Закон распределения. Многоугольник распределения

Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, не известное заранее. Случайные величины бывают прерывного (дискретного) и непрерывного типа. Возможные значения прерывных величин заранее могут быть перечислены. Возможные значения непрерывных величин не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.

Пример дискретных случайных величин:

1) Число появления герба при трех бросаниях монеты. (возможны значения 0;1;2;3)

2) Частота появления герба в том же опыте. (возможные значения )

3) Число отказавших элементов в приборе, состоящем из пяти элементов. (Возможные значения величин 0;1;2;3;4;5)

Примеры непрерывных случайных величин:

1) Абсцисса (ордината) точки попадания при выстреле.

2) Расстояние от точки попадания до центра мишени.

3) Время безотказной работы прибора (радиолампы).

Случайны величины обозначаются большими буквами, а их возможные значения – соответствующими малыми буквами. Например, X – число попаданий при трех выстрелах; возможные значения: X 1 =0,Х 2 =1, Х 3 =2, Х 4 =3.

Рассмотрим прерывную случайную величину Х с возможными значениями Х 1 , Х 2 , … , Х n . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, то есть произойдет одно из полной группы несовместных событий.

Обозначим вероятности этих событий буквами p с соответствующими индексами:

Так как несовместные события образуют полную группу, то

то есть сумма вероятности всех возможных значений случайной величины равна 1. Эта суммарная вероятность каким-то образом распределена между отдельными значениями. Случайная величина будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, то есть в точности укажем какой вероятностью обладает каждое из событий. (Этим мы установим так называемый закон распределения случайных величин.)

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующей им вероятности. (Про случайную величину мы будем говорить, что она подчинена данному закону распределения)

Простейшей формой задания закона распределения случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности.

Таблица 1.

X i X 1 X 2 X n
P i P 1 P 2 P n

Такую таблицу называют рядом распределения случайных величин.

Чтобы придать ряду распределения более наглядный вид прибегают к его графическому изображению: по оси абсцисс откладывают возможные значения случайной величины, а по оси ординат – вероятности этих значений. (Для наглядности полученные точки соединяют отрезками прямых.)


Рисунок 1 – многоугольник распределения

Такая фигура называется многоугольником распределения . Многоугольник распределения, так же как и ряд распределения, полностью характеризует случайную величину; он является одной из форм закона распределения.

Пример:

производится один опыт, в котором может появиться или не появиться событие А. Вероятность события А=0,3. Рассматривается случайная величина Х – число появлений события А в данном опыте. Необходимо построить ряд и многоугольник распределения величины Х.

Таблица 2.

X i
P i 0,7 0,3

Рисунок 2 - Функция распределения

Функция распределения является универсальной характеристикой случайной величины. Она существует для всех случайных величин: как прерывных, так и не прерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, то есть является одной из форм закона распределения.

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события X=x, а вероятностью события X

Функцию распределения F(x) иногда также называют также интегральной функцией распределения или интегральным законом распределения.

Свойства функции распределения случайной величины

1. Функция распределения F(x) есть неубывающая функция своего аргумента, то есть при ;

2. На минус бесконечности :

3. На плюс бесконечности :

Рисунок 3 – график функции распределения

График функции распределения в общем случае представляет собой график неубывающей функции, значения которой начинаются от 0 и доходят до 1.

Зная ряд распределения случайной величины, можно построить функцию распределения случайной величины.

Пример:

для условий предыдущего примера построить функцию распределения случайной величины.

Построим функцию распределения X:

Рисунок 4 – функция распределения Х

Функция распределения любой прерывной дискретной случайной величины всегда есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений. Сумма всех скачков функции распределения равна 1 .

По мере увеличения числа возможных значений случайной величины и уменьшения интервалов между ними, число скачков становится больше, а сами скачки – меньше:

Рисунок 5

Ступенчатая кривая становится более плавной:

Рисунок 6

Случайная величина постепенно приближается к непрерывной величине, а ее функция распределения к непрерывной функции. Также существуют случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых функция распределения не везде является непрерывной. И в отдельных точках терпит разрыв. Такие случайные величины называются смешенными.

