Виды сообществ организмов (экосистема, биогеоценоз, биосфера).

Биология. Общая биология. 11 класс. Базовый уровень Сивоглазов Владислав Иванович

28. Биосфера – глобальная экосистема

Вспомните!

Какие уровни организации живой природы вам известны?

Что такое биосфера?

Каковы её границы?

Многочисленные экосистемы нашей планеты не изолированы друг от друга. Даже между очень разными сообществами происходит постоянный обмен живыми организмами, органическими и неорганическими веществами. Одни и те же виды растений, животных, грибов и микроорганизмов можно встретить в разных экосистемах, а некоторые виды, например перелётные птицы, в зависимости от сезона мигрируют между ними. Процессы, происходящие в одной экосистеме, неизбежно затрагивают события в другой экосистеме. Частицы почвы смываются с поверхности суши и попадают в водоёмы; головастик, живущий в пруду, превращается в лягушку, которая становится добычей лесного ежа; бурый медведь во время нереста лосося полностью переходит на рыбную диету и большую часть времени проводит среди бурных речных потоков.

Все экосистемы взаимосвязаны и взаимозависимы. Постоянный обмен веществом и энергией, происходящий между ними, позволяет нам рассматривать все живые организмы Земли и среду их обитания как единую глобальную экосистему – биосферу.

Первые представления о биосфере как «области жизни» принадлежат ещё Ж. Б. Ламарку. Термин «биосфера» в 1875 г. предложил австрийский учёный Эдуард Зюсс. Он определял биосферу как тонкую плёнку жизни на земной поверхности, которая в значительной степени определяет облик всей планеты. Однако широкое распространение этот термин получил в первой трети XX в., когда российский академик В. И. Вернадский создал учение о биосфере. Он распространил понятие биосферы не только на живые организмы, но и на среду их обитания, с которой они составляют неразрывное единство. Вернадский впервые указал на роль живой природы в преобразовании планеты.

Состав биосферы. Биосфера – это особая оболочка Земли, состав, структура и энергетика которой определяются совокупной деятельностью всех живых организмов.

Биосфера Земли состоит из нескольких взаимосвязанных типов вещества:

живое вещество – совокупность всех живых организмов (животных, растений, грибов, микроорганизмов);

биогенное вещество – органоминеральные продукты, созданные в результате жизнедеятельности организмов (нефть, каменный уголь, газ, торф, известняки и др.);

косное вещество – вещество, которое образуется без участия живых организмов (горные породы, сформированные в результате извержения вулканов);

биокосное вещество – создаётся одновременно живыми организмами и процессами неорганической природы (почва, ил).

Границы биосферы. Границы распространения живого на планете определяются абиотическими факторами (рис. 82). Отсутствие кислорода, высокая или низкая температура, высокое давление и многие другие условия делают невозможным существование жизни.

Рис. 82. Границы биосферы

Верхняя граница биосферы проходит на высоте около 20 км от поверхности Земли и определяется озоновым слоем, который задерживает ультрафиолетовое излучение. На высоте 16–20 км в атмосфере встречаются споры, пыльца, бактерии, мельчайшие насекомые, которые поднимаются с поверхности воздушными потоками. В гидросфере жизнь существует на всех глубинах, проникая даже, несмотря на чудовищное давление, в 10–11-километровые впадины. В литосфере жизнь встречается до глубины 3,5 км на суше (бактерии в нефтяных месторождениях) и на 1–2 км ниже дна океана, хотя результаты жизнедеятельности организмов в виде осадочных пород прослеживаются гораздо глубже. В основном в литосфере жизнь сосредоточена в верхнем плодородном слое – почве, толщина которой не превышает нескольких метров и которая является биокосным веществом биосферы.

Живое вещество биосферы. В пределах биосферы живое вещество распределено очень неравномерно. В верхних слоях атмосферы, в глубинах океана, в многокилометровой толще литосферы живые организмы встречаются редко. Основная жизнь сосредоточена на поверхности земли, в верхних слоях морей и океанов, в почве.

Биомасса на земном шаре увеличивается от полюсов к экватору, что связано в первую очередь с климатическими факторами. Наиболее продуктивны те экосистемы, которые максимально обеспечены теплом и влагой. Места наибольшей концентрации жизни на планете – это тропические леса, дельты рек в районах с жарким климатом, мелководные зоны морей, коралловые рифы. Здесь наблюдается также и максимальное видовое разнообразие.

В настоящее время общую массу живых организмов оценивают в 2,43?10 12 т. Биомасса организмов, обитающих на суше, на 99,2 % представлена растениями, на 0,8 % – животными, грибами и микроорганизмами. В Мировом океане существует обратная закономерность: 93,7 % биомассы приходится на долю животных и 6,3 % – на долю растений и микроорганизмов. В видовом разнообразии биосферы существует интересная закономерность: 96 % видов животных – беспозвоночные, 4 % – позвоночные, из которых лишь десятая часть – млекопитающие, т. е. преобладают формы, стоящие на более низком уровне развития. Ежегодная продукция живого вещества в биосфере составляет более 230 млрд т сухого органического вещества.

Масса живого вещества составляет всего 0,01–0,02 % от косного вещества биосферы, однако в геохимических процессах Земли живые существа играют ведущую роль.

Вопросы для повторения и задания

1. Расскажите о структуре биосферы.

2. Охарактеризуйте оболочки Земли, в которых обитают живые организмы, – атмосферу, гидросферу и литосферу.

3. Чем определяются границы распространения живых организмов в биосфере?

4. Как формируется биокосное вещество биосферы?

5. Охарактеризуйте распределение биомассы на земном шаре.

Подумайте! Выполните!

1. К какому типу веществ биосферы можно отнести янтарь, сброшенные рога оленя, опавшие листья, торф, пыльцу растений, паутину? Объясните свой выбор.

2. Охарактеризуйте организмы, которые обитают вблизи границ биосферы. Как вы считаете, какими свойствами должны обладать такие организмы?

3. Организуйте и проведите исследование почвы вашей местности. Определите её структуру, питательные свойства, кислотность, насыщенность микроорганизмами.

4. Примите участие в дискуссии на тему «Вечна ли биосфера?». Выскажите своё мнение по этому вопросу.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Из книги Общая экология автора Чернова Нина Михайловна

Глава 10. БИОСФЕРА 10.1. Понятие о биосфере Идея о влиянии жизни на природные процессы на огромных пространствах Земли была впервые научно обоснована на рубеже XIX и XX столетий в трудах В. В. Докучаева, который указал на зависимость типа почвообразования не только от климата,

Из книги Жизнь на Земле. Естественная история автора Эттенборо Дэвид

Виды, биосфера и человек Книга Дэвида Эттенборо посвящена разнообразию форм жизни на Земле и путям возникновения этого разнообразия в процессе исторического развития жизни на нашей планете, то есть в процессе биологической эволюции.Удивительное разнообразие живого

Из книги Экология [Конспект лекций] автора Горелов Анатолий Алексеевич

10.2. Экологическая и глобальная этика

Из книги Экология автора Митчелл Пол

ЭКОСИСТЕМА Экосистема - это единый природный комплекс, образованный сообществом живых организмов и средой их обитания. Это не более высокий по сравнению с сообществом уровень организации, а скорее более широкий. Экосистему можно представить как систему по переработке

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Путешествие в страну микробов автора Бетина Владимир

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Биосфера и микроорганизмы Все пространство на земном шаре, населенное живыми организмами, мы называем биосферой. Биосфера охватывает верхнюю часть земной коры, воды рек, озер, морей, океанов и нижнюю часть атмосферы. В воде она достигает глубины 10 000 м. В почву дальше всех

Из книги Естественные технологии биологических систем автора Уголев Александр Михайлович

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

3.5. Биосфера как трофосфера Жизнь на Земле возможна лишь как планетарное явление, как форма существования биосферы с обязательным для нее кругооборотом веществ и потоков энергии - биотическим круговоротом. Равновесие между синтезом и деструкцией веществ - необходимое

Из книги Вода и жизнь на Земле автора Новиков Юрий Владимирович

1.5. Популяционные, экологические и эволюционные проблемы трофологии. Биосфера как трофосфера С деятельностью живых систем связана та часть поверхности Земли, которая объединена под названием биосферы. Биосфера, являющаяся самой крупной экосистемой, представляет собой

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Вода и биосфера Внешняя оболочка Земли занята биосферой. И вполне правильно, когда биосферу называют еще «областью жизни» или «живым покровом» Земли. Это огромное пространство, включающее атмосферу, гидросферу и литосферу, населяют различные виды живых организмов.

Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

10.2. Современная проблема: человек и биосфера Рост воздействия человека на биосферу непосредственно связан с ростом его численности. Разговоры о демографическом взрыве не просто красивые фразы. Увеличение числа людей на планете за последнее столетие носит именно

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Глава 2. Экосистема ТЕМЫ Экологические факторы Структура экосистем Биосфера – глобальная экосистема Биосфера и человекОдин организм, одна популяция и даже целый вид не способны к самостоятельному изолированному существованию. Судьба всех живых существ, в том

Из книги автора

30. Биосфера и человек Вспомните!Как протекала эволюция биосферы?Какова роль человека в биосфере?Ранние этапы развития человечества. Влияние человечества на биосферу началось в тот момент, когда люди перешли от собирательства к охоте и земледелию. По мнению учёных, уже в

Из книги автора

Биоценоз и экосистема В природе популяции разных видов образуют сообщества или биоценозы, которые характеризуются своими закономерностями.Биоценоз – это исторически сложившееся сообщество популяций разных видов, живущих совместно в одних и тех же условиях внешней

Из книги автора

Биосфера Биосфера представляет собой совокупность живых организмов Земли. Она охватывает нижнюю часть атмосферы, всю гидросферу и верхние слои литосферы. Живые организмы биосферы и их среда обитания образуют динамичную единую систему.Термин «биосфера» был введен


Взаимодействие популяций определяет характер функционирования следующего, более высокого уровня организации живого – биотического сообщества, или биоценоза. Под биоценозом понимается биологическая система, представляющая собой совокупность популяций разных видов, сосуществующих в пространстве и времени. Изучение сообществ ставит целью выяснить, как поддерживается их устойчивое существование и какое влияние на изменения сообществ оказывают биотические взаимодействия и условия среды обитания.

