По каким формулам вычисляется работа. Механическая работа: определение и формула

ОПРЕДЕЛЕНИЕ

Механическая работа – это произведение силы, приложенной к объекту, на перемещение, совершённое этой силой.

– работа (может обозначаться как ), – сила, – перемещение.

Единица измерения работы — Дж (джоуль) .

Указанная формула применима к телу, движущемуся прямолинейно и постоянном значении воздействующей на него силы. Если между вектором силы и прямой, описывающей траекторию тела есть угол, то формула принимает вид:

Кроме того, понятие работы можно определить как изменение энергии тела:

Именно такое применение этого понятия чаще всего встречается в задачах.

Примеры решения задач по теме «Механическая работа»

ПРИМЕР 1

Задание Двигаясь по окружности радиусом 1м тело переместилось на противоположную точку окружности под действием силы 9Н. Найти работу, совершённую этой силой.
Решение Согласно формуле, работу нужно искать исходя не из пройденного пути, а из перемещения, то есть не нужно считать длину дуги окружности. Достаточно просто учесть, что при перемещении на противоположную точку окружности тело совершило перемещение, равное диаметру окружности, то есть 2м. По формуле:
Ответ Совершенная работа равна Дж.

ПРИМЕР 2

Задание Под действием некоторой силы тело движется вверх по наклонной плоскости под углом к горизонту. Найти силу, действующую на тело, если при продвижении тела на 5 м в вертикальной плоскости его энергия увеличилась на 19 Дж.
Решение По определению изменение энергии тела и есть работа, над ним совершённая.

Однако, мы не можем найти силу, подставив исходные данные в формулу, так как не знаем перемещение тела. Нам известно только его перемещение по оси (обозначим его ). Найдём перемещение тела с помощью определения функции :

Определение

В том случае, если под воздействием силы происходит изменение модуля скорости движения тела, то говорят о том, что сила совершает работу . Считают, что если скорость увеличивается, то работа является положительной, если скорость уменьшается, то работа, которую совершает сила – отрицательна. Изменение кинетической энергии материальной точки в ходе ее движения между двумя положениями равно работе, которую совершает сила:

Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи величины перемещения, которое совершает рассматриваемое тело под действием силы ().

Элементарная работа

Элементарная работа некоторой силы определяется как скалярное произведение:

Радиус – вектор точки, к которой приложена сила, - элементарное перемещение точки по траектории, – угол между векторами и . Если является тупым углом работа меньше нуля, если угол острый, то работа положительная, при

В декартовых координатах формула (2) имеет вид:

где F x ,F y ,F z – проекции вектора на декартовы оси.

При рассмотрении работы силы, приложенной к материальной точке можно использовать формулу:

где – скорость материальной точки, – импульс материальной точки.

Если на тело (механическую систему) действуют несколько сил одновременно, то элементарная работа, которую совершают эти силы над системой, равна:

где проводится суммирование элементарных работ всех сил, dt – малый промежуток времени, за который совершается элементарная работа над системой.

Результирующая работа внутренних сил, даже если твердое тело движется, равна нулю.

Пусть твердое тело вращается около неподвижной точки - начала координат (или неподвижной оси, которая проходит через эту точку). В таком случае, элементарная работа всех внешних сил (допустим, что их число равно n), которые действуют на тело, равна:

где – результирующий момент сил относительно точки вращения, – вектор элементарного поворота, – мгновенная угловая скорость.

Работа силы на конечном участке траектории

Если сила выполняет работу по перемещению тела на конечном участке траектории его движения, то работа может быть найдена как:

В том случае, если вектор силы – величина постоянная на всем отрезке перемещения, то:

где – проекция силы на касательную к траектории.

Единицы измерения работы

Основной единицей измерения момента работы в системе СИ является: [A]=Дж=Н м

В СГС: [A]=эрг=дин см

1Дж=10 7 эрг

Примеры решения задач

Пример

Задание. Материальная точка движется прямолинейно (рис.1) под воздействием силы, которая задана уравнением: . Сила направлена по движению материальной точки. Чему равна работа данной силы на отрезке пути от s=0 до s=s 0 ?

Решение. За основу решения задачи примем формулу расчёта работы вида:

где , та как по условию задачи . Подставим выражение для модуля силы заданное условиями, возьмем интеграл:

Ответ.

Пример

Задание. Материальная точка перемещается по окружности. Ее скорость изменяется в соответствии с выражением: . При этом работа силы, которая действует на точку, пропорциональна времени: . Каково значение n?

Рассмотренные ниже примеры дают результаты, которыми можно непосредственно пользоваться при решении задач.

1. Работа силы тяжести. Пусть точка М, на которую действует сила тяжести Р, перемещается из положения в положение Выберем координатные оси так, чтобы ось была направлена вертикально вверх (рис. 231). Тогда . Подставляя эти значения в формулу (44), получим, учитывая, что переменным интегрирования является :

Если точка выше , то , где h - вертикальное перемещение точки; если же точка ниже точки то .

