Теория измерений. Виды шкал и их особенности Шкала измерения времени является шкалой

Все виды шкал измерений обычно разделяются на следующие типы: шкалы наименований; шкалы порядка; шкалы интервалов (разностей); шкалы отношений; абсолютные шкалы; условные шкалы. Шкалы интервалов и отношений относят к метрическим шкалам, сюда же относят абсолютные шкалы как подтип шкал отношений (рис. 4.2).

Шкалы наименований характеризуются оценкой (отношением) эквивалентности качественных проявлений свойства или отличиями проявления этого свойства.

Множество проявлений качественного параметра свойства может быть упорядочено по признаку близости (сходства) качественных различий и (или) по признаку количественных различий в некоторых показателях этих свойств. Например, шкалы измерений цвета опираются на трехкоординатную модель цветового пространства, упорядоченную

Рис. 4.2.

по цветовым различиям (качественный параметр) и яркости (количественный параметр).

Отличительными признаками шкал наименований являются: неприменимость в них понятий нуля, единицы измерений, размерности, в них отсутствует отношения сопоставления тина "больше – меньше".

В них допустимы только изоморфные и гомоморфные преобразования. В шкалах не допускается изменение спецификаций, которые описывают конкретные шкалы. Чаще всего наименования устанавливаются рядом "классов эквивалентностей". Примерами этого могут служить шкалы измерений цвета, геодезические шкалы для обозначения местоположения на Земле в установленных системах координат; шкалы запахов; шкалы групп крови человека с учетом резус-фактора и пр.

Например, шкала цветов может быть представлена в виде атласов цветов. При этом процесс измерений заключается в достижении (например, при визуальной оценке) эквивалентности испытуемого образца с одним из этатонных образцов, входящих в атлас цветов.

Шкалы порядка описывают свойства величин, упорядоченные по возрастанию или убыванию оцениваемого свойства.

Отличительными особенностями шкал порядка является отсутствие единицы измерений и размерности; необязательность наличия нуля; допустимость любых монотонных преобразований; недопустимость изменения спецификаций, описывающих конкретные шкалы.

Примерами шкал порядка могут быть шкалы:

  • твердости материалов: металлов (международные шкалы Бринелля, Роквела, Виккерса, Шора), минералов, резины, пластмасс и др.;
  • интенсивности и балльности землетрясений;
  • силы ветра и состояния поверхности моря (шкала Бофорта);
  • белизны различных объектов (бумаги, древесины, муки и пр.);
  • чисел светочувствительности фотоматериалов;
  • громкостей и уровней громкости;
  • интенсивности вкуса и запаха воды;
  • октановых и цетановых чисел топлива для двигателей;
  • чисел падения для зерна и муки;
  • оценки событий на атомных электростанциях;
  • кислотных, йодных, бромных, перманганатных, медных, хлорных, перекисных и др. чисел для различных материалов и продуктов.

Условные шкалы – это шкалы величин, в которых не определена единица измерения. К ним относятся шкалы наименований и порядка.

Подобное расширение применения шкал измерений выходит за рамки обычного понимания метрологии в смысле ориентированности на измерение физических величин.

Остановимся на содержании ряда важных условных шкал, в частности шкал твердости (шкал чисел твердости). Твердость оценивается по условным шкалам Бринелля (НВ), Виккерса (HV), Роквелла (HR) и др.

По условной шкале Бринелля твердость (число твердости) измеряют, вдавливая стальной закаленный шарик (диаметром 10 мм, 5 мм, 2,5 мм) в испытуемый образец, с помощью отношения усилия (нагрузки) F на шарик к площади S отпечатка, остающегося на образце,

где О – диаметр шарика, мм; d – диаметр отпечатка, мм; F – нагрузка на шарик, Н или кгс (1 кгс ≈ 9,8 Н).

По условной шкале Виккерса число твердости определяют, вдавливая в испытуемый образец алмазный наконечник, имеющий форму четырехгранной пирамиды (с углом при вершине 136°), с приложением усилия Fot 49 Н (5 кгс) до 980 Н (100 кгс) в течение времени выдержки, например, 10 с, 15 с, 20 с.

После приложения усилия с помощью микроскопа измеряется длина диагоналей на отпечатке d 1, d 2. Число твердости по Виккерсу определяется по формуле

Условной единицей, как в шкалах твердости по Бри- неллю и Виккерсу, является число твердости по Роквеллу. При измерении твердости по Роквеллу стандартный наконечник (стальной шарик или алмазный конус) вдавливается с помощью прессов Роквелла в испытуемый образец под действием двух усилий: предварительного F0 и общего F, причем F = F 0 + F 1.

Пресс Роквелла имеет три шкалы (А , В, С). Измерение твердости по шкалам А и С производится путем вдавливания в образец алмазного наконечника (конус с углом 120°). При измерении по шкале Л усилие F0 = 98 Н (10 кгс), F 1 = = 490 Н (50 кгс), а общее усилие F = 588 Н.

При измерении по шкале С усилие F 0 = 98 Н, F 1 = 1372 Н (140 кгс), F = 1470 Н (150 кгс).

Для сравнительно мягких материалов используется шкала В. При этом используется стальной шарик диаметром 1,588 мм под действием нагрузок F0 = 98 H, F1 = 882 H (90 кгс), F = 980 Н (100 кгс).

Твердость по Роквеллу обозначают в зависимости от применяемой шкалы HRA, HRB, HRC с указанием числа твердости, которое определяется в случае шкал A и С по формуле

HR = 100 – (h h 0) / 0,002, (4.6)

а в случае шкалы В

HRB = 130 – (h h 0) / 0,002 (4.7)

где h 0 – глубина внедрения наконечника в образец под действием предварительного усилия, h – глубина внедрения наконечника в образец под действием общего усилия, измеренного после снятия нагрузки F 1, с оставлением предварительной нагрузки.

В России имеется специальный эталон воспроизведения твердости по шкале HRC и HRC Э (шкала Супер-Роквелла). Для пересчета шкал HRC и HRC Э существуют официальные таблицы.

В настоящее время требования к твердости рекомендуется указывать числами по шкале HRC Э.

В ряде случаев применяется число твердости по Моосу, определяемое по 10-балльной шкале, применяемой для изучения твердости минералов. При этом более твердому минералу приписывается более высокий балл.

Так, если тальк имеет число твердости (балл), равный единице, гипс – двум, то кварцу соответствует число твердости, равное семи, топазу – восьми, корунду – девяти, алмазу – 10.

Шкала Мооса, "старейшая" из шкал твердости, была предложена в 1822 г.

Позже для минералов стала применяться 12-балльная шкала Брейтгаупта. Балл 1 по-прежнему приписывается тальку, но алмаз имеет 12-й балл. Таким образом, между этими шкалами нет принципиального различия.