Сообщество, экосистема, биогеоценоз, биосфера

Сообществом (биоценозом) называется совокупность организмов различных видов, длительное время сосуществующих в определенном пространстве и представляющих собой экологическое единство. Как и популяция, сообщество имеет собственные свойства (и показатели), присущие ему как целому. Свойствами сообщества являются – устойчивость (способность противостоять внешним воздействиям), продуктивность (способность производить живое вещество). Показателями сообщества являются характеристики его состава (разнообразие видов, структура пищевой сети), соотношение отдельных групп организмов. Одна из главных задач экологии – выяснить взаимосвязи между свойствами и составом сообщества, которые проявляются независимо от того, какие виды входят в него.

Экосистема – другая экологическая категория; это любое сообщество живых существ вместе с его физической средой обитания, функционирующее как единое целое. Пример экосистемы – пруд, включающий сообщество гидробионтов, физические свойства и химический состав воды, особенности рельефа дна, состав и структуру грунта, взаимодействующий с поверхностью воды атмосферный воздух, солнечную радиацию. В экосистемах происходит постоянный обмен энергией и веществом между живой и неживой природой. Этот обмен носит устойчивый характер. Элементы живой и неживой природы находятся в постоянном взаимодействии.

Экосистема – понятие очень широкое и применимое как к естественным комплексам (например, тундра, океан), так и к искусственным (например, аквариум). Поэтому для обозначения элементарной природной экосистемы в экологии используется термин «биогеоценоз».

Биогеоценоз – исторически сложившаяся совокупность живых организмов (биоценоз) и абиотической среды вместе с занимаемым ими участком земной поверхности. Граница биогеоценоза устанавливается по границе растительного сообщества (фитоценоза) – важнейшего компонента любого биогеоценоза. Для каждого биогеоценоза характерен свой тип вещественно-энергетического обмена.

Биогеоценоз – составная часть природного ландшафта и элементарная биотерриториальная единица биосферы. Часто в основу классификации природных экосистем кладут характерные экологические признаки местообитаний, выделяя сообщества морских побережий или шельфов, озер или прудов, пойменные или суходольные луга, каменистые или песчаные пустыни, горные леса, эстуарии (устья больших рек) и др. Все природные экосистемы (биогеоценозы) связаны между собой и вместе образуют живую оболочку Земли, которую можно рассматривать как самую большую экосистему – биосферу.

Функционирование экосистем

Энергия в экосистемах. Экосистема - это совокупность живых организмов, обменивающихся непрерывно энергией, веществом и информацией друг с другом и с окружающей средой. Рассмотрим сначала процесс обмена энергией. Энергию определяют как способность производить работу. Свойства энергии описываются законами термодинамики.

Первый закон (начало) термодинамики или закон сохранения энергии утверждает, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Второй закон (начало) термодинамики или закон энтропии утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует.

Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше ее энтропия. Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии (энергия Солнца); во вторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а использовав - рассеивать в окружающую среду. Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии.

Энергия и продуктивность экосистем. Итак, жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению через живое вещество энергии, передаваемой от одного трофического уровня к другому; при этом происходит постоянное превращение энергии из одних форм в другие. Кроме того, при превращениях энергии часть ее теряется в виде тепла. Тогда возникает вопрос: в каких количественных соотношениях, пропорциях должны находиться между собой члены сообщества разных трофических уровней в экосистеме, чтобы обеспечивать свою потребность в энергии?

Весь запас энергии сосредоточен в массе органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии). Скорость образования органического вещества называют продуктивностью. Различают первичную и вторичную продуктивность. В любой экосистеме происходит образование биомассы и ее разрушение, причем эти процессы всецело определяются жизнью низшего трофического уровня - продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество и, следовательно, общая продуктивность экосистемы от них не зависит. Высокие скорости продуцирования биомассы наблюдаются в естественных и искусственных экосистемах там, где благоприятны абиотические факторы, и особенно при поступлении дополнительной энергии извне, что уменьшает собственные затраты системы на поддержание жизнедеятельности.

Такая дополнительная энергия может поступать в разной форме: например, на возделываемом поле - в форме энергии ископаемого топлива и работы, совершаемой человеком или животным. Таким образом, для обеспечения энергией всех особей сообщества живых организмов экосистемы необходимо определенное количественное соотношение между продуцентами, консументами разных порядков, детритофагами и редуцентами. Однако для жизнедеятельности любых организмов, а значит и системы в целом, только энергии недостаточно, они обязательно должны получать различные минеральные компоненты, микроэлементы, органические вещества, необходимые для построения молекул живого вещества.

Круговорот элементов в экосистеме

Откуда изначально берутся в живом веществе необходимые для построения организма компоненты? Их поставляют в пищевую цепь все те же продуценты. Неорганические минеральные вещества и воду они извлекают из почвы, CO2 - из воздуха, и из образованной в процессе фотосинтеза глюкозы с помощью биогенов строят далее сложные органические молекулы - углеводы, белки, липиды, нуклеиновые кислоты, витамины и т.п. Чтобы необходимые элементы были доступны живым организмам, они все время должны быть в наличии. В этой взаимосвязи реализуется закон сохранения вещества. Его удобно сформулировать следующим образом: атомы в химических реакциях никогда не исчезают, не образуются и не превращаются друг в друга; они только перегруппировываются с образованием различных молекул и соединений (одновременно происходит поглощение или выделение энергии).

В силу этого атомы могут использоваться в самых различных соединениях и запас их никогда не истощается. Именно это происходит в естественных экосистемах в виде круговоротов элементов. При этом выделяют два круговорота: большой (геологический) и малый (биотический). Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот.

Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений. Обобщая законы функционирования экосистем, сформулируем еще раз основные их положения: 1) природные экосистемы существуют за счет не загрязняющей среду даровой солнечной энергии, количество которой избыточно и относительно постоянно;
2) перенос энергии и вещества через сообщество живых орга-низмов в экосистеме происходит по пищевой цепи; все виды живого в экосистеме делятся по выполняемым ими функциям в этой цепи на продуцентов, консументов, детритофагов и редуцентов - это биотическая структура сообщества; количественное соотношение численности живых организмов между трофическими уровнями отражает трофическую структуру сообщества, которая определяет скорость прохождения энергии и вещества через сообщество, то есть продуктивность экосистемы; 3) природные экосистемы благодаря своей биотической структуре неопределенно долго поддерживают устойчивое состояние, не страдая от истощения ресурсов и загрязнения собственными отходами; получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.

Воздействие человека на экосистему

Воздействие человека на окружающую его природную среду может рассматриваться в разных аспектах в зависимости от цели изучения этого вопроса. С точки зрения экологии представляет интерес рассмотрение воздействия человека на экологические системы под углом зрения соответствия или противоречия действий человека объективным законам функционирования природных экосистем. Исходя из взгляда на биосферу как глобальную экосистему, все многообразие видов деятельности человека в биосфере приводит к изменениям: состава биосферы, круговоротов и баланса слагающих ее веществ; энергетического баланса биосферы; биоты. Направленность и степень этих изменений таковы, что самим человеком им дано название экологического кризиса.

Современный экологический кризис характеризуется следующими проявлениями: постепенное изменение климата планеты вследствие изменения баланса газов в атмосфере общее и местное (над полюсами, отдельными участками суши) разрушение биосферного озонового экрана загрязнение Мирового океана тяжелыми металлами, сложными органическими соединениями, нефтепродуктами, радиоактивными веществами, насыщение вод углекислым газом разрыв естественных экологических связей между океаном и водами суши в результате строительства плотин на реках, приводящий к изменению твердого стока, нерестовых путей и т.п. загрязнение атмосферы с образованием кислотных осадков, высокотоксичных веществ в результате химических и фотохимических реакций загрязнение вод суши, в том числе речных, служащих для питьевого водоснабжения, высокотоксичными веществами, включая диоксины, тяжелые металлы, фенолы опустынивание планеты деградация почвенного слоя, уменьшение площади плодородных земель, пригодных для сельского хозяйства радиоактивное загрязнение отдельных территорий в связи с захоронением радиоактивных отходов, техногенными авариями и т.п. накопление на поверхности суши бытового мусора и промышленных отходов, в особенности практически неразлагающихся пластмасс сокращение площадей тропических и северных лесов, ведущее к дисбалансу газов атмосферы, в том числе сокращению концентрации кислорода в атмосфере планеты загрязнение подземного пространства, включая подземные воды, что делает их непригодными для водоснабжения и угрожает пока еще мало изученной жизни в литосфере массовое и быстрое, лавинообразное исчезновение видов живого вещества ухудшение среды жизни в населенных местах, прежде всего урбанизированных территориях общее истощение и нехватка природных ресурсов для развития человечества изменение размера, энергетической и биогеохимической роли организмов, переформирование пищевых цепей, массовое размножение отдельных видов организмов нарушение иерархии экосистем, увеличение системного однообразия на планете.