Рисунок 7

Задача 14. В денежной лотерее разыгрывается 1 выигрыш в 1000000 руб., 10 выигрышей по 100000 руб. и 100 выигрышей по 1000 руб. при общем числе билетов 10000. Найти закон распределения случайного выигрыша Х для владельца одного лотерейного билета.

Решение . Возможные значения для Х : х 1 = 0; х 2 = 1000; х 3 = 100000;

х 4 = 1000000. Вероятности их соответственно равны: р 2 = 0,01; р 3 = 0,001; р 4 = 0,0001; р 1 = 1 – 0,01 – 0,001 – 0,0001 = 0,9889.

Следовательно, закон распределения выигрыша Х может быть задан следующей таблицей:

Построить многоугольник распределения.

Решение . Построим прямоугольную систему координат, причем по оси абсцисс будем откладывать возможные значения х i , а по оси ординат – соответствующие вероятности р i . Построим точки М 1 (1;0,2), М 2 (3;0,1), М 3 (6;0,4) и М 4 (8;0,3). Соединив эти точки отрезками прямых, получим искомый многоугольник распределения.

§2. Числовые характеристики случайных величин

Случайная величина полностью характеризуется своим законом распределения. Осредненное описание случайной величины можно получить при использовании ее числовых характеристик

2.1. Математическое ожидание. Дисперсия.

Пусть случайная величина может принимать значения с вероятностями соответственно .

Определение. Математическим ожиданием дискретной случайной величинаы называется сумма произведений всех ее возможных значений на соответствующие вероятности:

.

Свойства математического ожидания.

Рассеяние случайной величины около среднего значения характеризуют дисперсия и среднеквадратическое отклонение.

Дисперсией случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

Для вычислений используется следующая формула

Свойства дисперсии.

2. , где взаимно независимые случайные величины.

3. Среднеквадратическое отклонение .

Задача 16. Найти математическое ожидание случайной величины Z = X+ 2Y , если известны математические ожидания случайных величин X и Y : М (Х ) = 5, М (Y ) = 3.

Решение . Используем свойства математического ожидания. Тогда получаем:

М (Х+ 2Y ) = М (Х ) + М (2Y ) = М (Х ) + 2М (Y ) = 5 + 2 . 3 = 11.

Задача 17. Дисперсия случайной величины Х равна 3. Найти дисперсию случайных величин: а) –3Х; б) 4Х + 3.

Решение . Применим свойства 3, 4 и 2 дисперсии. Имеем:

а) D (–3Х ) = (–3) 2 D (Х ) = 9 D (Х ) = 9 . 3 = 27;

б) D (4 Х + 3) = D (4Х ) + D (3) = 16D (Х ) + 0 = 16 . 3 = 48.

Задача 18. Дана независимая случайная величина Y – число очков, выпавших при бросании игральной кости. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратичное отклонение случайной величины Y .

Решение. Таблица распределения случайной величины Y имеет вид:

Y
р 1/6 1/6 1/6 1/6 1/6 1/6

Тогда М (Y ) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6+ 4 · 1/6+ 5 · 1/6+ 6 · 1/6 = 3,5;

D (Y ) = (1 – 3,5) 2 · 1/6 +(2 – 3,5) 2 · /6 + (3 – 3,5) 2 · 1/6 + (4 – 3,5) 2 · /6 +(5 – –3,5) 2 · 1/6 + (6 – 3,5) 2. · 1/6 = 2,917; σ (Y ) 2,917 = 1,708.

В разделе курса, посвященном основным понятиям теории вероятностей, мы уже ввели в рассмотрение чрезвычайно важное понятие случайной величины. Здесь мы дадим дальнейшее развитие этого понятия и укажем способы, с помощью которых случайные величины могут быть описаны и характеризованы.

Как уже было сказано, случайной величиной называется величина, которая в результате опыта может принять то или иное значение, неизвестно заранее – какое именно. Мы условились также различать случайные величины прерывного (дискретного) и непрерывного типа. Возможные значения прерывных величин могут быть заранее перечислены. Возможные значения непрерывных величин не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.