Для определения твердости растягивающихся тел применяется число твердости по Шору, связанное с числом твердости по Бри неллю.

При этом НВ соответствует 7 Н Ш, где Н Ш – число делений шкалы Шора, которое находится по высоте, на которую отскакивает боек при испытаниях.

Для определения твердости резины применяется шкала Шора и международный стандарт, по которому твердость резины рассчитывается по глубине погружения индикатора в испытуемый образец.

Шкалы разностей (интервалов ) отличаются от шкал порядка тем, что для описываемых ими свойств имеют смысл не только соотношения эквивалентности и порядка, но и равенства и суммирования интервалов (разностей) между различными количественными проявлениями свойств. Например, шкала интервалов времени, в которой интервалы времени (период работы, учебы) можно складывать и вычитать, но складывать даты каких-либо событий бессмысленно. Другим примером может служить шкала длин (расстояний), оцениваемая путем совмещения нуля линейки с одной точкой через пространственный интервал до другой точки, у которой и выполняют отсчет. К шкалам этого типа относятся практические шкалы температур с условным нулем.

Шкалы разностей имеют условные (принятые по соглашению) единицы измерений и условные нули, основанные на каких-либо реперах. В этих шкалах допустимы линейные преобразования, в них применимы процедуры математического ожидания, стандартного отклонения и пр.

К шкалам разностей относят:

  • 1) Международную шкалу равномерного атомного времени ТА, в которой размер единицы соответствует определению секунды в СИ;
  • 2) шкалу всемирного времени UT0, длительность секунды в которой равна средней солнечной секунде;
  • 3) шкалу всемирного времени UT1, отличающуюся от UT0 поправкой на перемещение полюсов Земли;
  • 4) шкалу всемирного времени UT2, отличающуюся от UT1 поправкой на сезонную неравномерность вращения Земли;
  • 5) шкалу координированного времени UTC, в которой размер секунды такой же, как в ТА, но начало счета может меняться ровно на 1 с, чтобы расхождения между UTC и UT2 не превышало 0,9 с;
  • 6) календари (григорианский, юлианский, мусульманский, лунный и др.);
  • 7) шкалу температуры по Цельсию, в которой единица измерений – градус Цельсия – равна Кельвину и за условный нуль принята термодинамическая температура 273,16 К;
  • 8) шкалу окислительных потенциалов водных растворов.

Шкалы отношений описывают свойства величин, для множеств количественных проявлений которых применимы логические отношения эквивалентности, порядка и пропорциональности, а для некоторых шкал также отношение суммирования.

В шкалах отношения существует естественный нуль и по согласованию устанавливается единица измерения.

Примерами шкалы отношений являются:

  • 1) шкала массы (аддитивная);
  • 2) шкала частот, в которой размер единицы соответствует определению герца в СИ;
  • 3) шкала термодинамической температуры (пропорциональная), в которой размер единицы соответствует определению кельвина в СИ. К этой шкале максимально приближена международная температурная шкала МТШ-90, которая опирается на ряд реперных точек;
  • 4) шкала силы света оптического излучения, в которой размер единицы соответствует определению канделы в СИ с использованием для различных по спектру излучений стандартизированной Международной комиссией по излучению (МКО) эмпирической функции относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Эта шкала является исходной для шкал всех световых величин;
  • 5) шкалы уровня звука А, В, С и D, стандартизированные на международном уровне. Уровень звукового давления в этих шкалах принято выражать в логарифмических шкалах (в децибелах относительно опорного значения 2 × 10-5 Па);
  • 6) шкалы измерения раздражающего действия шума (шумности и уровня воспринимаемого шума), стандартизированные на международном уровне;
  • 7) аудиометрические шкалы (для измерения остроты и степени потери слуха);
  • 8) псофометрические шкалы (для измерения действия шумов в линиях связи);
  • 9) шкалы доз (поглощенной и эквивалентной) и мощности доз ионизирующих излучений;
  • 10) шкала водородного показателя pH водных растворов (десятичного логарифма активности ионов водорода в грамм-молях на литр, взятого с обратным знаком, реализуемая с использованием ряда реперных растворов);
  • 11) Международная сахарная шкала, установленная рекомендацией Международной организацией законодательной метрологии;
  • 12) шкала жесткости воды.

Абсолютная шкала – это шкала отношений (пропорциональная или аддитивная) безразмерной величины.

Отличительным признаком абсолютных шкал является наличие естественных нуля и арифметической единицы измерений, которые нс зависят от принятой системы единиц; допустимость только тождественных преобразований; допустимость изменения спецификаций, описывающих конкретные шкалы.

Результаты измерений в абсолютных шкалах могут быть выражены не только в арифметических единицах, но и в процентах, промилле, битах, байтах, децибелах. Единицы абсолютных шкал могут быть применены в сочетании с единицами размерных величин. В частности, скорость передачи информации может быть выражена в битах в секунду.

Разновидностью абсолютных шкал являются дискретные (счетные) шкалы, в которых результат измерения выражается числом частиц, квантов или других объектов, эквивалентных по проявлению измеряемого свойства. Например, шкалы для электрического заряда ядер атомов, числа квантов (в фотохимии), количества информации. Иногда за единицу измерений в таких шкалах принимают какое-то определенное число частиц (квантов). Так, один моль – это число частиц, равное числу Авогадро.


ВВЕДЕНИЕ

ПОНЯТИЕ ОБ ИЗМЕРИТЕЛЬНЫХ ШКАЛАХ

ВИДЫ ШКАЛ

1 Шкала наименований

2 Шкала порядка

3 Шкала интервалов

4 Шкала отношений

5 Другие шкалы

6 Взаимосвязь различных школ между собой

ЗАКЛЮЧЕНИЕ


ВВЕДЕНИЕ


Актуальность исследования заключается в том, что в своей работе психолог достаточно часто сталкивается с проблемой измерения индивидуально-психологических особенностей таких, например, как креативность, нейротизм, импульсивность, свойства нервной системы и т.п. Для этого в психодиагностике разрабатываются специальные измерительные процедуры, в том числе и тесты.

Помимо того в психологии широко используются экспериментальные методы и модели исследования психических феноменов в познавательной и личностной сферах. Это могут быть модели процессов познания (восприятия, памяти, мышления) или особенности мотивации, ценностных ориентации, личности и т.п. Главное заключается в том, что в ходе эксперимента изучаемые характеристики могут получать количественное выражение. Количественные данные, полученные в результате тщательно спланированного эксперимента по определенным измерительным процедурам, используются затем для статистической обработки.