Размер: px

Начинать показ со страницы:

Транскрипт

1 УДК 124: 57 (206) ЦЕЛЕПОЛАГАНИЕ ОСНОВНЫХ БИОЛОГИЧЕСКИХ СИСТЕМ: ОРГАНИЗМ, ПОПУЛЯЦИЯ, СООБЩЕСТВО И БИОСФЕРА Ч.М. Нигматуллин Атлантический научно-исследовательский институт рыбного хозяйства и океанографии Выполнена попытка формулировки конечных целей основных биологических систем от организма, популяции и сообщества до биосферы и их взаимосвязи. Основная цель любого организма достижение репродуктивного возраста и участие в воспроизводстве популяции. Конечная цель каждой популяции воспроизводство. В качестве конечной цели биоценотических систем и в целом живой части биосферы сформулирован принцип В.И. Вернадского Дж. Лавлока: улучшение условий для живых организмов, то есть негэнтропийное преобразование окружающей среды в сторону повышения общего качества условий для жизни. Общим для целевых установок этих основных биологических систем от организма до биосферы является принцип самосохранения. Ключевые слова: целеполагание, телеология, телеономия, организм, популяция, сообщество, биосфера. «Слово энтелехия сокращение словосочетания: иметь цель в самом себе» И.И. Шмальгаузен Несмотря на длительную историю проблемы целеполагания и обширную литературу, посвященную ей, в последние десятилетия применение целевого подхода, или даже его терминологии (цель, целеполагание, целесообразность, причинность, телеология, телеономия) к изучению природных объектов у многих естествоиспытателей, и особенно у биологов, вызывает отторжение. В то же время такая важнейшая характеристика, как промежуточный и конечный результат функционирования данной системы, широко и достаточно эффективно используется в естественнонаучной литературе. Однако эти два понятия цель и результат во многом близки, это две стороны «одной медали» (Анохин, 1978). При внутреннем нежелании многими исследователями использования целевого подхода логика реальной целесообразности живого настоятельно требует ее адекватного отражения. Отсюда и осознанная, а в большинстве случаев не осознанная, мимикрия нейтральной или новой терминологией при использовании целевого принципа (Mayr, 1974, 1988, 1992; Фесенкова, 2001). Глубинные возможности целевого подхода далеко не исчерпаны. В данном сообщении сделана попытка формулировки конечных целей основных биологических систем от организма до биосферы и их взаимосвязи. 142

2 Проблема цели природных объектов имеет 25-вековую историю и восходит к Платону и Аристотелю. В частности, Аристотель выделил четыре причины возникновения и изменения вещей: материальную, формальную, действующую и конечную, или целевую. Последнюю, отвечающую на вопрос для какой цели или ради чего, Аристотель и его последователи считали наиболее важной для понимания сути сущего и его изменений. Именно конечная причина по Аристотелю определяет результат всякого развития, и в первую очередь развития живых организмов (Gotthelf, 1976; Рожанский, 1979; Lennox, 1994). Однако в парадигме биологии последних ста лет принцип конечной причины был оттеснен на периферию и целеполагание сводилось, в основном, к действующей причинности (Фесенкова, 2001). Термин телеология (teleologia, от греческого teleos цель) был введен в 1728 г. Христианом Вольфом взамен термина «конечная причина» Аристотеля, и он вошел в широкий обиход в XIX веке (Lennox, 1994). В дополнение к нему относительно недавно было предложен термин «телеономия» (teleonomy) для обозначения естественной целенаправленности живых систем (Pittendrigh, 1958). Оно было введено для разграничения целеполагания развития и функционирования биологических систем (кроме человека) и сознательной целенаправленной деятельности человека. За последней было оставлено старое и до того слишком всеобъемлющее название телеология (Mayr, 1974, 1988, 1997; Сутт, 1977). Возможно, что это был обходной маневр использование целевого принципа без «красной тряпки» термина «телеология» (Фесенкова, 2001). Однако зачастую в биологической литературе эти термины используются как синонимы. Проблеме телеологии и телеономии посвящена весьма обширная литература. За последние 200 лет наблюдалось чередование периодов усиления и спада интереса, но сама проблема остается одной из центральных в теоретической биологии (обзоры: Шмальгаузен, 1969, Фролов, 1971, 1981; Ayala, 1970; Майр, 1970; Волкова и др., 1971; Mayr, 1974, 1988, 1992, 1997; Пушкин, 1975; Рьюз, 1977; Сутт, 1977; Falk, 1981; Любищев, 1982; Lennox, 1994; Depew, Weber, 1996; Williams, 1996a; Левченко, 2004). Достаточно сказать, что в конце XIX века в числе самых важных семи загадок природы был и вопрос о целесообразности в природе (Геккель, 1906). Однако спектр отношения к проблеме был и остается весьма широким: от полного отрицания наличия целей в природе до принятия относительно жесткой подчиненности функционирования и развития всего сущего определенным целям финальным результатам. В последнее время в связи с наметившейся сменой методологической парадигмы естествознания эта проблема становится вновь актуальной (Фесенкова, 2001; Казютинский, 2002; Севальников, 2002 и др.). В биологии целенаправленность рассматривалась, главным образом, в отношении физиологических функций и поведения живых организмов, запрограмированности процессов онтогенеза, проблемы адаптации и направленности эволюции отдельных таксонов и всего живого в целом. Этим вопросам посвящена практически вся литература по этому вопросу. Наиболее работоспособные целевые теории были разработаны на организменном уровне физиологами в е годы. Это теория функциональных систем П.К. Анохина (1978) и теория двигательной активности (модель потребного будущего) Н.А. Бернштейна (1966). Их использование на органном, особенно организменном и даже популяционном уровнях крайне плодотворно для понимания и объяснения самых различных биохимических, физиологических, эргономических и эколого-популяционных феноменов у беспозвоночных и позвоночных, включая 143

3 человека. Однако, как правило, попытки прямого переноса основных положений этих теорий на материал иного иерархического уровня (анализ закономерностей эволюции и т.п.) некорректны. Издавна целевой подход широко используется при анализе биологами (в первую очередь палеонтологами) направленности эволюции крупных таксономических групп живых организмов. В этом направлении исследований имеется ряд методологических проблем. Ниже сделана попытка критического анализа одной из них, связанной с проблемой целеполагания. Целеполагание в эволюции высших таксонов и проблема их целостности Здесь сразу необходимо отметить, что если использование телеономического подхода при изучении физиологии и поведения, онтогенеза и проблемы адаптации вполне оправдано (хотя телеономичность адаптаций вопрос дискуссионный: см. обзоры: Lennox, 1994; Mayr, 1997), то его применение в работах по направленности эволюции отдельных таксонов вызывает возражение. Публикации, посвященные направленной эволюции таксонов живых организмов от рода и выше вплоть до класса, типа и т.д., весьма многочисленны (обзоры: Rensch, 1959; Волкова и др., 1971; Сутт, 1977; Черных, 1986; Татаринов, 1987; Северцов, 1990; Иорданский, 1994, 2001; Mayr, 1997; Попов, 2005). При этом таксоны выше вида зачастую принимаются целостными единицами (Черных, 1986; Марков, Неймарк, 1998). Однако в этих рассуждениях есть одно слабое место. Вид, как правило, не является системой как таковой. Принятие его в качестве целостной системы справедливо лишь в случаях монопопуляционных видов или же представленных системой взаимодействующих популяций (суперпопуляцией или популяционной системой). Во многих же случаях виды представлены группами изолятов, и системами их считать нельзя. В еще большей мере это относится к макротаксонам (Старобогатов, 1987). Таксон выше видового можно принять в качестве целостной единицы при анализе различных аспектов эволюции группы и ее взаимоотношений с другими группами живых организмов лишь в качестве искусственного, но оправданного приема в процессе познания этого сложного процесса. Но при этом необходимо отдавать себе отчет, что в каждый данный отрезок времени виды и даже популяции данного высшего таксона имеют свою судьбу, и их объединяет лишь прошлая история и та или иная часть общего исходного генофонда. Соответственно, последнее определяет то или иное сходство характера адаптациогенеза разных видов данного таксона и их проспективные возможности. Однако успешный или малоутешительный результат эволюции данного высшего таксона на данный момент определяется не «коллективными» и, грубо говоря, «скоординированными» усилиями составляющих его видов (а именно такое впечатление складывается при чтении некоторых работ, посвященных эволюции таксонов). Это, в конечном счете, просто сумма успехов не успехов отдельных слагающих таксон видов/популяций. Естественно, этот результат частично основан на их исторической общности (общей части генофонда), но не более того. И в случае ортогенетического развития можно говорить о направленности, канализированности ее эволюции (Мейен, 1975), но вряд ли о ее целенаправленности. 144