Примеры прерывных случайных величин:

1) число появлений герба при трех бросаниях монеты (возможные значения 0, 1, 2, 3);

2) частота появления герба в том же опыте (возможные значения );

3) число отказавших элементов в приборе, состоящем из пяти элементов (возможнее значения 0, 1, 2, 3, 4, 5);

4) число попаданий в самолет, достаточное для вывода его из строя (возможные значения 1, 2, 3, …, n, …);

5) число самолетов, сбитых в воздушном бою (возможные значения 0, 1, 2, …, N, где – общее число самолетов, участвующих в бою).

Примеры непрерывных случайных величин:

1) абсцисса (ордината) точки попадания при выстреле;

2) расстояние от точки попадания до центра мишени;

3) ошибка измерителя высоты;

4) время безотказной работы радиолампы.

Условимся в дальнейшем случайные величины обозначать большими буквами, а их возможные значения – соответствующими малыми буквами. Например, – число попаданий при трех выстрелах; возможные значения: .

Рассмотрим прерывную случайную величину с возможными значениями . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий:

Обозначим вероятности этих событий буквами p с соответствующими индексами:

Так как несовместные события (5.1.1) образуют полную группу, то

т.е. сумма вероятностей всех возможных значений случайной величины равна единице. Эта суммарная вероятность каким-то образом распределена между отдельными значениями. Случайная величина будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, т.е. в точности укажем, какой вероятностью обладает каждое из событий (5.1.1). Этим мы установим так называемый закон распределения случайной величины.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину мы будем говорить, что она подчинена данному закону распределения.

Установим форму, в которой может быть задан закон распределения прерывной случайной величины . Простейшей формой задания этого закона является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности:

Такую таблицу мы будем называть рядом распределения случайной величины .

Чтобы придать ряду распределения более наглядный вид, часто прибегают к его графическому изображению: по оси абсцисс откладываются возможные значения случайной величины, а по оси ординат – вероятности этих значений. Для наглядности полученные точки соединяются отрезками прямых. Такая фигура называется многоугольником распределения (рис. 5.1.1). Многоугольник распределения, так же как и ряд распределения, полностью характеризует случайную величину; он является одной из форм закона распределения.

Иногда удобной оказывается так называемая «механическая» интерпретация ряда распределения. Представим себе, что некоторая масса, равная единице, распределена по оси абсцисс так, что в отдельных точках сосредоточены соответственно массы . Тогда ряд распределения интерпретируется как система материальных точек с какими-то массами, расположенных на оси абсцисс.

Рассмотрим несколько примеров прерывных случайных величин с их законами распределения.

Пример 1. Производится один опыт, в котором может появиться или не появиться событие . Вероятность события равна 0,3. Рассматривается случайная величина – число появлений события в данном опыте (т.е. характеристическая случайная величина события , принимающая значение 1, если оно появится, и 0, если не появится). Построить ряд распределения и многоугольник распределения величины .

Решение. Величина имеет всего два значения: 0 и 1. Ряд распределения величины имеет вид:

Многоугольник распределения изображен на рис. 5.1.2.

Пример 2. Стрелок производит три выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывается 5 очков. Построить ряд распределения числа выбитых очков.

Решение. Обозначим число выбитых очков. Возможные значения величины : .

Вероятность этих значений находим по теореме о повторении опытов:

Ряд распределения величины имеет вид:

Многоугольник распределения изображен на рис. 5.1.3.

Пример 3. Вероятность появления события в одном опыте равна . Производится ряд независимых опытов, которые продолжаются до первого появления события , после чего опыты прекращаются. Случайная величина – число произведенных опытов. Построить ряд распределения величины .

Решение. Возможные значения величины : 1, 2, 3, … (теоретически они ничем не ограничены). Для того, чтобы величина приняла значение 1, необходимо, чтобы событие произошло в первом же опыте; вероятность этого равна . Для того, чтобы величина приняла значение 2, нужно, чтобы в первом опыте событие не появилось, а во втором – появилось; вероятность этого равна , где , и т.д. Ряд распределения величины имеет вид:

Первые пять ординат многоугольника распределения для случая показаны на рис. 5.1.4.