Любое измерение производится с помощью инструмента измерения. То, что измеряется, называется переменной, то чем измеряют - инструмент измерения. Результаты измерения называются данными либо результатами (говорят «были получены данные измерения»). Полученные данные могут быть разного качества - относиться к одной из четырех шкал измерения. Каждая шкала ограничивает использование определённых математических операций, и соответственно ограничивает применение определённых методов математической статистики.

Цель реферата - изучить понятие и классификацию измерительной шкалы.

.Рассмотреть понятие измерительной шкалы.

.Проанализировать классификацию и основные виды измерительных шкал.

.Сделать компаративный анализ сравнительных шкал.

В процессе выполнения реферата использовались следующие методы: метод индукция и дедукция, сравнение и др.

Источниками информации для написания работы явились учебники, периодические издания по теме исследования, научные труды Гусева А.Н., Стивенсона С., Перегудова Ф.И., Тарасевича Ф.П., Корнилова Т.В.


1. ПОНЯТИЕ ОБ ИЗМЕРИТЕЛЬНЫХ ШКАЛАХ


Измерение может быть самостоятельным исследовательским методом, но может выступать и как компонент целостной процедуры эксперимента. Как самостоятельный метод измерение служит для выявления индивидуальных различий в поведении субъектов и отражения ими окружающего мира, а также для исследования адекватности отражения и структуры индивидуального опыта.

Измерение в процедуре эксперимента рассматривается как метод регистрации состояния объекта исследования и соответственно изменения этого состояния в ответ на экспериментальное воздействие.

Понятие измерительной шкалы введено в психологию американским ученым С. Стивенсом. Его трактовка шкалы и сегодня используется в научной литературе.

Итак, приписывание чисел объектам создает шкалу. Создание шкалы возможно, поскольку существует изоморфизм формальных систем и систем действий, производимых над реальными объектами.

Числовая система является множеством элементов с реализованными на нем отношениями и служит моделью для множества измеряемых объектов.

Различают несколько типов таких систем и соответственно несколько типов шкал. Операции, а именно - способы измерения объектов, задают тип шкалы. Шкала в свою очередь характеризуется видом преобразований, которые могут быть отнесены к результатам измерения. Если не соблюдать это правило, то структура шкалы нарушится, а данные измерения нельзя будет осмысленно интерпретировать.

Тип шкалы однозначно определяет совокупность статистических методов, которые могут быть применены для обработки данных измерения.

Шкала (лат. scala - лестница) - инструмент для измерения непрерывных свойств объекта; представляет собой числовую систему, где отношения между различными свойствами объектов выражены свойствами числового ряда.

П. Суппес и Дж. Зинес дали классическое определение шкалы: «Пусть А-эмпирическая система с отношениями (ЭСО), R- полная числовая система с отношениями (ЧСО), F- функция, которая гомоморфно отображает - А в подсистему - R (если в области нет двух разных объектов с одинаковой мерой, что является отображением изоморфизма). Назовем шкалой упорядоченную тройку <А; R; f>».

Обычно в качестве числовой системы R выбирается система действительных чисел или ее подсистема. Множество А - это совокупность измеряемых объектов с системой отношений, определенной на этом множестве. Отображение f- правило приписывания каждому объекту определенного числа.

В настоящее время определение Суппеса и Зинеса уточнено. Во-первых, в определение шкалы вводится G - группа допустимых преобразований. Во-вторых, множество А - понимается не только как числовая система, но и как любая формальная знаковая система, которая может быть поставлена в отношение гомоморфизма с эмпирической системой. Таким образом, шкала - это четверка <А; R; f; G>. Согласно современным представлениям, внутренней характеристикой шкалы выступает именно группа G, а f - является лишь привязкой шкалы к конкретной ситуации измерения.

В настоящее время под измерением понимается конструирование любой функции, которая изоморфно отображает эмпирическую структуру в символическую структуру. Как уже отмечено выше, совсем не обязательно такой структурой должна быть числовая. Это может быть любая структура, с помощью которой можно измерить характеристики объектов, заменив их другими, более удобными в обращении (в том числе - числами). (2 ,3).


ВИДЫ ШКАЛ


В психологии различные шкалы используются для изучения разных характеристик социально-психологических явлений.

Первоначально выделялись четыре типа числовых систем, определявших соответственно четыре уровня, или шкалы измерения:

) шкала наименований - номинальная;

) шкала порядка - ординальная;

)шкала интервалов - интервальная;

) шкала отношений - пропорциональная.

Первые две шкалы получили название не метрических, вторые две - метрических. В соответствии с этим в психологии говорят и о двух подходах к психологическим измерениям: метрическом (более строгом) и не метрическом (менее строгом).

Ряд специалистов выделяют также абсолютную шкалу и шкалу разностей.

Рассмотрим особенности каждого типа шкал.


2.1 Шкала наименований


Шкала наименований или номинальная шкала используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже", и т.п. Примерами номинальных шкал являются: пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию.

В этой шкале числа присвоенные объектам говорят только лишь о том, что эти объекты различаются. По сути, это классификационная шкала. Так, например, исследователь может приписать женщинам ноль, а мужчинам единицу, или наоборот, и это будет говорить только о том, что это два разных класса объектов. Чисел в шкале наименований может быть столько, сколько существует классов объектов подлежащих измерению, но ни сумма этих чисел, ни их разность, ни произведение не будут иметь никакого смысла, т.к. в шкале наименований не осуществима ни одна арифметическая операция. Числа в шкале наименований могут быть любыми, хотя, как правило, отрицательные не используются. Наиболее часто в психологических исследованиях используется дихотомическая шкала наименований, которая задается двумя числами - нулем и единицей. Наиболее распространенные примеры таких шкал в психологии это: пол (мужчина - женщина), успешность выполнения задания (справился - не справился), соответствие норме (норма - патология), психологический тип (экстраверт - интроверт).

Шкала наименований получается путем присвоения "имен" объектам. При этом нужно разделить множество объектов на непересекающиеся подмножества.

Иными словами, объекты сравниваются друг с другом, и определяется их эквивалентность - неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена.

Операция сравнения является первичной для построения любой шкалы. Для построения такой шкалы нужно, чтобы объект был равен или подобен сам себе (х=х для всех значений х), т.е. на множестве объектов должно быть реализовано отношение рефлексивности. Для психологических объектов, например испытуемых или психических образов, это отношение реализуемо, если абстрагироваться от времени. Но поскольку операции попарного (в частности) сравнения множества всех объектов эмпирически реализуются неодновременно, то в ходе эмпирического измерения даже это простейшее условие не выполняется.

Следует запомнить: любая шкала есть идеализация, модель реальности, даже такая простейшая, как шкала наименований.

На объектах должно быть реализовано отношение симметрии (R (X=Y) -> R (Y=X)) и транзитивности R (X=Y, Y=Z) -> R (X=Z). Но на множестве результатов психологических экспериментов эти условия могут нарушаться.