Окончательно получаем

Следовательно, работа силы тяжести равна взятому со знаком плюс или минус произведению модуля силы на вертикальное перемещение точки ее приложения. Работа положительна, если начальная точка выше конечной, и отрицательна, если начальная точка ниже конечной.

Из полученного результата следует, что работа силы тяжести не зависит от вида той траектории, по которой перемещается точка ее приложения. Силы, обладающие таким свойством, называются потенциальными (см. § 126).

2. Работа силы упругости. Рассмотрим груз М, лежащий на горизонтальной плоскости и прикрепленный к свободному концу некоторой пружины (рис. 232, а). На плоскости отметим точкой О положение, занимаемое концом пружины, когда она не напряжена - длина ненапряженной пружины), и примем эту точку за начало координат. Если теперь оттянуть груз от равновесного положения О, растянув пружину до величины I, то пружина получит удлинение и на груз будет действовать сила упругости F, направленная к точке О. Так как в нашем случае то по формуле (6) из § 76

Последнее равенство справедливо и при (груз левее точки О); тогда сила F направлена вправо и получится, как и должно быть,

Найдем работу, совершаемую силой упругости при перемещении груза из положения в положение

Так как в данном случае то, подставляя эти значения в формулу (44), найдем

(Этот же результат можно получить по графику зависимости F от (рис. 232, б), вычисляя площадь а заштрихованной на чертеже трапеции и учитывая знак работы.) В полученной формуле представляет собой начальное удлинение пружины - конечное удлинение пружины Следовательно,

т. е. работа силы упругости равна половине произведения коэффициента жесткости на разность квадратов начального и конечного удлинений (или сжатий) пружины.

Работа будет положительной, когда т. е. когда конец пружины перемещается к равновесному положению, и отрицательной, когда т. е. когда конец пружины удаляется от равновесного положения.

Можно доказать, что формула (48) остается справедливой и в случае, когда перемещение точки М не является прямолинейным. Таким образом, оказывается, что работа силы F зависит только от значений и и не зависит от вида траектории точки М. Следовательно, сила упругости также является потенциальной.

3. Работа силы трения. Рассмотрим точку, движущуюся по какой-нибудь шероховатой поверхности (рис. 233) или кривой. Действующая на точку сила трения равна по модулю где f - коэффициент трения, а N - нормальная реакция поверхности. Направлена сила трения противоположно перемещению точки. Следовательно, и по формуле (44)

Если численно сила трения постоянна, то где s - длина дуги кривой , по которой перемещается точка.

Таким образом, работа силы трения при скольжении всегда отрицательна. Так как эта работа зависит от длины дуги то, следовательно, сила трения является силой непотенциальной.

4. Работа силы тяготения Если Землю (планету) рассматривать как однородный шар (или шар, состоящий из однородных концентрических слоев), то на точку М с массой , находящуюся вне шара на расстоянии от его центра О (или находящуюся на поверхности шара), будет действовать сила тяготения F, направленная к центру О (рис. 234), значение которой определяется формулой (5) из § 76. Представим эту формулу в виде

н определим коэффициент k из того условия, что, когда точка находится на поверхности Земли (r = R, где R - радиус Земли), сила притяжеиия равна mg, где g - ускорение силы тяжести (точнее силы тяютения) на земной поверхности. Тогда должно быть

    Сумма работ внутренних сил системы в общем случае отлична от нуля.

    Если материальная система представляет собой абсолютно твердое тело, то сумма работ внутренних сил равна нулю.

    Работа любой силы равна нулю, если сила приложена в неподвижной точке, скорость которой равна нулю в данный момент времени.

    Работа внутренних сил натяжений гибких нерастяжимых тросов, канатов и т.п. равна нулю.

    Работа силы тяжести равна произведению веса материальной системы на вертикальное перемещение центра масс, взятому со знаком «плюс», если центр масс опускается, и со знаком «минус», если центр масс поднимается: А=± Mgh c , где М – масса материальной системы, кг ; h c – вертикальное перемещение центра масс, м ; g – ускорение свободного падения, м/с 2 .

    Работа силы, приложенной к вращающемуся вокруг оси абсолютно твердому телу , равна: А=± M П (φ-φ 0 ) , где M П - момент пары сил, приложенной к телу, Нм ; φ-φ 0 – значение конечного угла поворота тела.

    Работа силы трения : А= - F тр · S , где S - перемещение, м . Работа силы трения всегда отрицательна.

    Работа сил упругости пружины : А=0,5с∙(λ 2 0 - λ 2 1 ) , где с - коэффициент жесткости пружины; λ - удлинение пружины, м. Работа положительна при λ 0 > λ 1 и отрицательна при λ 0 < λ 1 .

5.3.3. Задание д -2. Применение теоремы об изменении кинетической энергии к изучению движения механической системы

Дано . Механическая система состоит из катков 1 и 2 (или катка и подвижного блока), ступенчатого шкива 3 с радиусами ступеней R 3 = 0,3 м, r 3 = 0,1 м и радиусом инерции относительно оси вращения ρ 3 = 0,2 м , блока 4 радиуса R 4 = 0,2 м и грузов 5 и 6 (рис. Д 2.0 – Д 2.9, табл. Д-2); тела 1 и 2 считать сплошными однородными цилиндрами, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f =0,1 . Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с .