Пример 4. Стрелок ведет стрельбу по мишени до первого попадания, имея боезапас 4 патрона. Вероятность попадания при каждом выстреле равна 0,6. Построить ряд распределения боезапаса, оставшегося неизрасходованным.

Ответ: Рассмотрим прерывную случайную величину Х с возможными значениями . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, т. е. произойдет одно из полной группы несовместных событий:

Обозначим вероятности этих событий буквами р с соответствующими индексами:

Т. е. распределение вероятностей различных значений может быть задано таблицей распределения, в которой в верхней строке указываются все значения, принимаемые данной дискретной случайной величиной, а в нижней – вероятности соответствующих ей значений. Так как несовместные события (3.1) образуют полную группу, то , т. е. сумма вероятностей всех возможных значений случайной величины равна единице. Распределение вероятностей непрерывных случайных величин нельзя представить в виде таблицы, так как число значений таких случайных величин бесконечно даже в ограниченном интервале. Кроме того, вероятность получить какое-либо определенное значение равна нулю. Случайная величина будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, т. е. в точности укажем, какой вероятностью обладает каждое из событий. Этим мы установим так называемый закон распределения случайной величины. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину мы будем говорить, что она подчинена данному закону распределения. Установим форму, в которой может быть задан закон распределения прерывной случайной величины X. Простейшей формой задания этого закона является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности:

x i x 1 x 2 × × × x n
p i p 1 p 2 × × × p n

Такую таблицу мы будем называть рядом распределения случайной величины X.

Рис. 3.1

Чтобы придать ряду распределения более наглядный вид, часто прибегают к его графическому изображению: по оси абсцисс откладываются возможные значения случайной величины, а по оси ординат – вероятности этих значений. Для наглядности полученные точки соединяются отрезками прямых. Такая фигура называется многоугольником распределения (рис. 3.1). Многоугольник распределения, также как и ряд распределения, полностью характеризует случайную величину. он является одной из форм закона распределения. Иногда удобной оказывается так называемая «механическая» интерпретация ряда распределения. Представим себе, что некоторая масса, равная единице, распределена по оси абсцисс так, что в n отдельных точках сосредоточены соответственно массы . Тогда ряд распределения интерпретируется как система материальных точек с какими-то массами, расположенных на оси абсцисс.

В разделе курса, посвященном основным понятиям теории вероятностей, мы уже ввели в рассмотрение чрезвычайно важное понятие случайной величины. Здесь мы дадим дальнейшее развитие этого понятия и укажем способы, с помощью которых случайные величины могут быть описаны и характеризованы.

Как уже было сказано, случайной величиной называется величина, которая в результате опыта может принять то или иное значение, неизвестно заранее – какое именно. Мы условились также различать случайные величиныпрерывного (дискретного) и непрерывного типа. Возможные значения прерывных величин могут быть заранее перечислены. Возможные значения непрерывных величин не могут быть заранее перечислены и непрерывно заполняют некоторый промежуток.

Примеры прерывных случайных величин:

1) число появлений герба при трех бросаниях монеты (возможные значения 0, 1, 2, 3);

2) частота появления герба в том же опыте (возможные значения );

3) число отказавших элементов в приборе, состоящем из пяти элементов (возможнее значения 0, 1, 2, 3, 4, 5);

4) число попаданий в самолет, достаточное для вывода его из строя (возможные значения 1, 2, 3, …, n, …);

5) число самолетов, сбитых в воздушном бою (возможные значения 0, 1, 2, …, N, где – общее число самолетов, участвующих в бою).

Примеры непрерывных случайных величин:

1) абсцисса (ордината) точки попадания при выстреле;

2) расстояние от точки попадания до центра мишени;

3) ошибка измерителя высоты;

4) время безотказной работы радиолампы.

Условимся в дальнейшем случайные величины обозначать большими буквами, а их возможные значения – соответствующими малыми буквами. Например, – число попаданий при трех выстрелах; возможные значения: .