Кроме того, многократное повторение эксперимента (накопление статистики) приводит к "перемешиванию" состава классов: в лучшем случае мы можем получить оценку, указывающую на вероятность принадлежности объекта к классу.

Таким образом, нет оснований говорить о шкале наименований (номинативной шкале или шкале строгой классификации) как простейшей шкале, начальном уровне измерения в психологии.

Существуют более "примитивные" (с эмпирической, но не с математической точки зрения) виды шкал: шкалы, основанные на отношениях толерантности; шкалы "размытой" классификации и т.п.

О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом.

Итак, если объекты в каком-то отношении эквивалентны, то мы имеем право отнести их к одному классу. Главное, как говорил Стивенс, не приписывать один и тот же символ разным классам или разные символы одному и тому же классу.

Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик. (2, 3).

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Исследователь, пользующийся шкалой наименований, может применять следующие инвариантные статистики: относительные частоты, моду, корреляции случайных событий, критерий.


2 Шкала порядка


Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака: об объектах, отнесенных к одному из классов, известно, но только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз), это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественно научные шкалы (твердость минералов, сила шторма). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить, насколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному измерению Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значении признака точному измерению не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному измерению (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п.

Числа, присвоенные объектам в этой шкале будут говорить о степени выраженности измеряемого свойства у этих объектов, но, при этом, равные разности чисел не будут означать равных разностей в количествах измеряемых свойств. В зависимости от желания исследователя большее число может означать большую степень выраженности измеряемого свойства (как в шкале твердости минералов) или меньшую (как в таблице результатов спортивных соревнований), но в любом случае, между числами и соответствующими им объектами сохраняется отношение порядка. Шкала порядка задается положительными числами, и чисел в этой шкале может быть столько, сколько существует измеряемых объектов. Примеры шкал порядка в психологии: рейтинг испытуемых по какому-либо признаку, результаты экспертной оценки испытуемых и т.д.

Если можно установить порядок следования психологических объектов в соответствии с выраженностью какого-то свойства, то используется порядковая шкала.

Порядковая шкала образуется, если на множестве реализовано одно бинарное отношение - порядок (отношения "больше" и "меньше"). Построение шкалы порядка - процедура более сложная, чем создание шкалы наименований. Она позволяет зафиксировать ранг, или место, каждого значения переменной по отношению к другим значениям. Этот ранг может быть результатом установления порядка между какими-то стимулами или их атрибутами самим испытуемым (первичный показатель методик ранжирования, или рейтинговых процедур), но может и устанавливаться экспериментатором в качестве вторичного показателя (например, при ранжировке частот положительных ответов испытуемых на вопросы, относящиеся к разным темам).

Классы эквивалентности, выделенные при помощи шкалы наименований, могут быть упорядочены по некоторому основанию. Различают шкалу строгого порядка (строгая упорядоченность) и шкалу слабого порядка (слабая упорядоченность). В первом случае на элементах множества реализуются отношения "больше" и "меньше", а во втором - "не больше или равно" и "меньше или равно".

Значения величин можно заменять квадратами, логарифмами, нормализовать и т.д. При таких преобразованиях значений величин, определенных по шкале порядка, место объектов на шкале не изменяется, т.е. не происходит инверсий.

Еще Стивенс высказывал точку зрения, что результаты большинства психологических измерений в лучшем случае соответствуют лишь шкалам порядка.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

Как бы то ни было, эта шкала позволяет ввести линейную упорядоченность объектов на некоторой оси признака. Тем самым вводится важнейшее понятие - измеряемое свойство, или линейное свойство, тогда как шкала наименований использует "вырожденный" вариант интерпретации понятия "свойство": "точечное" свойство (свойство есть - свойства нет).

В порядковой (ранговой) шкале должно быть не меньше трех классов (групп): например, ответы на опросник: «да», «не знаю», «нет»; или - низкий, средний, высокий; и т.п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку. Именно поэтому эта шкала и называется порядковой, или ранговой, шкалой.

От классов просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных и проверки статистических гипотез.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей.

Для интерпретации данных, полученных посредством порядковой шкалы, можно использовать более широкий спектр статистических мер (в дополнение к тем, которые допустимы для шкалы наименований).

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать. (2, 3).


3 Шкала интервалов


В отличие от двух предыдущих шкал в шкале интервалов существует единица измерения, либо реальная (физическая), либо условная, при помощи которой можно установить количественные различия между объектами в отношении измеряемого свойства. Равные разности чисел в этой шкале будут означать равные различия в количествах измеряемого свойства у разных объектов, или у одного и того же объекта в разные моменты времени. Однако, то, что одно число оказывается в несколько раз больше другого не обязательно говорит о таких же отношениях в количествах измеряемых свойств. В шкале интервалов может быть задействована вся числовая ось, но при этом ноль не указывает на отсутствие измеряемого свойства, т.к. нулевая точка часто является произвольной (например, как в шкале температуры по Цельсию), либо вообще отсутствует, как в некоторых шкалах психологических тестов. Благодаря таким свойствам, шкала интервалов получила широкое распространение в психологии, на ней основано большинство психодиагностических шкал: интеллекта, самооценки и др.

Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль).

Шкала интервалов является первой метрической шкалой. Собственно, начиная с нее, имеет смысл говорить об измерениях в узком смысле этого слова - о введении меры на множестве объектов. Шкала интервалов определяет величину различий между объектами в проявлении свойства. С помощью шкалы интервалов можно сравнивать два объекта. При этом выясняют, насколько более или менее выражено определенное свойство у одного объекта, чем у другого.

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса - дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Большинство специалистов по теории психологических измерений полагают, что тесты измеряют психические свойства с помощью шкалы интервалов. Прежде всего, это касается тестов интеллекта и достижений. Численные значения одного теста можно переводить в численные значения другого теста с помощью линейного преобразования: х" = ах + b.

Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы - балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются настолько же, насколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы


4 Шкала отношений


Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть, разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого.

В шкале отношений также существует единица измерения, при помощи которой объекты можно упорядочить в отношении измеряемого свойства и установить количественные различия между ними. Особенностью шкалы отношений является то, что к числам в этой шкале применимы все математические операции, а это значит, что отношения между числами соответствуют, или пропорциональны отношениям между количествами измеряемых свойств у разных объектов. В этой шкале обязательно, по, крайней мере, теоретически, присутствует ноль, который говорит об абсолютном отсутствии измеряемого свойства. Большинство ныне существующих физических шкал (длины, массы, времени, температуры по Кельвину и т.д.) являются яркими примерами шкал отношений. В психологии из шкал отношений наиболее часто используются шкала вероятностей и шкала ""сырых"" баллов (количество решенных заданий, количество ошибок, количество положительных ответов и т.д.).