4 Следует подчеркнуть, что подавляющее большинство такого рода публикаций представлено палеонтологами. В этом отношении особенно демонстративны монографии В.В. Черных (1986) и А.В. Маркова и Е.Б. Неймарка (1998). Повидимому, определяющую роль в принятии концепции целостности высших таксонов, или, по выражению Я.И. Старобогатова (1987, с. 1115), таксоцентрической гипотезы макроэволюции, играют сами объекты исследования палеонтологов (вернее, их фрагменты) и отсутствие непосредственных контактов с материалом в сиюминутной динамике его жизни. Соответственно, они «вынуждены» оперировать в своих построениях таксонами разного уровня без «наполнения» их «жизненным содержимым» и принимать их в качестве целостных систем. В целом, палеонтология «ориентирована в большей мере на генезис, чем на наличное бытие, в большей мере на процессуальность, чем на оформленность» и «она изучает не жизнь прошлого, а летопись этой жизни» (Жерихин, 2003) Этот стиль мышления, по-видимому, присущ большинству палеонтологов-филогенетиков. Справедливости ради нужно признать, что он характерен и для некоторых неонтологов, работающих с крупными таксонами. Несомненно, в обоих случаях это следствие глубинного влияния на психологию исследователей специфики объекта изучения. Целеполагание основных биологических систем В литературе отсутствуют попытки формулировки и описания проблемы целеполагания основных биологических систем в соответствии с реальными задачами (конечными целями) живых организмов и их совокупностей. Это и является основной задачей данной работы. По сути, основных биологических систем немного: это организм, популяция, сообщество и биосфера. Кроме организма, все остальные системы объекты экологического исследования. Однако в экологии проблема телеономии практически не разработана. В связи с этим необходимо подчеркнуть, что собственно экологическими системами живых организмов являются только два иерархических типа систем: а) популяция и б) сообщество популяций биоценоз, в крайнем его пределе весь живой компонент биосферы как целое. Элементарной и далее неделимой единицей популяции является индивид в его онтогенезе (Шмальгаузен, 1938, 1969; Hull, 1994; Хлебович, 2004). Организм Особь в онтогенезе развивается и живет как специфически реагирующее целое. После формулировки теории естественного отбора Ч. Дарвина А. Уоллеса, начиная с последней четверти XIX века, стало очевидным и вошло в широкий обиход (не всегда явно осознанно) понимание, что основная цель любого организма достижение репродуктивного возраста и участие в воспроизводстве популяции. Это и есть конечная цель любого онтогенеза. Она определяет характер онтогенетического развития (наличие набора «каналов» или креодов развития) в разных условиях с инвариантным конечным результатом достижение репродуктивного состояния и участие в воспроизводстве популяции. В этом отношении онтогенез элементарная функциональная система в смысле П.К. Анохина (1978). Нет смысла далее подробно останавливаться на этом уровне организации живого. Приведенная формулировка конечной цели особи в ее онтогенезе широко распространена и не вызывает особых возражений (обзоры: Шмальгаузен, 1938, 145

5 1969; Уоддингтон, 1964; Светлов, 1978; Gould, 1977; Рэфф, Кофман, 1986; Шишкин, 1987; Hull, 1994; Gilbert, 2003). Популяция Следующая иерархически более высокая функциональная система популяция с конечной целью ее жизненного цикла воспроизводством. С этой точки зрения такие важнейшие функции особей и популяции, как пищевая и защитная, лишь обеспечивают достижение главной цели. Вся совокупность остальных функций, как поведенческих, так и экологических, являются вспомогательными по отношению к этим основным функциям. Конечная цель каждой популяции расширенное воспроизводство, то есть максимизация репродукции. Оно может осуществляться на расширенном использовании в первую очередь энергетических (= пищевых) и топических ресурсов среды. Однако в природе оно в той или иной степени ограничивается вследствие конкуренции за ресурсы между членами сообщества (Hutchinson, 1978; Гиляров, 1990). Это, наряду с лимитирующими абиотическими факторами и естественной смертностью, приводит уровень популяционного воспроизводства в соответствие с реальными возможностями данной популяции и ее реализованной экологической ниши. Поэтому активное участие членов популяции в жизни сообщества, в первую очередь, в трофических взаимоотношениях, с одной стороны, необходимо для выполнения конечной цели популяции. С другой стороны, оно определяет возможность и необходимость существования сообщества как такового, эволюцию составляющих его популяций и эволюцию самого сообщества и его среды (средообразущая роль организмов, составляющих сообщества), то есть экосистемы в целом. Иначе говоря, воспроизводительная функция популяций основывается на их трофической функции, которая, в конечном счете, служит основным системообразующим фактором организованности и функционирования экосистем и биосферы в целом. В этом отношении и сегодня актуально звучит прозорливое высказывание казанского профессора зоологии Э.А. Эверсманна (1839) «в этом мире, где все существа соединены в одну цепь, чтобы каждое звено могло служить, и средством, и целью вместе». 146 Cообщества и биосфера Вопрос о целеполагании сообществ и тем более биосферы, как правило, не обсуждается. И на самом деле, какова может быть цель совокупности элементов популяций, объединенных в сообщество своими «эгоистическими» и по сути противоречащими друг другу целями? В лучшем случае говорится о коэволюции членов сообществ в сторону мутуализма и принятии мутуалистической парадигмы (May, 1982; Futuyma, Slatkin, 1983; Галл, 1984; Родин, 1991) или же оптимизационной парадигмы (Суховольский, 2004) в качестве господствующей парадигмы синэкологии. Однако, по-видимому, все это является лишь одним из механизмов на пути к главной цели системы более высокого иерархического порядка биосферы. В связи с этим следует подчеркнуть, что пока четко сформулировать вопрос о целеполагании сообществ разных иерархических уровней затруднительно. Можно лишь полагать, что в каждом конкретном случае в более скромных локальных пространственно-временных масштабах по сравнению с биосферным масштабом локальные сообщества «вносят свой посильный вклад» в общее «биосферное дело». У каждого из них есть свои локальные закономерности организации и функ-

6 ционирования, то есть своя жизнь, которая направлена на «решение» своих сиюминутных и среднесрочных (десятки лет) задач. Однако все они не замкнутые системы, а в целом достаточно широко взаимодействуют и обмениваются косным, биокосным и живым веществом. В конечном счете, это определяет их иерархически сложную организацию в единую и целостную глобальную биологическую систему биосферу (Шипунов, 1980; Михайловский, 1992). В качестве конечной цели биоценотических систем и в целом живой части биосферы сформулирован принцип В.И. Вернадского Дж. Лавлока: улучшение условий для живых организмов, то есть негэнтропийное преобразование окружающей среды в сторону повышения общего качества условий для жизни (Нигматуллин, 2001). Именно в этом направлении и эволюционировала биосфера. Жизнь активно изменяет среду в оптимальном для себя самой направлении в возможных пределах существующих на Земле условий и соответственно меняется сама, формируя все более активные и совершенные группы организмов. Живые организмы не только приспосабливаются к наличной среде, но и меняют и регулируют ее физические и химические свойства. Поэтому эволюция организмов и эволюция среды идут параллельно. Они оптимизируют для себя условия среды, что сохраняет непрерывность биосферы во времени (Вернадский, 1926, 1994, 2001; Lovelock, 1979, 1995; 2000; Margulis, 1999). В этом отношении весьма примечательно недавнее высказывание Станислава Лема (2005, с. 256): «В процессе эволюции может сохраниться только то, что (как организмы определенного вида) выживает («в борьбе за существование», которая не обязательно должна быть кровавой битвой), а я подумал, что если бы удалось вместо правила «выживает лучше приспособленное к окружающей среде» ввести правило «выживает то, что точнее выражает окружающую среду», мы оказались бы на пороге автоматизации познания (эпистемы) тех процессов, которые на протяжении четырех миллиардов лет привели к существованию целой биосферы во главе с человеком». Иными словами, живые организмы представляют Naturam naturantem Спинозы, то есть «природа созидающая» в отличие от прежних представлений, где она представляла собой Natura naturata «природа созданная» условиями среды. Эта мысль, в конечном счете, и была лейтмотивом творчества В.И. Вернадского (1926, 1994, 2001) и Дж. Лавлока (Lovlock, 1979, 1995; 2000). Биосфера саморегулирующая система, создающая новые и «регулирующая» достигнутые основные параметры среды, и в первую очередь, жизненно важные состав воды, атмосферы, донных осадков и почвы. Они контролируются биосферой, и для биосферы (Margulis, 1999). Еще в 1920-е годы В.И. Вернадский (1923) писал: «Состав воды океана в главной своей части регулируется жизнью Жизнь является основным агентом, создающим химию моря». То же он писал об атмосфере: «Атмосфера всецело создана жизнью, она биогенна» (Вернадский, 1942). В последние годы на Западе довольно широкое распространение получила концепция «геофизиологии», «глобального метаболизма» или «гомеостаза окружающей среды» (обзоры: Lovelock, 1995, 2000; Wakeford, Walters, 1995; Bunyard, 1996; Williams, 1996b; Volk, 1998; Margulis, 1999; Levit, Krumbein, 2000), в рамках которой делаются попытки реконструкции механизмов глобального гомеостаза биосферы и его исторического развития. Для советской/российской биосферологии эта проблематика традиционна (Вернадский, 1926, 1994, 2001; Беклемишев, 1928: цит. по: 1970; Хильми, 1966; Камшилов, 1974; Новик, 1975; Шипунов, 1980; 147

7 Будыко, 1984; Заварзин, 1984; Соколов, Яншин, 1986; Лапо, 1987; Уголев, 1987; Яншин, 1989, 2000; Колчинский, 1990; Михайловский, 1992; Levit, Krumbein, 2000; Левченко, 2004 и мн. др.). 148 Заключение Из вышеизложенного следует, что цель атрибут самого феномена жизни: по выражению И.В. Гете (1806, цит. по: 1957), поддержанному А.И. Герценом (1855, цит. по: 1986), «цель жизни сама жизнь!» Этот принцип универсален. Он реализуется в качестве основополагающего принципа на разных уровнях организации жизни от организма, популяции и сообществ живых организмов вплоть до биосферы. Суть его, в конечном счете, для всех них выражается в стремлении к выживанию, а точнее к самосохранению. И это стремление инварианта для основных биологических систем от организма до биосферы. Здесь нужно подчеркнуть, что принцип самосохранения не нов, он был доминирующим в познании человека, человеческого общества и всей природы от античности и средневековья вплоть до XVII века (Гайденко, 1999). Наряду с констатацией общности целевых самосохранительных установок биологических систем разных иерархических уровней из вышесказанного вытекает идея соподчиненности и взаимосвязи этих целевых установок. Целевые установки организмов и популяций к воспроизводству ведут к необходимости энергетического и топического «обеспечения» их реализации, то есть использованию энергетических и других ресурсов среды. Это влечет за собой необходимость разного рода экологических взаимодействий на индивидуальном и популяционном уровнях. Из них, собственно, и складывается жизнь сообществ и биосферы в целом. Цель последней поддержание (дление) жизни и постепенное изменение (оптимизация) условий их существования. Таким образом, круг взаимосвязи этих целевых установок замыкается. С этой точки зрения целевые установки являются системообразующими факторами биологических систем разного уровня и их изначальными свойствами. Цели организма и популяции наглядно конечны. Они достигаются при участии данного организма в размножении и акте очередного воспроизводства популяции. В то же время они носят циклический характер и возобновляются в каждом новом онтогенезе и новом жизненном цикле популяции. Для надвидовых систем конечная цель выражается в поддержании жизни сообщества и биосферы в целом до возможных пределов. Эти временные пределы для конкретных сообществ определяются внутренними закономерностями самого филоценогенеза и влиянием на него внешних факторов. В то же время в результате исторической смены сообществ также наблюдается цикличность: цель самосохранения остается той же, но каждый раз для нового типа сообщества. Для биосферы это полное возможное время ее жизни. Однако и здесь происходят периодические изменения в регуляции средовых параметров биосферы в результате эволюции и смены живого покрова Земли. Следовательно, цели всех этих биосистем стабильны, а с эволюцией систем меняются во времени лишь конкретные механизмы их достижения. При появлении живых организмов, противоборствующих основной биосферной тенденции жизни, они или «устраняются» или их негативное воздействие так или иначе нейтрализуется или минимизируется. Однако с появлением нового биосферного «лидера» Homo sapiens и, особенно с развитием его современной техногенной цивилизации западного типа, экспоненциальным ростом численно-

