проецируется, что отражает пример 1.
Пример падения тела рассмотрим в табличном и графическом виде. Проверим закон всемирного падения тела экспериментальным путем (в табличном и графическом виде). Будем бросать стальной шарик с шести метровой высоты, 9 метровой и так далее (через 3 метра), замеряя начальную высоту положения шарика и время падения. По результатам составим таблицу и нарисуем график. На экран проецируется график и таблица примера 1.
Если каждую пару значений H и t из данной таблицы подставить в формулу для первого примера, то формула превратится в равенство. Значит, модель работает хорошо.
В данном примере рассмотрено три способа моделирования величин: функциональный (формула), табличный и графический; однако математической моделью процесса можно назвать только формулу. На экран проецируются способы моделирования.
Ребята, а как вы думаете, какой способ моделирования наиболее универсальный? На экран проецируется вопрос.
Формула более универсальна, она позволяет определить время падения тела с любой высоты; имея формулу, можно легко создать таблицу и построить график.
Информационные модели, которые описывают развитие систем во времени, называются динамическими моделями. В физике динамические модели описывают движение тел, в биологии – развитие организмов или популяций животных, в химии – протекание химических реакций и т.д.»
Физкультминутка
Учитель: «А сейчас немножко отдохнем. Ребята, сядьте поудобнее на стул, расслабьтесь, расправьте плечи, прогните спину, потянитесь, повертите головой, «поболтайте ножками». А теперь, не поворачивая головы, посмотрите направо, налево, вверх, вниз. А сейчас следить за движения моей руки». Учителя водит рукой в разные стороны.
Практическая работа
Учитель: «Ребята, а теперь полученные знания мы закрепим практической работой на компьютере». На экран проецируется задание на практическую работу.
Задание
Постройте табличную и графическую зависимости скорости от времени
v=v0+a*t, если известно, что при t = 2 с, v = 8 м/с. Первоначальная скорость v0 равняется 2 м/с.
Ребята выполняют задание в программе Microsoft Excel. Затем задание проверяется. На экран проецируется правильный ответ к практической работе.
Рефлексия и подведение итогов
Учитель: «Ребята, что сегодня вы узнали нового? Что было для вас тяжело? С какими затруднениями вы столкнулись при выполнении практической работы?» На экран проецируется рефлексия.
Ответы детей.
Учитель: «Спасибо за работу на уроке. До свидания».

>>Информатика: Представление зависимостей между величинами

Представление зависимостей между величинами

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других.

Примеры зависимостей :

1) время падения тела на землю зависит от первоначальной высоты;

2) давление зависит от температуры газа в баллоне;

Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Хорошо известны математические модели для первых двух примеров из перечисленных выше. Они отражают физические законы и представляются в виде формул:


Это примеры зависимостей, представленных в функции пильной форме. Первую зависимость называют корневой (время пропорционально квадратному корню от высоты), вторую - линейной (давление прямо пропорционально температуре).

В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В этом случае для извлечения функциональной зависимости величин нужно уметь решать эти уравнения. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.

Рассмотрим примеры двух других способов представления зависимостей между величинами: табличного и графического.

Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организовали следующим образом; бросаем стальной шарик с балкона 2-го этажа, 3-го этажа (и так далее) десятиэтажного дома, замеряя высоту начального положения шарика и время падения. По результатам эксперимента мы составили таблицу и нарисовали график.

"
Рис. 2.11. Табличное и графическое представление зависимости времени падения тела от высоты

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то она превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то данная модель будет меньше соответствовать формуле, а если надувной шарик, то совсем не будет соответствовать - как вы думаете, почему?)

В этом примере мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Почему? Потому что формула универсальна. Она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 2.11.

Кроме того, таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов.

Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами - законами природы. Знания физических законов позволяют производить точные расчеты, они лежит в основе современной техники.

Коротко о главном

Величина - некоторая количественная характеристика объекта.

Зависимости между величинами могут быть представлены в виде математической модели, в табличной и графической формах.

Зависимость, представленная в виде формулы, является математической моделью.

Вопросы и задания

1. а) Какие вам известны формы представления зависимостей между величинами?

б) Что такое математическая модель?

в) Может ли математическая модель включать в себя только константы?

2. Приведите пример известной вам функциональной зависимости (формулы) между характеристиками некоторой системы.