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов.

Шкала отношений, по сути, очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример - шкала температур Кельвина.

Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания - области применения шкалы отношений.

Отличием этой шкалы от абсолютной является отсутствие "естественной" масштабной единицы.


2.5 Другие шкалы


Дихотомическая классификация часто рассматривается как вариант шкалы наименований. Это верно, за исключением одного случая, когда мы измеряем свойство, имеющее всего лишь два уровня выраженности: "есть - нет", так называемое "точечное" свойство. Примеров таких свойств много: наличие или отсутствие у испытуемого какой-либо наследственной болезни (дальтонизм, болезнь Дауна, гемофилия и др.), абсолютного слуха и др. В этом случае исследователь имеет право проводить "оцифровку" данных, присваивая каждому из типов цифру "1" или "О", и работать с ними, как со значениями шкалы интервалов.

Шкала разностей, в отличие от шкалы отношений, не имеет естественного нуля, но имеет естественную масштабную единицу измерения. Ей соответствует аддитивная группа действительных чисел. Классическим примером этой шкалы является историческая хронология. Она сходна со шкалой интервалов. Разница лишь в том, что значения этой шкалы нельзя умножать (делить) на константу. Поэтому считается, что шкала разностей - единственная с точностью до сдвига. В психологии шкала разностей используется в методиках парных сравнений.

Абсолютная шкала является развитием шкалы отношений и отличается от нее тем, что обладает естественной единицей измерения. В этом ее сходство со шкалой разностей. Число решенных задач ("сырой" балл), если задачи эквивалентны, - одно из проявлений абсолютной шкалы.

В психологии абсолютные шкалы не используются. Данные, полученные с помощью абсолютной шкалы, не преобразуются, шкала тождественна сама себе. Любые статистические меры допустимы.

В литературе, посвященной проблемам психологических измерений, упоминаются и другие типы шкал: ординальная (порядковая) с естественным началом, логинтервальная, упорядоченная метрическая и др.

Все написанное выше относится к одномерным шкалам. Шкалы могут быть и многомерными: шкалируемый признак в этом случае имеет ненулевые проекции на два (или более) соответствующих параметра. Векторные свойства, в отличие от скалярных, являются многомерными.


2.6 Взаимосвязь различных школ между собой


Между самими шкалами тоже существуют отношения порядка. Каждая из перечисленных шкал является шкалой более высокого порядка по отношению к предыдущей шкале. Так, например, измерения, произведенные в шкале отношений можно перевести в шкалу интервалов, из шкалы интервалов - в шкалу порядка и т.д., но обратная процедура будет невозможна, т.к. при переходе к шкалам более низкого порядка часть информации (о единицах измерения, количествах свойств) теряется.

Тем не менее, это не всегда означает, что шкалы более высокого порядка предпочтительней по отношению к шкалам более низкого порядка, а в ряде случаев - даже, наоборот. Например, количество правильно выполненных заданий в тесте интеллекта (шкала отношений) гораздо выгодней представить в стандартизированной шкале IQ (шкала интервалов), а множество разнообразных поведенческих реакций в виде типа личности (шкала наименований). Наконец, существуют такие признаки объектов, которые можно измерить в любой шкале, как возраст, и такие, к измерению которых подходит только одна шкала, как, например, пол. На выбор измерительной шкалы, таким образом, могут оказывать влияние многие факторы, как достоинства самой шкалы, так и специфика самого объекта измерения.

·Измерительные инструменты

Для проведения измерения в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество измерения определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы измерения, например, в зависимости от природы объекта, расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов измерения в пределах чувствительности шкалы. В гуманитарных и общественных науках (за исключением экономики и демографии) большинство показателей не поддаются непосредственному измерению с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором.

·Качественные и количественные шкалы

В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных, в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы измерения, позволяющей определять, насколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами.

·Шкала интервалов и шкала отношений

Основное различие между шкалами интервалов и отношений состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями.

·Дискретные и непрерывные шкалы

Количественные шкалы делятся на: дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач, и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств, могло бы быть измерено с любой необходимой степенью точности. Результаты измерения непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для измерения интеллекта), но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные измерения. Первичные получаются в результате непосредственного измерения: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными измерениями, обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или не зачисление в институт по результатам вступительных экзаменов.


ЗАКЛЮЧЕНИЕ

измерительный шкала психологический дискретный

Таким образом, шкалы измерений принято классифицировать по типам измеряемых данных, которые определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой. Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

·Шкала наименований (номинальная, классификационная)

Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект. Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т.п. Такие признаки удовлетворяют аксиомам тождества:


Либо А = В, либо А? В;

Если А = В, то В = А;

Если А = В и В = С, то А = С.


При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются шкалы, используемые для классификации животных и растений.

С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию - проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа - критерия согласия Хи-квадрат, критерия Крамера для проверки гипотезы о связи качественных признаков и др.

·Порядковая шкала (или ранговая)

Строится на отношении тождества и порядка. Субъекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать, что больше круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса.

·Интервальная шкала (она же Шкала разностей)

Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

Начало отсчёта произвольно, единица измерения задана. Допустимые преобразования - сдвиги. Пример: измерение времени.

·Абсолютная шкала (она же Шкала отношений)

это интервальная шкала, в которой присутствует дополнительное свойство - естественное и однозначное присутствие нулевой точки. Пример: число людей в аудитории. В шкале отношений действует отношение "во столько-то раз больше". Это единственная из четырёх шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки - сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения - Кельвин).

Из рассмотренных шкал первые две являются не метрическими, а остальные - метрическими.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1.Гусев А.Н., Измайлов Ч.А., Михалевская М.Б. Измерение в психологии М., 1998. С. 10 - 16

.Бахрушин В.Є. Методи аналізу даних. - Запоріжжя, КПУ, 2011

.Дружинин В.Н. Экспериментальная психология: Учебное пособие - М.: ИНФРА-М, 1997.

.Дружинин В.Н. Экспериментальная психология- СПб: Питер, 2000. - 320с.

.Ермолаев О.Ю. Математическая статистика для психологов. М.: Московский психолого-социальный институт: Флинта, 2003. - 366 с.

.Корнилова Т.В. Введение в психологический эксперимент. Учебник для ВУЗов. М.: Изд-во ЧеРо, 2001.

.Математика в социологии: Моделирование и обраб. информации / [Й. Гальтунг, П. Суппес, С. Новак и др.] ; Ред. [и авт. предисл.] А. Аганбегян [и др.] ; Пер. с англ. Л. Б. Черного; Под ред. А. Г. Аганбегяна и Ф. М. Бородкина. - М.: Мир, 1977. - 551 с.: ил.