9 Вернадский В.И. Живое вещество в химии моря. Петроград, с. Вернадский В.И. Биосфера. Л.: Научн. хим.-техн. изд-во, с. Вернадский В.И. О геологических оболочках Земли как планеты // Известия АН СССР, сер. геогр. и геофиз С Вернадский В.И. Живое вещество и биосфера. М.: Наука, с. Вернадский В.И. Химическое строение биосферы Земли и ее окружения. М.: Наука, с. Волкова Э.В., Филюкова А.И., Водопьянов П.А. Детерминация эволюционного процесса. Минск: Изд-во «Наука и техника», с. Гайденко П.П. Философские и религиозные истоки классической механики // Естествознание в гуманитарном контексте. М.: Наука, С Галл Я.М. Популяционная экология и эволюционная теория, историко-методологические проблемы // Экология и эволюционная теория. Л.: Наука, С Гете И.В. Избранные сочинения по естествознанию. М.: Изд-во АН СССР, с. Геккель Э. Мировые загадки. Общедоступные очерки монистической философии. Лейпциг СПб.: Изд-во «Мысль», с. Герцен А.И. Сочинения в двух томах. Т. 2. Философское наследие. Т. 96. М.: Мысль, с. Гиляров А.М. Популяционная биология. М.: Изд-во МГУ, с. Данилов-Данильян В.И., Лосев К.С. Экологический вызов и устойчивость развития. М.: Прогресс-Традиция, с. Жерихин В.В. Избранные труды по палеоэкологии и филоценогенетике. М.: Т-во научных изданий КМК, с. Заварзин Г.А. Бактерии и состав атмосферы. М.: Наука, с. Иорданский Н.Н. Эволюция жизни. М.: Изд. центр «Академия», с. Казютинский В.В. Антропный принцип и современная телеология // Мамчур Е.А., Сачков Ю.В. (ред.). Причинность и телеономизм в современной естественнонаучной парадигме. М.: Наука, С Камшилов М.М. Эволюция биосферы. М.: Наука, с. Капица С.П. Общая теория роста человечества. Сколько людей жило, живет и будет жить на Земле. М.: Наука, с. Капица С.П., Кюрдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. 2-е издание. М.: Эдиториал УРСС, с. Кеннеди П. Вступая в двадцать первый век. М.: Изд-во «Весь мир», с. Колчинский Э.И. Эволюция биосферы. Историко-критические очерки исследований в СССР. Л.: Наука, с. Лапо А.В. Следы былых биосфер. М.: Знание, с. Левченко В.Ф. Эволюция биосферы до и после появления человека. СПб.: Наука, с. Лем С. Молох. М.: АСТ: Транзитная книга, с. Леопольд О. Календарь песчаного графства. М.: Мир, c. Любищев А.А. Проблемы формы и систематики и эволюции организмов. М.: Наука, с. Марков А.В., Неймарк Е.Б. Количественные закономерности макроэволюции. Опыт применения системного подхода к анализу развития надвидовых таксонов. М.: Изд-во ГЕОС, с. (Труды ПИН РАН, Т. 2). Майр Э. Причина и следствие в биологии // На пути к теоретической биологии. М.: Мир, С

10 Мейен С.В. Проблема направленности эволюции // Итоги науки и техники. Зоология позвоночных. Т. 7. Проблемы теории эволюции. М.: ВИНИТИ, С Новик И.В. (отв. ред.). Методологические аспекты исследования биосферы. М.: Наука с. Михайловский Г.Е. Жизнь и ее организация в пелагиали Мирового океана. М.: Наука, с. Моисеев Н.Н. Судьба цивилизации. Путь разума. М.: Изд-во МНЭПУ, с. Моисеев Н.Н. Универсум, информация, общество. М.: Изд-во «Устойчивый мир», с. Назаретян А.П. Цивилизационные кризисы в контексте Универсальной истории: синергетика, психология и футурология. М.: ПЕР СЭ, с. Нигматуллин Ч.М. Телеономия экологических систем // VIII съезд Гидробиологического общества РАН (16 23 сентября 2001 г., Калининград). Тезисы докладов. Т. 1. Калининград: Изд-во АтлантНИРО, С Печчеи А. Человеческие качества. М.: Прогресс, с. Попов И.Ю. Ортогенез против дарвинизма. Историко-научный анализ концепций направленной эволюции. СПб: Изд-во С.-Петерб. ун-та, с. Пушкин В.Г. Проблема целеполагания // Методологические аспекты исследования биосферы. М.: Наука, С Родин С.Н. Идея коэволюции. Новосибирск: Наука, с. Рожанский И.Д. Развитие естествознания в эпоху античности. Ранняя греческая наука «о природе». М.: Наука, с. Рьюз М. Философия биологии. М.: Прогресс, с. Рэфф Р., Кофман Т. Эмбрионы, гены и эволюция. М.: Мир, с. Саган К. Космос: Эволюция Вселенной, жизни и цивилизации. СПб.: Амфора, с. Светлов П.Г. Физиология (механика) развития. Т. 1. Процессы морфогенеза на клеточном и организменном уровнях. Л.: Наука, с. Северцов А.С. Направленность эволюции. М.: Изд-во МГУ, с. Севальников А.Ю. Телеологический принцип и современная наука // Мамчур Е.А., Сачков Ю.В. (ред.). Причинность и телеономизм в современной естественнонаучной парадигме. М.: Наука, С Сладков Н.И. Зарубки на память. Звезда C Соколов Б.С., Яншин А.Л. (ред.) В.И. Вернадский и современность. Сборник статей. М.: Наука, с. Старобогатов Я.И. Рецензия: В.В. Черных. Проблема целостности высших таксонов. Точка зрения палеонтолога // Зоол. журн Т. 66, 7. С Сутт Т. Проблема направленности органической эволюции. Таллин: Изд-во «Валгус», с. Суховольский В.Г. Экономика живого: Оптимизационный подход к описанию процессов в экологических сообществах и системах. Новосибирск: Наука, с. Татаринов Л.П. Параллелизмы и направленность эволюции // Эволюция и биоценотические кризисы. М.: Наука, С Тофлер А. Футурошок. СПб.: Лань, с. Уголев А.М. Естественные технологии биологических систем. Л.: Наука, с. Уоддингтон К. Морфогенез и генетика. М.: Мир, с. Фесенкова Л.В. Методологические возможности биологии в построении новой парадигмы // Методология биологии: новые идеи (синергетика, семиотика, коэволюция). Сборник статей. Баксанский О.Е. (ред.). М.: Эдиториал УРСС, С

11 Фролов И.Т. Проблема целесообразности в свете современной науки. М.: Знание, с. Фролов И.Т. Жизнь и познание: О диалектике в современной биологии. М.: Мысль, с. Хайлов К.М. Что такое жизнь на Земле? Одесса: Изд-во «Друк», с. Хильми Г.Ф. Основы физики биосферы. Л.: Гидрометеоиздат, с. Хлебович В.В. Особь как квант жизни // Фундаментальные зоологические исследования. Теория и методы. М.-СПб.: Т-во научных изданий КМК, С Шипунов Ф.Я. Организованность биосферы. М.: Наука, с. Шишкин М.А. Индивидуальное развитие и эволюционная теория // Эволюция и биоценотические кризисы. М.: Наука, С Шмальгаузен И.И. Организм как целое в индивидуальном и историческом развитии. М.-Л.: Изд-во АН СССР, с. Шмальгаузен И.И. Проблемы дарвинизма. Л.: Наука, с. Черных В.В. Проблема целостности высших таксонов. Точка зрения палеонтолога. М.: Наука, с. Эверсманн Э.А. Речь о пользе наук естественных и в особенности зоологии // Обозрение преподаваний в Императорском Казанском Университете за учебный год. Казань С Яншин А.Л. (ред.). Научное и социальное значение деятельности В.И. Вернадского. Сборник научных трудов. Л.: Наука, с. Яншин А.Л. (ред.). В.И. Вернадский: Pro et contra. Антология литературы о В.И. Вернадском за сто лет (). СПб.: Изд-во РХГИ, с. Ayala F.A. Teleological explanations in evolutionary biology // Philosophy of Science Vol. 37. P Bunyard P. (ed.). Gaia in Action. Science of the living earth. Edinburgh: Floris Books, p. Depew D.J., Weber B.H. Darwinism evolving. System dynamics and the genealogy of natural selection. Cambridge (Mass.) and London: Bradford Book, The MIT Press, p. Falk A.E. Purpose, feedback and evolution // Philosophy of science Vol. 48. P Futuyma D.J., Slatkin M. (eds). Coevolution. Sunderland (Mass.): Sinauer Associates, p. Gilbert S.F. The morphogenesis of evolutionary developmental biology // Int. J. Dev. Biol V. 47. P Gotthelf A. Aristotle s conception of final causality // Review of Metaphysics Vol. 30. P Gould S.J. Ontogeny and phylogeny. Cambridge (Mass.): Harvard Univ. Press, p. Hull D.L. Individual // Keller E.F., Lloyd E.A. (eds). Keywords in evolution biology. Cambridge (Mass.) London: Harvard Univ. Press, P Hutchinson G.E. An introduction to population ecology. New Haven: Yale Univ. Press, p. Lennox J.G. Teleology // Keller E.F., Lloyd E.A. (eds). Keywords in evolution biology. Cambridge (Mass.) London: Harvard Univ. Press, P Levit G.S., Krumbein W.E. The biosphere-theory of V.I. Vernadsky and the Gaia-theory of James Lovelock: a comparative analysis of the two theories and traditions // Журн. общ. биол Т. 61, 2. С Lovelock J. Gaia: A new look at life on Earth. Oxford: Oxford Univ. Press, p. 152