3. Обоснуйте преимущества и недостатки каждой из трех форм представления зависимостей.

Семакин И.Г., Хеннер Е.К., Информатика и ИКТ, 11

Отослано читателями из интернет-сайтов

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки Разработка урока математики в 6 классе

Тема урока «Зависимость между величинами».

Цели урока:

1.Дать понятие зависимости между величинами, выяснить способы их задания.

2.Развивать способность учащихся анализировать и синтезировать учебный материал.

3.Воспитывать творческое отношение к учебному труду.

4.Преподнести учебный материал через эмоционально - переживательную сферу ученика.

А теперь опишем по технологию построения учителем методики урока по технологии деятельностного метода.

1. Этап самоопределения нормы N

На этом этапе определяется тема и обучающая цель урока: «На уроке мы рассмотрим зависимость между различными величинами», то есть объявляется операция без уточнения условий ее применения.

2. Этап актуализации знаний и фиксация затруднения в деятельности.

На этом этапе учитель предлагает список заданий, выполнение которых предполагает выполнение известной ранее нормы.

Как найти:

Площадь прямоугольника?

Периметр прямоугольника?

Объем прямоугольного параллелепипеда?

Скорость по течению?

Скорость против течения?

Последним вопросом на этапе актуализации знаний должен быть вопрос, который фиксирует затруднения в деятельности учащихся, то есть, ранее изученных знаний не хватает, возникает учебная проблема. В данном случае это вопрос: «Для чего нужны эти правила и соответствующие формулы?».

3. Этап постановки учебной задачи.

Учитель ставит перед учащимися проблему: Как измерить площадь участка прямоугольной формы, если мы не знаем формулу S =ав? Можно разбить участок на прямоугольники размером в 1 кв. метр и сосчитать их количество. Удобно ли это?

Учащиеся отвечают, что это возможно, но неудобно. Значит, формулы нужны для вычисления величин, измерение которых затруднительно.

Учитель ставит еще более убедительную проблему: как измерить расстояние от Земли до Солнца? Итак, налицо кризис ранее известной нормы N .

4. Этап построения проекта выхода из затруднения.

Ученые установили, что расстояние от Земли до Солнца 150 млн. км. А как они узнали об этом? Совместно с детьми выясняется формула вычисления расстояния от Земли до Солнца s = ct , где с=300000км, t =8 мин, время, за которое свет доходит до Земли. Вычисления показывают, что s =2400000 км. Почему у нас получилось расхождение с известным фактом?

Вывод: Формулу можно применить только в том случае, когда единицы измерения входящих в нее величин согласованы между собой.

На этом этапе уместно воздействие на эмоционально – переживательную сферу ученика с помощью небольшой воспитательной беседы. « Свет от Земли до Солнца идет в течение 8 минут, значит, мы видим Солнце таким, каким оно было 8 минут назад. Есть звезды, свет от которых идет до нас миллионы лет: звезда может уже погасла, а свет от нее идет до сих пор. Так же бывают и люди: человека уже нет с нами, а его тепло, свет согревают нас всю жизнь. Таким человеком был народный поэт Башкортостана Мустай Карим, день памяти которого мы отмечаем сегодня. Его духовная энергия, тепло его сердца будет нам служить нравственным ориентиром многие годы».

На данном этапе урока учащимся предлагаются различные способы задания зависимостей между величинами: табличный, графический и с помощью формулы.

Дети на этом этапе включаются в ситуацию выбора метода решения учебной задачи: они сравнивают различные способы задания зависимостей между величинами. Результаты сравнения фиксируются на опорно – узловой матрице.

1 2

Способы задания Формула график таблица

1-универсальность, 2-точность, 3-наглядность;

(Условные обозначения «Д»- да, «Н»- нет)

На основе анализа опорно – узловой матрицы учащиеся делают вывод о том, что наиболее лучшим является задание зависимости между величинами с помощью формулы, потому что он обладает свойством универсальности: из формулы можно получить таблицу зависимости и построить график зависимости между величинами.

5. Этап первичного закрепления во внешней речи.

Разбирается задача №90

По одной формуле зависимости ширины прямоугольника от его длины при постоянной площади: b =12/а составить таблицу этой зависимости и построить её график.