Под действием силы F = f ( s ), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).

Все катки катятся по плоскостям без скольжения.

Если по заданию массы грузов 5 и 6 или массы катков 1 (рис. Д 2.0-2.4) и 2 (рис. Д 2.5-2.9) равны нулю, то на чертеже их можно не изображать.

Определить : значение искомой величины в тот момент времени, когда перемещение s станет равным s 1 = 0,2 м . Искомая величина указана в столбце «Найти» таблицы Д 2, где обозначено: ω 3 – угловая скорость тела 3 ; ε 4 – угловое ускорение тела 4 ; v 5 – скорость тела 5 ; а с2 - ускорение центра масс тела 2 и т.п.

Указания. При решении задачи учесть, что кинетическая энергия системы равна сумме кинетических энергий всех входящих в систему тел; эту энергию следует выразить через ту скорость (линейную или угловую), которую в задаче надо определить. При вычислении энергии для установления зависимости между скоростями точек тела, движущегося плоскопараллельно, или между его угловой скоростью и скоростью центра масс воспользоваться мгновенным центром скоростей. При вычислении работы необходимо все перемещения выразить через заданное перемещение s 1 , учитывая при этом, что зависимость между перемещениями здесь будет такой же, как между соответствующими скоростями.

Термин «мощность» в физике имеет специфический смысл. Механическая работа может выполняться с различной скоростью. А механическая мощность обозначает, как быстро совершается эта работа. Способность правильно измерить мощность имеет важное значение для использования энергетических ресурсов.

Разные виды мощности

Для формулы механической мощности применяется следующее выражение:

В числителе формулы затраченная работа, в знаменателе – временной промежуток ее совершения. Это отношение и называется мощностью.

Существует три величины, которыми можно выразить мощность: мгновенная, средняя и пиковая:

  1. Мгновенная мощность – мощностной показатель, измеренный в данный момент времени. Если рассмотреть уравнение для мощности N = ΔA/Δt , то мгновенная мощность представляет собой ту, которая берется в чрезвычайно малый промежуток времени Δt. Если имеется построенная графическая зависимость мощности от времени, то мгновенная мощность – это просто считываемое с графика значение в любой взятый момент времени. Другая запись выражения для мгновенной мощности:
  1. Средняя мощность – мощностная величина, измеренная за относительно большой временной отрезок Δt;
  2. Пиковая мощность – максимальное значение, которое мгновенная мощность может иметь в конкретной системе в течение определенного временного промежутка. Стереосистемы и двигатели автомобилей – примеры устройств, способных обеспечить максимальную мощность, намного выше их средней номинальной мощности. Однако поддерживать эту мощностную величину можно в течение короткого времени. Хотя для эксплуатационных характеристик устройств она может быть более важной, чем средняя мощность.

Важно! Дифференциальная форма уравнения N = dA/dt универсальна. Если механическая работа выполняется равномерно в течение времени t, то средняя мощность будет равна мгновенной.

Из общего уравнения получается запись:

где A будет общая работа за заданное время t. Тогда при равномерной работе вычисленный показатель равен мгновенной мощности, а при неравномерной –средней.

В каких единицах измеряют мощность

Стандартной единицей для измерения мощности служит Ватт (Вт), названный в честь шотландского изобретателя и промышленника Джеймса Ватта. Согласно формуле, Вт = Дж/с.

Существует еще одна единица мощности, до сих пор широко используемая, – лошадиная сила (л. с.).

Интересно. Термин «лошадиная сила» берет свое начало в 17-м веке, когда лошадей использовали для поднятия груза из шахты. Одна л. с. равна мощности для поднятия 75 кг на 1 м за 1 с. Это эквивалентно 735,5 Вт.

Мощность силы

Уравнение для мощности соединяет выполненную работу и время. Поскольку известно, что работа выполняется силами, а силы могут перемещать объекты, можно получить другое выражение для мгновенной мощности:

  1. Работа, проделанная силой при перемещении:

A = F x S x cos φ.

  1. Если поставить А в универсальную формулу для N , определяется мощность силы:

N = (F x S x cos φ)/t = F x V x cos φ, так как V = S/t.

  1. Если сила параллельна скорости частицы, то формула принимает вид :

Мощность вращающихся объектов

Процессы, связанные с вращением объектов, могут быть описаны аналогичными уравнениями. Эквивалентом силы для вращения является крутящий момент М, эквивалент скорости V – угловая скорость ω.

Если заменить соответствующие величины, то получается формула:

M = F x r, где r – радиус вращения.

Для расчета мощности вала, вращающегося против силы, применяется формула:

N = 2π x M x n,

где n – скорость в об/с (n = ω/2π).

Отсюда получается то же упрощенное выражение:

Таким образом, двигатель может достичь высокой мощности либо при высокой скорости, либо, обладая большим крутящим моментом. Если угловая скорость ω равна нулю, то мощность тоже равна нулю, независимо от крутящего момента.

Видео