12 Lovelock J. The ages of Gaia. A biography of our living Earth. Revised and explanded edition. New York London: W.W. Norton & Co, p. Lovelock J. Homage to Gaia. The life of an independent scientist. New York: Oxford Univ. Press, p. Margulis L. The symbiotic planet. A new look at evolution. London: Phoenix, p. May R.M. Mutualistic interactions among species // Nature Vol. 296 (No 5860). P Mayr E. Teleological and teleonomic, a new analysis // Boston Studies in Philosophy of Science No 14. P Mayr E. Toward a new philosophy of biology: Observations of an evolutionist. Cambridge (Mass.): The Belknap Press of Harvard Univ. Press, p. Mayr E. The Idea of teleology // Journal of the History of Ideas Vol. 53. P Mayr E. This is Biology. The Science of Living World. Cambridge (Mass.) and London: The Belknap Press of Harvard Univ. Press, p. Pittendrigh C.S. Adaptation, natural selection and behavior // Roe A. and Simpson G.G. (eds). Behavior and Evolution. New Haven: Yale Univ. Press, P Rensch B. Evolution above the species level. London: Methuen and Co Ltd., p. Wakeford T. and Walters M. (eds). Science for the Earth. Can science make the World a better place? Chichester: John Wiley and Sons Ltd., p. Williams G.C. Plan and purpose in nature. London: Phoenix, 1996a. 258 p. Williams G.R. The molecular biology of Gaia. New York: Columbua Univ. Press, 1996b. 210 p. Volk T. Gaia s body: Towards a physiology of Earth. New York: Copernicus, p. 153


СИБИРСКОЕ ОТДЕЛЕНИЕ РОССИЙСКОЙ АКАДЕМИИ НАУК ТОМСКИЙ НАУЧНЫЙ ЦЕНТР Кафедра философии УТВЕРЖДАЮ Зав. кафедрой философии ТНЦ СО РАН В. А. Ладов 2012 г. РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ИСТОРИЯ И ФИЛОСОФИЯ НАУКИ

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Нижневартовский государственный университет» Естественно-географический

Тест по биологии Многообразие живого и наука систематика 7 класс Тест состоит из 2 частей (часть А и часть Б). В части А 11 вопросов в части Б 6 вопросов. Задания А базового уровня сложности Задания Б

Пояснительная записка Рабочая программа по биологии для 11 класса составлена с учётом Федерального Государственного стандарта, примерной программы среднего (полного) общего образования по биологии (расширенный

РАБОЧАЯ ПРОГРАММА БИОЛОГИЯ на уровень среднего общего образования (ФГОС СОО) (базовый уровень) ПЛАНИРУЕМЫЕ ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА «БИОЛОГИЯ» В результате изучения учебного предмета

ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ СЕВЕРО-ВОСТОЧНОЕ ОКРУЖНОЕ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ ГБОУ средняя общеобразовательная школа 763 СП 2 Рабочая программа и календарно-тематическое планирование по биологии

Планируемые результаты В результате изучения биологии на базовом уровне ученик должен: знать/понимать основные положения биологических теорий (клеточная; эволюционная теория Ч. Дарвина); учения В.И.

Концепции современного естествознания. Бочкарев А.И., Бочкарева Т.С., Саксонов С.В. Тольятти: ТГУС, 2008. 386 с. Учебник написан в строгом соответствии с Государственным образовательным стандартом по дисциплине

2 Введение В основу настоящей программы для аспирантов и соискателей положены основные научные знания и методы исследований в области экологии, в том числе и при изучении наземных экосистем, к которым

Муниципальное автономное общеобразовательное учреждение «Средняя общеобразовательная школа 36 с углубленным изучением отдельных предметов» Промежуточная аттестация обучающихся 10 класса за курс средней

Муниципальное общеобразовательное учреждение «Средняя школа 37 с углублённым изучением английского языка» УТВЕРЖДАЮ Директор школы Е.С.Евстратова Приказ 01-07/297 от 31.08.2018 СОГЛАСОВАНО Руководитель

Муниципальное бюджетное общеобразовательное учреждение «Лицей имени академика Б.Н. Петрова» города Смоленска Рабочая программа по биологии для А, Б классов на 208-209 учебный год Составила: учитель биологии

Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СЕРВИСА»

Дата урока (номер учебной недели) Наименование разделов и тем уроков, форм и тем контроля Кол-во часов Введение в курс общей биологии 10-11 классов. 15 ч 1.Биология как наука и ее прикладное значение.

Экология 9 класс Пояснительная записка Рабочая программа составлена в соответствии с Федеральным компонентом государственного образовательного стандарта и с учетом Примерной образовательной программы по

1. Требования к уровню подготовки учащихся: 2 В результате изучения биологии на базовом уровне ученик должен: 1. знать/понимать основные положения биологических теорий (клеточная, эволюционная теория Ч.

Биология 10 11 классы Рабочая программа предмета «Биология» для 10-11 классов разработана в соответствии с ФЗ РФ «Об образовании в РФ» (от 29.122012г. 273-ФЗ); Федеральный государственный образовательный

Муниципальное бюджетное общеобразовательное учреждение города Абакана «Средняя общеобразовательная школа 24» РАБОЧАЯ ПРОГРАММА по биологии (базовый уровень) для 10-11 классов. Рабочая программа по биологии

Муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти «Школа 75 имени И.А. Красюка» Принята на педагогическом совете Протокол 12 от 28.06.2017 УТВЕРЖДАЮ: Директор МБУ «Школа

ПРИНЯТО Решением Ученого cовета от «11» апреля 2017 г. Протокол 5 УТВЕРЖДЕНО Приказом от «12» апреля 2017 г. 25-А ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ в Аспирантуру ФГБНУ «ГосНИОРХ» в 2017 году Направление

À. Ñ. Ñåâåðöîâ ÒÅÎÐÈÈ ÝÂÎËÞÖÈÈ УЧЕБНИК ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 2-е издание, исправленное и дополненное Ðåêîìåíäîâàíî Ó åáíî-ìåòîäè åñêèì îòäåëîì âûñøåãî îáðàçîâàíèÿ â êà åñòâå ó åáíèêà äëÿ ñòóäåíòîâ

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ Рабочая программа по экологии составлена на основе авторской программы И. М. Швец Природоведение. Биология. Экология: 5-11 классы: программы. М.: Вентана-Граф, 2012. Согласно действующему

1. Планируемые результаты освоения учебного предмета Учащийся должен знать /понимать основные положения биологических теорий (клеточная); сущность законов Г. Менделя, закономерностей изменчивости, эволюционная

Негосударственное образовательное учреждение высшего образования Московский технологический институт «УТВЕРЖДАЮ» Директор колледжа Куклина Л. В. «24» июня 2016 г. АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Шифр специальности: 09.00.01 Онтология и теория познания Формула специальности: Содержанием специальности 09.00.01 «Онтология и теория познания» является разработка современного научно-философского миропонимания

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ» (МГТУ ГА)

Философские науки ФИЛОСОФСКИЕ НАУКИ Шатохин Станислав Сергеевич студент Сохикян Григорий Суренович канд. филос. наук, старший преподаватель кафедры гуманитарных дисциплин и биоэтики Пятигорский медико-пятигорский

Оглавление Введение...9 Глава 1. Предмет и структура естествознания... 12 1.1. Наука. Функции науки... 12 Наука как отрасль культуры...13 Наука как способ познания мира...15 Наука как социальный институт...17

В. Е. Болтнев экология % Т О Н К И Б Л и р НАУКОЕМКИЕ ТЕХНОЛОГИИ ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 3 ЧАСТЬ 1. ОСНОВНЫЕ ПРИНЦИПЫ И КОНЦЕПЦИИ БИОСФЕРНОЙ ЭКОЛОГИИ...6 1. ОБЩЕЕ ПРЕДСТАВЛЕНИЕ ОБ ЭКОЛОГИИ...6 1.1 Место

Приложение ВОПРОСЫ ДЛЯ ОБСУЖДЕНИЯ НА СЕМИНАРАХ, ТЕМЫ ДОКЛАДОВ И РЕФЕРАТОВ Тема 1 ВЗАИМОСВЯЗЬ ЕСТЕСТВОЗНАНИЯ И ФИЛОСОФИИ 1. Натурфилософская концепция соотношения философии и естествознания: сущность, основные

ФГБОУ ВО НОВОСИБИРСКИЙ ГАУ Рег. ВСЭ. -3-09 ВСф.03-09 2017 г. УТВЕРЖДЕН: на заседании кафедры Протокол от «27» апреля 2017 г. 5 Заведующий кафедрой Морузи И.В. (подпись) ФОНД ОЦЕНОЧНЫХ СРЕДСТВ Б1.Б.8 Биология

А.А. Горелов Концепции современного естествознания Конспект лекций Учебное пособие КНОРУС МОСКВА 2013 УДК 50(075.8) ББК 20я73 Г68 Рецензенты: А.М. Гиляров, проф. биологического факультета МГУ им. М.В.