1 ,5

1,5

График зависимости длины прямоугольника от ширины

Итак, мы связали 3 способа задания зависимостей между величинами:

С помощью формулы,

Графический,

Табличный.

6. Этап самостоятельной работы с самопроверкой по эталону.

Учащиеся самостоятельно решают задания на новый способ действий, выполняют самопроверку по эталону и сами оценивают свои результаты. Создаётся ситуация успеха, снова задействована эмоционально-переживательная сфера ученика. На одном этапе учащимся предлагают задания №133, №140. Для реализации принципа минимакса деятельностной технологии обучения учащимся предлагают задания двух уровней: М, А и В.

Уровень М: №133, А: №140. Уровень В: № 145

7. Включение новых знаний в знаний.

На данном этапе учащиеся убеждаются, что вновь приобретённые знания имеют ценность для дальнейшего обучения. Выполняя упражнение №139, они устанавливают зависимость между

Объёмом V куба и его ребром а;

Площадью S прямоугольного треугольника и катетами а и b

Диаметром D и радиусом R этой окружности;

Длиной стороны а прямоугольника, его периметром Р и площадью S ;

S куба и его ребром а

Площадью полной поверхности S прямоугольного параллелепипеда и его измерениями а, b и с.

8. Рефлексия деятельности (итог урока)

Учащиеся выполняют самооценку собственной деятельности (что нового узнали, какой метод использовали, успешность выполненных шагов). Происходит фиксация успешности деятельности и вывод о следующих шагах. Выявляются ученики, выполнившие задания уровня А и В.

Примечание.

Урок проведён по учебнику Г.В.Дорофеева, Л.Г.Петерсон. Математика, учебник для 6 класса. Часть 2. Ювента. 2011г

Информатика и ИКТ 10-11 класс Семакин, Информатика 10-11 класс Семакин, Моделирование зависимостей между величинами, Величины и зависимости между ними, Различные методы представления зависимостей, Математические модели, Табличные и графические модели

Величины и зависимости между ними
Содержание данного раздела учебника связано с компьютерным математическим моделированием. Применение математического моделирования постоянно требует учета зависимостей одних величин от других. Приведем примеры таких зависимостей:
1) время падения тела на землю зависит от его первоначальной высоты;
2) давление газа в баллоне зависит от его температуры;
3) уровень заболеваемости жителей города бронхиальной астмой зависит от концентрации вредных примесей в городском воздухе.
Реализация математической модели на компьютере (компьютерная математическая модель) требует владения приемами представления зависимостей между величинами.
Рассмотрим различные методы представления зависимостей.
Всякое исследование нужно начинать с выделения количественных характеристик исследуемого объекта. Такие характеристики называются величинами.
С понятием величины вы уже встречались в базовом курсе информатики. Напомним, что со всякой величиной связаны три основных свойства: имя, значение, тип.
Имя величины может быть смысловым и символическим. Примером смыслового имени является «давление газа», а символическое имя для этой же величины — Р. В базах данных величинами являются поля записей. Для них, как правило, используются смысловые имена, например: ФАМИЛИЯ, ВЕС, ОЦЕНКА и т. п. В физике и других науках, использующих математический аппарат, применяются символические имена для обозначения величин. Чтобы не терялся смысл, для определенных величин используются стандартные имена. Например, время обозначают буквой t, скорость — V, силу — F и пр.
Если значение величины не изменяется, то она называется постоянной величиной или константой. Пример константы — число Пифагора π = 3,14259... . Величина, значение которой может меняться, называется переменной. Например, в описании процесса падения тела переменными величинами являются высота Н и время падения t.
Третьим свойством величины является ее тип. С понятием типа величины вы также встречались, знакомясь с программированием и базами данных. Тип определяет множество значений, которые может принимать величина. Основные типы величин: числовой, символьный, логический. Поскольку в данном разделе мы будем говорить лишь о количественных характеристиках, то и рассматриваться будут только величины числового типа.
А теперь вернемся к примерам 1-3 и обозначим (поименуем) все переменные величины, зависимости между которыми нас будут интересовать. Кроме имен укажем размерности величин. Размерности определяют единицы, в которых представляются значения величин.
1) t (с) — время падения; Н (м) — высота падения. Зависимость будем представлять, пренебрегая учетом сопротивления воздуха; ускорение свободного падения g (м/с 2) будем считать константой.
2) Р (н/м 2) — давление газа (в единицах системы СИ давление измеряется в ньютонах на квадратный метр); t °С — температура газа. Давление при нуле градусов Ро будем считать константой для данного газа.
3) Загрязненность воздуха будем характеризовать концентрацией примесей (каких именно, будет сказано позже) — С (мг/м 3). Единица измерения — масса примесей, содержащихся в 1 кубическом метре воздуха, выраженная в миллиграммах. Уровень заболеваемости будем характеризовать числом хронических больных астмой, приходящихся на 1000 жителей данного города — Р (бол./тыс.).
Отметим важное качественное различие между зависимостями, описанными в примерах 1 и 2, с одной стороны, и в примере 3, с другой. В первом случае зависимость между величинами является полностью определенной: значение Н однозначно определяет значение t (пример 1), значение t однозначно определяет значение Р (пример 2). Но в третьем примере зависимость между значением загрязненности воздуха и уровнем заболеваемости носит существенно более сложный характер; при одном и том же уровне загрязненности в разные месяцы в одном и том же городе (или в разных городах в один и тот же месяц) уровень заболеваемости может быть разным, поскольку на него влияют и многие другие факторы. Отложим более детальное обсуждение этого примера до следующего параграфа, а пока лишь отметим, что на математическом языке зависимости в примерах 1 и 2 являются функциональными, а в примере 3 — нет.
Математические модели
Если зависимость между величинами удается представить в математической форме, то мы имеем математическую модель.
Математическая модель — это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.
Хорошо известны математические модели для первых двух примеров. Они отражают физические законы и представляются в виде формул:

Это примеры зависимостей, представленных в функциональной форме. Первую зависимость называют корневой (время пропорционально квадратному корню высоты), вторую — линейной.
В более сложных задачах математические модели представляются в виде уравнений или систем уравнений. В конце данной главы будет рассмотрен пример математической модели, которая выражается системой неравенств.
В еще более сложных задачах (пример 3 — одна из них) зависимости тоже можно представить в математической форме, но не функциональной, а иной.
Табличные и графические модели
Рассмотрим примеры двух других, не формульных, способов представления зависимостей между величинами: табличного и графического. Представьте себе, что мы решили проверить закон свободного падения тела экспериментальным путем. Эксперимент организуем следующим образом: будем бросать стальной шарик с 6-метровой высоты, 9-метровой и т. д. (через 3 метра), замеряя высоту начального положения шарика и время падения. По результатам эксперимента составим таблицу и нарисуем график.

Если каждую пару значений Н и t из данной таблицы подставить в приведенную выше формулу зависимости высоты от времени, то формула превратится в равенство (с точностью до погрешности измерений). Значит, модель работает хорошо. (Однако если сбрасывать не стальной шарик, а большой легкий мяч, то равенство не будет достигаться, а если надувной шарик, то значения левой и правой частей формулы будут различаться очень сильно. Как вы думаете, почему?)
В этом примере мы рассмотрели три способа моделирования зависимости величин: функциональный (формула), табличный и графический. Однако математической моделью процесса падения тела на землю можно назвать только формулу. Формула более универсальна, она позволяет определить время падения тела с любой высоты, а не только для того экспериментального набора значений Н, который отображен на рис. 6.1. Имея формулу, можно легко создать таблицу и построить график, а наоборот — весьма проблематично.
Точно так же тремя способами можно отобразить зависимость давления от температуры. Оба примера связаны с известными физическими законами — законами природы. Знания физических законов позволяют производить точные расчеты, они лежат в основе современной техники.
Информационные модели, которые описывают развитие систем во времени, имеют специальное название: динамические модели. В примере 1 приведена именно такая модель. В физике динамические информационные модели описывают движение тел, в биологии — развитие организмов или популяций животных, в химии — протекание химических реакций и т. д.
Система основных понятий

Моделирование зависимостей между величинами

Величина -

количественная характеристика исследуемого объекта

Характеристики величины

Значение

отражает смысл величины

определяет возможные значения величины

константа

Виды зависимостей:

Функциональные

Способы отображения зависимостей

Математическая

Табличная модель

Графическая

Описание развития систем во времени - динамическая модель