Рассмотрим прерывную случайную величину с возможными значениями . Каждое из этих значений возможно, но не достоверно, и величина Х может принять каждое из них с некоторой вероятностью. В результате опыта величина Х примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий:



Обозначим вероятности этих событий буквами p с соответствующими индексами:

Так как несовместные события (5.1.1) образуют полную группу, то

т.е. сумма вероятностей всех возможных значений случайной величины равна единице. Эта суммарная вероятностькаким-то образом распределена между отдельными значениями. Случайная величина будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, т.е. в точности укажем, какой вероятностью обладает каждое из событий (5.1.1). Этим мы установим так называемый закон распределения случайной величины.

Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину мы будем говорить, что она подчинена данному закону распределения.

Установим форму, в которой может быть задан закон распределения прерывной случайной величины . Простейшей формой задания этого закона является таблица, в которой перечислены возможные значенияслучайной величины и соответствующие им вероятности:

Такую таблицу мы будем называть рядом распределения случайной величины .

Чтобы придать ряду распределения более наглядный вид, часто прибегают к его графическому изображению: по оси абсцисс откладываются возможные значения случайной величины, а по оси ординат – вероятности этих значений. Для наглядности полученные точки соединяются отрезками прямых. Такая фигура называется многоугольником распределения (рис. 5.1.1). Многоугольник распределения, так же как и ряд распределения, полностью характеризует случайную величину; он является одной из форм закона распределения.

Иногда удобной оказывается так называемая «механическая» интерпретация ряда распределения. Представим себе, что некоторая масса, равная единице, распределена по оси абсцисс так, что в отдельных точках сосредоточены соответственно массы . Тогда ряд распределения интерпретируется как система материальных точек с какими-то массами, расположенных на оси абсцисс.

Рассмотрим несколько примеров прерывных случайных величин с их законами распределения.

Пример 1. Производится один опыт, в котором может появиться или не появиться событие . Вероятность события равна 0,3. Рассматривается случайная величина – число появлений события в данном опыте (т.е. характеристическая случайная величина события , принимающая значение 1, если оно появится, и 0, если не появится). Построить ряд распределения и многоугольник распределения величины .

Решение. Величина имеет всего два значения: 0 и 1.

Многоугольник распределения изображен на рис. 5.1.2.

Пример 2. Стрелок производит три выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывается 5 очков. Построить ряд распределения числа выбитых очков.

Решение. Обозначим число выбитых очков. Возможные значения величины : .

Вероятность этих значений находим по теореме о повторении опытов:

Ряд распределения величины имеет вид:

Многоугольник распределения изображен на рис. 5.1.3.

Пример 3. Вероятность появления события в одном опыте равна . Производится ряд независимых опытов, которые продолжаются до первого появления события , после чего опыты прекращаются. Случайная величина – число произведенных опытов. Построить ряд распределения величины .

Решение. Возможные значения величины : 1, 2, 3, … (теоретически они ничем не ограничены). Для того, чтобы величина приняла значение 1, необходимо, чтобы событие произошло в первом же опыте; вероятность этого равна . Для того, чтобы величина приняла значение 2, нужно, чтобы в первом опыте событие не появилось, а во втором – появилось; вероятность этого равна , где , и т.д. Ряд распределения величины имеет вид:

Первые пять ординат многоугольника распределения для случая показаны на рис. 5.1.4.

Пример 4. Стрелок ведет стрельбу по мишени до первого попадания, имея боезапас 4 патрона. Вероятностьпопадания при каждом выстреле равна 0,6. Построить ряд распределения боезапаса, оставшегося неизрасходованным.

Решение. Случайная величина – число неизрасходованных патронов – имеет четыре возможных значения: 0, 1, 2 и 3. Вероятности этих значений равны соответственно:

Ряд распределения величины имеет вид:

Многоугольник распределения показан на рис. 5.1.5.

Пример 5. Техническое устройство может применяться в различных условиях и в зависимости от этого время от времени требует регулировки. При однократном применении устройства оно может случайным образом попасть в благоприятный или неблагоприятный режим. В благоприятном режиме устройство выдерживает три применения без регулировки; перед четвертым его приходится регулировать. В неблагоприятном режиме устройство приходится регулировать после первого же применения. Вероятность того, что устройство попадет в благоприятный режим, - 0,7, что в неблагоприятный, - 0,3. Рассматривается случайная величина – число применений устройства до регулировки. Построить её ряд распределения.