Глава 1. Биология как наука. Методы научного познания 1.1. Биология как наука, ее методы Биология как наука. Биология (от греч. bios «жизнь», logos «учение, наука») наука о жизни. Это дословный перевод

Пояснительная записка Программа предназначена для изучения предмета «Общая биология» в 111-х классах углубленного уровня, рассчитана на 4 часа в неделю. Программа с углубленным изучением биологии составлена

Рабочая программа по учебному предмету «Биология» на 2018-2019 учебный год 10-11 класс Приложение 1.11 к Основной образовательной программе СОО ФК ГОС МАОУ - СОШ 181 утверждено приказом 45 от 01.09.2018

30. Классификации наук: исторические варианты и современное состояние. Наука как таковая, как целостное развивающееся формообразование, включает в себя ряд частных наук, которые подразделяются в свою очередь

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ: «Биология» Цель учебной дисциплины - требования к результатам освоения дисциплины. В результате изучения учебной дисциплины «Биология» обучающийся должен: знать/понимать: основные

Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УДК: 372.32: 85 Вейс Т.А. студентка группы КЗДО-5-12 факультета психологии и педагогического образования ГБОУ ВО РК «КИПУ» Республика Крым, Симферополь Научный руководитель: Амет-Уста З.Р. к.пед.н., ст.преп.

Рабочая программа по биологии класс «Биология. Общая биология» г. Москва Требования результатам обучения и освоения содержания учебного предмета Личностные результаты Реализация этических установок по

ИННОВАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ ОБРАЗОВАНИЯ Л. В. Попова (Москва) ИНТЕГРАЦИОННЫЕ ПРОЦЕССЫ В ВЫСШЕМ ПРОФЕССИОНАЛЬНОМ ЭКОЛОГИЧЕСКОМ ОБРАЗОВАНИИ ЕСТЕСТВЕННОНАУЧНОЙ НАПРАВЛЕННОСТИ В статье анализируется

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЩИХСЯ. обучающиеся должны: знать: основные положения биологических теорий (клеточная, эволюционная теория Ч.Дарвина); учение В.И.Вернадского о биосфере; сущность законов

Паспорт календарно-тематического планирования Учебный предмет: Биология Количество часов в неделю по учебному плану 1 Всего количество часов в году по плану 33 Класс 11 Учитель: Коноплева Е.А Программа

Рабочая программа по биологии для учащихся 10-11 классов разработана на основе требований к результатам освоения основной образовательной программы среднего общего образования. Рабочая программа рассчитана

Первые вопросы к кандидатскому экзамену 1. Что такое философия как проблема в эпоху доминирования 2. Философия как любовь к мудрости в отличие от мудрости (о смысле древнегреческого слова philosophia)

1.Цели и задачи дисциплины. 3 4 1. Цель и задачи дисциплины 1.1. Цель дисциплины сформировать представления об основных закономерностях естествознания в рамках научных парадигм от момента рождения Вселенной,

87 м ФИЛОСОФИЯ И МЕТОДОЛОГИЯ НАУКИ Учебное пособие «Hypoteses non flngo» «Неравновесностъ - это т о, что порождает порядок из хаоса» Р*"г "зх

Муниципальное автономное общеобразовательное учреждение «Школа 8» г. Нижнего Новгорода Утверждено приказом от.06.06 7 Рабочая программа по предмету «Биология» (класс) Пояснительная записка Рабочая программа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОУ ВПО «МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА» Институт экономики Кафедра математики и информатики УТВЕРЖДАЮ Проректор по учебной работе д.э.н., профессор

О Г Л А В Л Е Н И Е

1. Введение

2. Аналитическая часть

2.1. Структура биосферы............................................................................. 4

2.2. Эволюция биосферы.............................................................................. 6

2.3. Природные ресурсы и их использование............................................. 8

2.4. Устойчивость биосферы....................................................................... 10

2.5. Биопродуктивность экосистем............................................................. 12

2.6. Биосфера и человек. Ноосфера............................................................ 15

2.7. Роль человеческого фактора в развитии биосферы........................... 16

2.8. Экологические проблемы биосферы...................................................

2.9. Охрана природы и перспективы рационального природопользования................................................................................................................................ 17

3. Заключение


В В Е Д Е Н И Е.

В буквальном переводе термин “биосфера” обозначает сферу жизни и в таком смысле он впервые был введен в науку в 1875 г. австрийским геологом и палеонтологом Эдуардом Зюссом (1831 – 1914). Однако задолго до этого под другими названиями, в частности "пространство жизни", "картина природы", "живая оболочка Земли" и т.п., его содержание рассматривалось многими другими естествоиспытателями.

Первоначально под всеми этими терминами подразумевалась только совокупность живых организмов, обитающих на нашей планете, хотя иногда и указывалась их связь с географическими, геологическими и космическими процессами, но при этом скорее обращалось внимание на зависимость живой природы от сил и веществ неорганической природы. Даже автор самого термина "биосфера" Э.Зюсс в своей книге "Лик Земли", опубликованной спустя почти тридцать лет после введения термина (1909 г.), не замечал обратного воздействия биосферы и определял ее как "совокупность организмов, ограниченную в пространстве и во времени и обитающую на поверхности Земли".

Первым из биологов, который ясно указал на огромную роль живых организмов в образовании земной коры, был Ж.Б.Ламарк (1744 – 1829). Он подчеркивал, что все вещества, находящиеся на поверхности земного шара и образующие его кору, сформировались благодаря деятельности живых организмов.

Биосфера (в современном понимании) – своеобразная оболочка Земли, содержащая всю совокупность живых организмов и ту часть вещества планеты, которая находится в непрерывном обмене с этими организмами.

Биосфера охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы.

Все живые организмы, населяющие нашу планету, существуют не сами по себе, они зависят от окружающей среды и испытывают на себе ее воздействия. Это точно согласованный комплекс множества факторов окружающей среды, и приспособление к ним живых организмов обуславливает возможность существования всевозможных форм организмов и самого различного образования их жизни.

Живая природа представляет собой сложно организованную, иерархичную систему. Выделяют несколько уровней организации живой материи.

1.Молекулярный . Любая живая система проявляется на уровне взаимодействия биологических макромолекул: нуклеиновых кислот, полисахаридов, а также других важных органических веществ.

2. Клеточный. Клетка - структурная и функциональная единица размножения и развития всех живых организмов, обитающих на Земле. Неклеточных форм жизни нет, а существование вирусов лишь подтверждает это правило, т.к. они могут проявлять свойства живых систем только в клетках.

3.Организменный. Организм представляет собой целостную одноклеточную или многоклеточную живую систему, способную к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных для выполнения различных функций.

4.Популяционно-видовой. Под видом понимают совокупность особей, сходных по структурно-функциональной организации, имеющих одинаковый кариотип и единое происхождение и занимающих определенный ареал обитания, свободно скрещивающихся между собой и дающих плодовитое потомство, характеризующихся сходным поведением и определенными взаимоотношениями с другими видами и факторами неживой природы.

Совокупность организмов одного и того же вида, объединенная общим местом обитания, создает популяцию как систему надорганизменного порядка. В этой системе осуществляются простейшие, элементарные эволюционные преобразования.

5.Биогеоценотический. Биогеоценоз - сообщество, совокупность организмов разных видов и различной сложности организации со всеми факторами конкретной среды их обитания - компонентами атмосферы, гидросферы и литосферы.

6.Биосферный. Биосфера - самый высокий уровень организации жизни на нашей планете. В ней выделяют живое вещество - совокупность всех живых организмов, неживое или косное вещество и биокосное вещество (почва).

АНАЛИТИЧЕСКАЯ ЧАСТЬ.

1. Структура биосферы.

Биосфера включает в себя: живое вещество , образованное совокупностью организмов; биогенное вещество , которое создается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, торф, известняки и др.); косное вещество , которое формируется без участия живых организмов; биокосное вещество , представляющее собой совместный результат жизнедеятельности организмов и небиологических процессов (например, почвы).

Косное вещество биосферы.

Границы биосферы определяются факторами земной среды, которые делают невозможным существование живых организмов. Верхняя граница проходит примерно на высоте 20 км от поверхности планеты и ограничена слоем озона, который задерживает губительные для жизни коротковолновую часть ультрафиолетового излучения Солнца. Таким образом, живые организмы могут существовать в тропосфере и нижних слоях стратосферы. В гидросфере земной коры организмы проникают на всю глубину Мирового океана - до 10-11 км. В литосфере жизнь встречается на глубине 3,5-7,5 км, что обусловлено температурой земных недр и условием проникновения воды в жидком состоянии.

Атмосфера.

Преобладающие элементы химического состава атмосферы: N 2 (78%), O 2 (21%), CO 2 (0,03%). Состояние атмосферы оказывает большое влияние на физические, химические и биологические процессы на поверхности Земли и в водной среде. Для биологических процессов наибольшее значение имеют: кислород, используемый для дыхания и минерализации мертвого органического вещества, диоксид углерода, участвующий в фотосинтезе, и озон, экранирующий земную поверхность от жесткого ультрафиолетового излучения. Азот, диоксид углерода, пары воды образовались в значительной мере благодаря вулканической деятельности, а кислород - в результате фотосинтеза.