.Перегудов Ф.И., Тарасевич Ф.П. Введение в системный анализ. - М.: Высшая школа, 1989. - 367 с.

.Психологические измерения: Основы теории измерений (Суппес П., Зинес Дж.). Психофизические шкалы (Льюс Р., Галантер Е.): 1967 - 196 с.

.Словарь практического психолога / Сост. С.Ю. Головин. - Мн: Харвест, М.: ООО «Издательство АСТ», 2003.

11.Stevens, Stanley Smith, "Psychophysics: introduction to its perceptual neural and social prospects", Wiley, 1975.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Шкала наименований используется для описания принадлежности объектов к определенным классам. Это самая слабая качественная шкала. Всем объектам одного и того же класса присваивается одно и то же число, а объектам разных классов – разные числа. В связи с этим шкала наименований часто называется шкалой классификации . Она сохраняет отношения эквивалентности и различия между объектами и используется для индексации номенклатуры изделий (спецификация изделий), документов и видов информации в АСУ, нумерации подразделений в организации и т.п. Существует большое число вариантов присвоения чисел классам эквивалентных объектов. Следовательно, понятие единственности отображения f состоит для шкалы наименований во взаимооднозначности допустимого преобразования . Это означает, что если имеются два варианта приписывания классам числовых значений, то они должны быть связаны между собой взаимооднозначно, что позволяет установить связь между числовыми вариантами описания классов эквивалентности. Таким образом, шкала наименований единственна с точностью до взаимооднозначного преобразования. Это означает, что в данной шкале отсутствуют понятия масштаба и начала отсчета.

Название «номинальный» объясняется тем, что такой признак дает лишь ничем не связанные имена объектам. Эти значения для разных объектов либо совпадают, либо различаются; никакие более тонкие соотношения между значениями не зафиксированы. Шкалы номинального типа допускают только различение объектов на основе проверки выполнения отношения равенства на множестве этих элементов.

Номинальный тип шкал соответствует простейшему виду измерений, при котором шкальные значения используются лишь как имена объектов, поэтому шкалы номинального типа часто называют также шкалами наименований.

Примерами измерений в номинальном типе шкал могут служить номера автомашин, телефонов, коды городов, лиц, объектов и т. п. Единственная цель таких измерений выявление различий между объектами разных классов. Если каждый класс состоит из одного объекта, шкала наименований используется для различения объектов.

На рис.3.5 изображено измерение в номинальной шкале объектов, представляющих три множества элементов А, В, С.

Рис.3.5. Измерение объектов в номинальной шкале

Здесь эмпирическую систему представляют четыре элемента: а A, b В, {с, d} С,принадлежащих соответствующим множествам. Знаковая система представлена цифровой шкалой наименований, включающей элементы 1,2,...,n и сохраняющей отношение равенства. Гомоморфное отображение ставит в соответствие каждому элементу из эмпирической системы определенный элемент знаковой системы. Следует обратить внимание на две особенности номинальных шкал.

Во-первых , элементам cud поставлено в соответствие одно и то же значение шкалы измерения (см. рис.3.5). Это означает, что при измерении эти элементы не различаются.

Во-вторых , при измерении в шкале наименований символы 1,2,3,...,n, используемые в качестве шкальных значений, являются не числами, а цифрами, служащими лишь для обозначения и различия объектов. Так, цифра 2 не является в два раза или на единицу больше цифры 1 в отличие от чисел 2 и 1.

Всякая обработка результатов измерения в номинальной шкале должна учитывать данные особенности. В противном случае могут быть сделаны ошибочные выводы по оценке систем, не соответствующие действительности.

Шкала порядка

Шкала называется ранговой (шкала порядка), если множество допустимых преобразований состоит из всех монотонно возрастающих допустимых преобразований шкальных значений. Следовательно, шкала порядка единственна с точностью до монотонного преобразования.

Монотонно возрастающим называется такое преобразование , которое удовлетворяет условию: если , то и для любых шкальных значений из области определения . Порядковый тип шкал допускает не только различие объектов, как номинальный тип, но и используется для упорядочения объектов по измеряемым свойствам. Числа в шкале определяют порядок следования объектов и не дают возможности сказать, на сколько или во сколько раз один объект предпочтительнее другого. В этой шкале также отсутствуют понятия масштаба и начала отсчета.

Измерение в шкале порядка может применяться, например, в следующих ситуациях:

· необходимо упорядочить объекты во времени или пространстве. Это ситуация, когда интересуются не сравнением степени выраженности какого-либо их качества, а лишь взаимным пространственным или временным расположением этих объектов;

· нужно упорядочить объекты в соответствии с каким-либо качеством , но при этом не требуется производить его точное измерение;

· какое-либо качество в принципе измеримо, но в настоящий момент не может быть измерено по причинам практического или теоретического характера.

Примером шкалы порядка может служить шкала твердости минералов, предложенная в 1811 г. немецким ученым Ф. Моосом и до сих пор распространенная в полевой геологической работе. Другими примерами шкал порядка могут служить шкалы силы ветра, силы землетрясения, сортности товаров в торговле, различные социологические шкалы и т.п.

Любая шкала, полученная из шкалы порядка с помощью произвольного монотонно возрастающего преобразования шкальных значений, будет также точной шкалой порядка для исходной эмпирической системы с отношениями.

Несколько более «сильными», чем порядковые шкалы, являются шкалы гиперпорядка . Допустимыми для этих шкал являются гипермонотонные преобразования, т.е. преобразования , такие, что для любых :

только когда принадлежат области определения и .

Таким образом, при измерении в шкалах гиперпорядка сохраняется упорядочение разностей численных оценок.

Шкала интервалов

Шкала интервалов применяется для отображения величины различия между свойствами объектов. Примером использования этой шкалы является измерение температуры в градусах Фаренгейта или Цельсия. При экспертном оценивании шкала интервалов применяется для оценки полезности объектов. Основным свойством шкалы интервалов является равенство интервалов. Интервальная шкала может иметь произвольные точки отсчета и масштаб. Следовательно, шкала интервалов единственна с точностью до линейного преобразования. В этой шкале отношение разности чисел в двух числовых системах определяется масштабом измерения.

Одним из наиболее важных типов шкал является тип интервалов . Тип шкал интервалов содержит шкалы, единственные с точностью до множества положительных линейных допустимых преобразований вида

,

гдеa>0; b –любое значение. Основным свойством этих шкал является сохранение неизменными отношений интервалов в эквивалентных шкалах:

Отсюда и происходит название данного типа шкал. Примером шкал интервалов могут служить шкалы температур. В этом случае функция допустимого преобразования градусов по шкале Цельсия в градусы по шкале Фаренгейта имеет вид

,

и наоборот, функция допустимого преобразования градусов по шкале Фаренгейта в градусы по шкале Цельсия имеет вид

.