Решение. Случайная величина имеет три возможных значения: 1, 2 и 3. вероятность того, что , равна вероятности того, что при первом же применении устройство попадет в неблагоприятный режим, т.е. . Для того, чтобы величина приняла значение 2, нужно, чтобы при первом применении устройство попало в благоприятный режим, а при втором – в неблагоприятный; вероятность этого . Чтобы величина приняла значение 3, нужно, чтобы два первых раза устройство попало в благоприятный режим (после третьего раза его все равно придется регулировать). Вероятность этого равна .

Ряд распределения величины имеет вид:

Многоугольник распределения показан на рис. 5.1.6.


Функция распределения

В предыдущем n° мы ввели в рассмотрение ряд распределения как исчерпывающую характеристику (закон распределения) прерывной случайной величины. Однако эта характеристика не является универсальной; она существует только для прерывных случайных величин. Нетрудно убедиться, что для непрерывнойслучайной величины такой характеристики построить нельзя. Действительно, непрерывная случайная величинаимеет бесчисленное множество возможных значений, сплошь заполняющих некоторый промежуток (так называемое «счетное множество»). Составить таблицу, в которой были бы перечислены все возможные значения такой случайной величины, невозможно. Кроме того, как мы увидим в дальнейшем, каждое отдельное значение непрерывной случайной величины обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для прерывной величины. Однако различные области возможных значений случайной величины все же не являются одинаково вероятными, и для непрерывной величины существует «распределение вероятностей», хотя и не в том смысле, как для прерывной.

Для количественной характеристики этого распределения вероятностей удобно воспользоваться невероятностью события , а вероятностью события , где – некоторая текущая переменная. Вероятностьэтого события, очевидно, зависит от , есть некоторая функция от . Эта функция называется функцией распределения случайной величины и обозначается :

. (5.2.1)

Функцию распределения иногда называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как прерывных, так и непрерывных. Функция распределения полностью характеризуетслучайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.

Сформулируем некоторые общие свойства функции распределения.

1. Функция распределения есть неубывающая функция своего аргумента, т.е. при .

2. На минус бесконечности функция распределения равна нулю: .

3. На плюс бесконечности функция распределения равна единице: .

Не давая строгого доказательства этих свойств, проиллюстрируем их с помощью наглядной геометрической интерпретации. Для этого будем рассматривать случайную величину как случайную точку на оси Ох (рис. 5.2.1), которая в результате опыта может занять то или иное положение. Тогда функция распределения естьвероятность того, что случайная точка в результате опыта попадет левее точки .

Будем увеличивать , т. е. перемещать точку вправо по оси абсцисс. Очевидно, при этом вероятность того, что случайная точка попадет левее , не может уменьшиться; следовательно, функция распределения с возрастанием убывать не может.

Чтобы убедиться в том, что , будем неограниченно перемещать точку влево по оси абсцисс. При этом попадание случайной точки левее в пределе становится невозможным событием; естественно полагать, чтовероятность этого события стремится к нулю, т.е. .

Аналогичным образом, неограниченно перемещая точку вправо, убеждаемся, что , так как событие становится в пределе достоверным.

График функции распределения в общем случае представляет собой график неубывающей функции (рис. 5.2.2), значения которой начинаются от 0 и доходят до 1, причем в отдельных точках функция может иметь скачки (разрывы).

Зная ряд распределения прерывной случайной величины, можно легко построить функцию распределения этой величины. Действительно,

,

где неравенство под знаком суммы указывает, что суммирование распространяется на все те значения , которые меньше .

Когда текущая переменная проходит через какое-нибудь из возможных значений прерывной величины , функция распределения меняется скачкообразно, причем величина скачка равна вероятности этого значения.

Пример 1. Производится один опыт, в котором может появиться или не появиться событие . Вероятность события равна 0,3. Случайная величина – число появлений события в опыте (характеристическая случайная величина события ). Построить её функцию распределения.