Другим примером измерения в интервальной шкале может служить признак «дата совершения события», поскольку для измерения времени в конкретной шкале необходимо фиксировать масштаб и начало отсчета. Григорианский и мусульманский календари две конкретизации шкал интервалов.

Таким образом, при переходе к эквивалентным шкалам с помощью линейных преобразований в шкалах интервалов происходит изменение как начала отсчета (параметр b), так и масштаба измерений (параметр a).

Шкалы интервалов так же, как номинальная и порядковая, сохраняют различие и упорядочение измеряемых объектов. Однако кроме этого они сохраняют и отношение расстояний между парами объектов. Запись

означает, что расстояние между и в К раз больше расстояния между х 3 и х 4 и в любой эквивалентной шкале это значение (отношение разностей численных оценок) сохранится. При этом отношения самих оценок не сохраняются.

В социологических исследованиях в шкалах интервалов обычно измеряют временные и пространственные характеристики объектов. Например, даты событий, стаж, возраст, время выполнения заданий, разницу в отметках на графической шкале и т.д. Однако прямое отождествление замеренных переменных с изучаемым свойством не столь просто.

В качестве другого примера рассмотрим испытание умственных способностей, при котором измеряется время, требуемое для решения какой-нибудь задачи. Хотя физическое время измеряется в шкале интервалов, время, используемое как мера умственных способностей, принадлежит шкале порядка. Для того чтобы построить более совершенную шкалу, необходимо исследовать более богатую структуру этого свойства.

Типичная ошибка: свойства, измеряемые в шкале интервалов, принимаются в качестве показателей для других свойств, монотонно связанных с данными. Применяемые для измерения связанных свойств исходные шкалы интервалов становятся всего лишь шкалами порядка. Игнорирование этого факта часто приводит к неверным результатам.

Наиболее широко при проведении социологических измерений применяются следующие два типа интервальной шкалы.

На основе шкалы Лайкерта изучается степень согласия или несогласия респондентов с определенными высказываниями. Эта шкала носит симметричный характер и измеряет интенсивность чувств респондентов. Например, содержит следующие градации: совершенно согласен (1); в какой-то мере согласен (2); отношусь нейтрально (3); в какой-то мере не согласен (4); совершенно не согласен (5). В скобках указаны баллы, приписываемые ответам на вопросы анкеты, содержащимся в определенных градациях.

С помощью шкалы Лайкерта может быть изучено мнение (отношение) сотрудников какой-то организации к различным управленческим аспектам: системе мотивации труда, психологическому климату в коллективе, к политике нововведений и др.

Существуют различные варианты модификации шкалы Лайкерта, например, вводится различное число градаций (5-9).

Семантическая дифференциальная шкала (семантический дифференции) содержит серию двухполярных определений, характеризующих различные свойства изучаемого объекта. Данная шкала была разработана американским ученым Ч.Осгудом для измерения смысла понятий и слов, и прежде всего для дифференциации эмоциональной стороны объекта измерения при изучении социальных установок. Таким путем определялась реакция человека в отношении изучаемого объекта.

Например, при оценке морального климата в коллективе при разработке анкеты вначале выбираются характеризующие его показатели (отношения между сотрудниками, отношения между руководителями, отношения между руководителями и подчиненными и др.). Затем для каждого показателя (вопроса анкеты) составляется шкала, представляющая собой континуум образованный парой антонимичных прилагательных. Континуум содержит семь градаций интенсивности отношений. Например, по вопросу, характеризующему отношения между сотрудниками, шкала имеет следующие градации:

Очень хорошие (+3);

Хорошие (+2);

Скорее хорошие (+1);

Ни хорошие, ни плохие (0)

Скорее плохие (-1);

Плохие (-2);

Очень плохие (-3).

Каждый респондент выражает свое отношение к изучаемой проблеме по всему набору шкал. Данный тип шкалы также часто используется при определении имиджа торговой марки, магазина и т.п.

Шкала отношений

Шкалой отношений (подобия) называется шкала, если множество допустимых преобразований состоит из преобразований подобия

гдеа>0 –действительные числа. Нетрудно убедиться, что в шкалах отношений остаются неизменными отношения численных оценок объектов. Действительно, пусть в одной шкале объектам и соответствуют шкальные значения и , а в другой и . Тогда имеем:

Данное соотношение объясняет название шкал отношений. Примерами измерений в шкалах отношений являются измерения массы и длины объектов. Известно, что при установлении массы используется большое разнообразие численных оценок. Так, производя измерение в килограммах, получаем одно численное значение, при измерении в фунтах - другое и т.д. Однако можно заметить, что в какой бы системе единиц ни производилось измерение массы, отношение масс любых объектов одинаково и при переходе от одной числовой системы к другой, эквивалентной, не меняется. Этим же свойством обладает и измерение расстояний и длин предметов.

Как видно из рассмотренных примеров, шкалы отношений отражают отношения свойств объектов, т.е. во сколько раз свойство одного объекта превосходит это же свойство другого объекта.

Шкалы отношений образуют подмножество шкал интервалов фиксированием нулевого значения параметра b: b = 0. Такая фиксация означает задание нулевой точки начала отсчета шкальных значений для всех шкал отношений. Переход от одной шкалы отношений к другой, эквивалентной ей шкале осуществляется с помощью преобразований подобия (растяжения), т.е. изменением масштаба измерений. Шкалы отношений, являясь частным случаем шкал интервалов, при выборе нулевой точки отсчета сохраняют не только отношения свойств объектов, но и отношения расстояний между парами объектов.

Шкала разностей

Шкалы разностей определяются как шкалы, единственные с точностью до преобразований сдвига

b – действительные числа. Это означает, что при переходе от одной числовой системы к другой меняется лишь начало отсчета. Шкалы разностей применяются в тех случаях, когда необходимо измерить, насколько один объект превосходит по определенному свойству другой объект. В шкалах разностей неизменными остаются разности численных оценок свойств. Действительно, если и - оценки объектов и в одной шкале, а и - в другой шкале, то имеем:

Примерами измерений в шкалах разностей могут служить измерения прироста продукции предприятий (в абсолютных единицах) в текущем году по сравнению с прошлым, увеличение численности учреждений, количество приобретенной техники за год и т.д.

Другим примером измерения в шкале разностей является летоисчисление (в годах). Переход от одного летоисчисления к другому осуществляется изменением начала отсчета.

Как и шкалы отношений, шкалы разностей являются частным случаем шкал интервалов, получаемых фиксированием параметра а (а= 1), т.е. выбором единицы масштаба измерений. Точка отсчета в шкалах разностей может быть произвольной Шкалы разностей, как и шкалы интервалов, сохраняют отношения интервалов между оценками пар объектов, но, в отличие от шкалы отношений, не сохраняют отношения оценок свойств объектов.

Абсолютная шкала

Абсолютная шкала – в которых единственными допустимыми преобразованиями являются тождественные преобразования: . Это означает, что существует только одно отображение эмпирических объектов в числовую систему. Отсюда и название шкалы, так как для нее единственность измерения понимается в буквальном абсолютном смысле.

Абсолютные шкалы применяются, например, для измерения количества объектов, предметов, событий, решений и т.п. В качестве шкальных значений при измерении количества объектов используются натуральные числа, когда объекты представлены целыми единицами, и действительные числа, если кроме целых единиц присутствуют и части объектов.

Абсолютные шкалы являются частным случаем всех ранее рассмотренных типов шкал, поэтому сохраняют любые соотношения между числами оценками измеряемых свойств объектов: различие, порядок, отношение интервалов, отношение и разность значений и т.д.

Кроме указанных существуют промежуточные типы шкал, такие, например, как степенная шкала () и ее разновидность логарифмическая шкала ().

На рис.3.6 изображено соотношение между основными типами шкал в виде иерархической структуры основных шкал.

Рис.3.6. Иерархическая структура основных шкал

Здесь стрелки указывают включение совокупностей допустимых преобразований более «сильных» в менее «сильные» типы шкал. При этом шкала тем «сильнее», чем меньше свободы в выборе . Некоторые шкалы являются изоморфными, т.е. равносильными . Например, равносильны шкала интервалов и степенная шкала. Логарифмическая шкала равносильна шкале разностей и шкале отношений.

Шкалы наименований и порядка являются качественными шкалами. В шкале наименований описывается различие или эквивалентность объектов, а в шкале порядка – качественное превосходство, отличие объектов. В этих шкалах нет понятия начала отсчета и масштаба измерения.

Шкалы интервалов, отношений, разностей и абсолютная шкала являются количественными шкалами. В этих шкалах существуют понятия начала отсчета и масштаба, которые выбираются произвольно . Количественные шкалы позволяют измерить, на сколько (шкалы интервалов и разностей) или во сколько (шкалы отношений и абсолютная) раз один объект отличается от другого по выбранному показателю.

Выбор той или иной шкалы для измерения определяется характером отношений между объектами эмпирической системы, наличием информации об этих отношениях и целями принятия решения. Применение количественных шкал требует значительно более полной информации об объектах по сравнению с применением качественных шкал.

Следует обратить внимание на правильное согласование выбираемой шкалы измерения с целями решения. Например, если целью решения является упорядочение объектов, то нет необходимости измерять количественные характеристики объектов, достаточно определить только качественные характеристики. Типичным примером такого решения является подведение определение наилучших предприятий. Для решения этой задачи, как правило, не требуется определять, на сколько или во сколько раз один объект лучше другого, т.е. нет необходимости при таком измерении пользоваться количественными шкалами.

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная.

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия.

Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов»

Значения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут»

Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К.

Отношений – наиболее информативная. На ней возможны все арифметические операции-

  • сложение;
  • вычитание;
  • умножение;
  • деление.

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни.

Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

  • разы;
  • проценты;
  • доли;
  • полные углы.

Абсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

Измерение выполняется с помощью измерительных инструментов, к которым относятся и часто применяемые в исследовании систем управления шкалы.

С.Стивенс рассматривал четыре шкалы измерения (приводится по Попов О. А. http://psystat.at.ua/publ/1-1-0-28)

1. Шкала наименований (номинальная) - простейшая из шкал измерения. Числа (равно как буквы, слова или любые символы) используются для различения объектов. Отображает те отношения, посредством которых объекты группируются в отдельные непересекающиеся классы. Номер (буква, название) класса не отражает его количественного содержания. Примером шкалы такого рода может служить нумерация игроков спортивных команд, номера телефонов, паспортов, штрих-коды товаров. Все эти переменные не отражают отношений больше/меньше, а, значит, являются шкалой наименований.

Особым подвидом шкалы наименований является дихотомическая шкала, которая кодируется двумя взаимоисключающими значениями (1/0). Пол человека является типичной дихотомической переменной (Эго: хотя в Таиланде официально признаны шесть полов).

В шкале наименований нельзя сказать, что один объект больше или меньше другого, на сколько единиц они различаются и во сколько раз. Возможна лишь операция классификации - отличается/не отличается.

Таким образом, шкала наименований отражает отношения типа: тот/не тот, свой/чужой, относится к группе/не относится к группе.

2. Порядковая (ранговая) шкала - отображение отношений порядка. Единственно возможные отношения между объектами измерения в данной шкале – это больше/меньше, лучше/хуже. Простейшим примером являются оценки знаний учащихся. Символично, что в средней школе применяются оценки 2, 3, 4, 5, а в высшей школе ровно тот же смысл выражается словесно - неудовлетворительно, удовлетворительно, хорошо, отлично.

Другим примером этой шкалы является место, занятое участником соревнования или конкурса. Известно, что участник, занявший более высокое место, имеет лучшие результаты, чем участник, занявший менее высокое место. Кроме места, порядковая шкала дает возможность узнать и конкретные результаты участника соревнований или конкурса (если процедура конкурса не предполагает закрытость информации: например, тендер).

В менеджменте возникают менее определенные ситуации. К примеру, когда эксперта просят проранжировать структурные подразделения по степени их влияния на результаты деятельности организации. В этом случае итогом измерения также будут места или ранги, но определить конкретные результаты каждого участника сравнения не получится.

Эксперты часто работают в порядковой шкале. Как показали многочисленные эксперименты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного, например, сравнительного, характера, чем количественного. Так, ему легче сказать, какой из двух баскетболистов выше ростом, чем указать их примерный рост в сантиметрах.

3. Интервальная шкала (шкала разностей) помимо отношений, указанных для шкал наименования и порядка, отображает отношение расстояния (разности) между объектами. В этой шкале используется количественная информация. Обычно предполагается, что шкала имеет равномерный характер, то есть разности между соседними точками (градациями шкалы) равны. Таким образом, интервальная шкала в состоянии показать, на сколько единиц один объект больше или меньше другого.

Шкальные значения признаков можно складывать.

Стадии жизненного цикла - какая шкала?

4. Шкала отношений. В отличие от шкалы интервалов может отражать то, во сколько раз один объект больше (меньше) другого. Шкала отношений имеет нулевую точку, которая характеризует полное отсутствие измеряемого качества. Определение нулевой точки - сложная задача исследований систем управления, и в менеджменте накладывается ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена), т.е. всё, что имеет гипотетический абсолютный нуль.

Таким образом, в исследовании систем управления используются в основном номинальные, ранговые и интервальные шкалы.

**************************************************************