Гидросфера.

Преобладающие элементы химического состава гидросферы: Na + , Mg 2+ , Ca 2+ , Cl - , S, С. Вода - важнейший компонент биосферы и один из необходимых факторов существования живых организмов. Основная ее часть (95%) находится в Мировом океане, который занимает около 70% поверхности земного шара и содержит 1300 млн. км 3 . Поверхностные воды (озера, реки) включают всего 0,182 млн. км 3 , а количество воды в живых организмах составляет всего 0,001 млн. км 3 . Значительные запасы воды (24 млн. км 3) содержат ледники. Большое значение имеют газы, растворенные в воде: кислород и диоксид углерода. Их количество широко варьирует от температуры и присутствия живых организмов. Диоксида углерода, содержащегося в воде, в 60 раз больше, чем в атмосфере. Гидросфера формировалась в связи с развитием литосферы, которая в течение геологической истории Земли выделяла большое количество водяного пара.

Литосфера.

Преобладающие элементы химического состава гидросферы: O, Si, Al, Fe, Ca, Mg, Na, K. Основная масса организмов, обитающих в пределах литосферы, находится в почвенном слое, глубина которого не превышает нескольких метров. Почва включает минеральные вещества, образующиеся при разрушении горных пород, и органические вещества - продукты жизнедеятельности организмов.

Живые организмы (живое вещество).

Хотя границы биосферы довольно узки, живые организмы в их пределах распределены очень неравномерно. На большой высоте и в глубинах гидросферы и литосферы организмы встречаются относительно редко. Жизнь сосредоточена главным образом на поверхности Земли, в почве и в приповерхностном слое океана. Общую массу живых организмов оценивают в 2,43х10 12 т. Биомасса организмов, обитающих на суше, на 99,2% представлена зелеными растениями и 0,8% - животными и микроорганизмами. Напротив, в океане на долю растений приходится 6,3%, а на долю животных и микроорганизмов - 93,7% всей биомассы. Жизнь сосредоточена главным образом на суше. Суммарная биомасса океана составляет всего 0,03х10 12 т, или 0,13% биомассы всех существ, обитающих на Земле.

В распределении живых организмов по видовому составу наблюдается важная закономерность. Из общего числа видов 21% приходится на растения, но их вклад в общую биомассу составляет 99%. Среди животных 96% видов - беспозвоночные и только 4% - позвоночные, из которых десятая часть - млекопитающие. Масса живого вещества составляет всего 0,01-0,02% от косного вещества биосферы, однако она играет ведущую роль в геохимических процессах. Вещества и энергию, необходимую для обмена веществ, организмы черпают из окружающей среды. Ограниченные количества живой материи воссоздаются, преобразуются и разлагаются. Ежегодно, благодаря жизнедеятельности растений и животных, воспроизводится около 10% биомассы.

2. Эволюция биосферы.

Все компоненты биосферы тесно взаимодействуют между собой, составляя целостную, сложно организованную систему, развивающуюся по своим внутренним законам и под действием внешних сил, в том числе космических (солнечного излучения, гравитационных сил, магнитных полей Солнца, Луны и др. небесных тел)

По современным представлениям, развитие безжизненной геосферы, т.е. оболочки, образованной веществом Земли, происходило на ранних стадиях существования нашей планеты, миллиарды лет назад. Изменения облика Земли были связаны с геологическими процессами, происходившими в земной коре, на поверхности и в глубинных слоях планеты и находили проявление в извержениях вулканов, землетрясениях, подвижках земной коры, горообразовании. Такие процессы происходят и сейчас на безжизненных планетах солнечной системы и их спутниках - Марсе, Венере, Луне.

С возникновением жизни (саморазвивающихся устойчивых форм) сначала медленно и слабо, затем все быстрее и значительнее стало проявляться влияние живой материи на геологические процессы Земли.

Деятельность живого вещества, проникшего во все уголки планеты, привела к возникновению нового образования - биосферы - тесно взаимосвязанной единой системы геологических и биологических тел и процессов преобразования энергии и вещества. Размеры преобразований, осуществляемых живой материей, достигли планетарных масштабов, существенно видоизменив облик и эволюцию Земли.

Так, например, в результате процесса фотосинтеза - деятельности зеленых растений, образовался современный газовый состав атмосферы, в ней появился кислород. В свою очередь на активность фотосинтеза существенно влияет концентрация углекислого газа в атмосфере, наличие влаги и тепла.

Почва является целиком результатом деятельности живого вещества в косной (неживой) среде. Решающая роль в этом процессе принадлежит климату, топографии, деятельности микроорганизмов и растений и материнским породам. Биосфера, возникнув и сформировавшись 1-2 млрд. лет назад (к этому времени относятся первые обнаруженные остатки живых организмов), находится в постоянном динамическом равновесии и развитии.

В биосфере, как в любой экосистеме, происходит круговорот воды, планетарные перемещения воздушных масс, а также биологический круговорот, характеризующийся емкостью - количеством химических элементов, находящихся одновременно в составе живого вещества в данной экосистеме, и скоростью - количеством живого вещества, образующегося и разлагающегося в единицу времени. В результате на Земле поддерживается большой геологический круговорот веществ, где для каждого элемента характерна своя скорость миграции в больших и малых циклах. Скорости всех циклов отдельных элементов в биосфере теснейшим образом сопряжены между собой.

Установившиеся за многие миллионы лет круговороты энергии и вещества в биосфере самоподдерживаются в глобальных масштабах, хотя локальные (местные) изменения структуры и особенностей отдельных экосистем (биогеоценозов), составляющих биосферу, могут быть значительными.

Еще на ранних этапах эволюции живое вещество распространилось по безжизненным пространствам планеты, занимая все потенциально доступные для жизни места, изменяя их и превращая в места обитания. И уже в древние времена различные жизненные формы и виды растений, животных, микроорганизмов, грибов заняли всю планету. Живое органическое вещество, можно найти и в глубинах океана, и на вершинах самых высоких гор, и в вечных снегах приполярья, и в горячих водах источников вулканических районов.

Такую способность к распространению живого вещества В.И.Вернадский назвал «всюдностью жизни».

Эволюция биосферы шла по пути усложнения структуры биологических сообществ, умножения числа видов и совершенствования их приспособляемости. Эволюционный процесс сопровождался увеличением эффективности преобразования энергии и вещества биологическими системами: организмами, популяциями, сообществами.

Вершиной эволюции живого на Земле явился человек, который как биологический вид на основе многочисленных изменений приобрел не только сознание (совершенную форму отображения окружающего мира), но и способность изготавливать и использовать в своей жизни орудия труда.

Посредством орудий труда человечество стало создавать фактически искусственную среду своего обитания (поселения, жилища, одежду, продукты питания, машины и многое другое). С этих пор эволюция биосферы вступила в новую фазу, где человеческий фактор стал мощной природной движущей силой.

Природные ресурсы и их использование.

Биологические, в том числе пищевые, ресурсы планеты обуславливают возможности жизни человека на Земле, а минеральные и энергетические служат основой материального производства человеческого общества. Среди природных богатств планеты различают исчерпаемые и неисчерпаемые ресурсы.

Неисчерпаемые ресурсы.

Неисчерпаемые ресурсы подразделяются на космические, климатические и водные. Это энергия солнечной радиации, морских волн, ветра. С учетом огромной массы воздушной и водной среды планеты неисчерпаемыми считают атмосферный воздух и воду. Выделение это относительно. Например, пресную воду уже можно рассматривать как ресурс исчерпаемый, поскольку во многих регионах земного шара возник острый дефицит воды. Можно говорить и о неравномерности ее распределения, и невозможности ее использования из-за загрязнения. Условно считают и кислород атмосферы неисчерпаемым ресурсом.

Современные ученые-экологи полагают, что при современном уровне технологии использования атмосферного воздуха и воды этим ресурсы можно рассматривать как неисчерпаемые только при разработке и реализации крупномасштабных программ, направленных на восстановление их качества.

Исчерпаемые ресурсы.

Исчерпаемые ресурсы делятся на возобновляемые и невозобновляемые.

К возобновляемым относятся растительный и животный мир, плодородие почв. Из числа восполняемых природных ресурсов большую роль в жизни человека играет лес. Лес имеет немаловажное значение как географический и экологический фактор. Леса предотвращают эрозию почвы, задерживают поверхностные воды, т.е. служат влагонакопителями, способствуют поддержанию уровня грунтовых вод. В лесах обитают животные, представляющие материальную и эстетическую ценность для человека: копытные, пушные звери и дичь. В нашей стране леса занимают около 30% всей ее суши и являются одним из природных богатств.

К невосполнимым ресурсам относятся полезные ископаемые. Их использование человеком началось в эпоху неолита. Первыми металлами, которые нашли применение, были самородные золото и медь. Добывать руды, содержащие медь, олово, серебро, свинец умели уже за 4000 лет до н.э. В настоящее время человек вовлек в сферу своей промышленной деятельности преобладающую часть известных минеральных ресурсов. Если на заре цивилизации человек использовал для своих нужд всего около 20 химических элементов, в начале XX века - около 60, то сейчас более 100 - почти всю таблицу Менделеева. Ежегодно добывается (извлекается из геосферы) около 100 млрд. т руды, топлива, минеральных удобрений, что приводит к истощению этих ресурсов. Из земных недр извлекается все больше различных руд, каменного угля, нефти и газа. В современных условиях значительная часть поверхности Земли распахана или представляет собой полностью или частично окультуренные пастбища для домашних животных. Развитие промышленности и сельского хозяйства потребовало больших площадей для строительства городов, промышленных предприятий, разработки полезных ископаемых, сооружения коммуникаций. Таким образом, к настоящему времени человеком преобразовано около 20% суши.

Значительные площади поверхности суши исключены из хозяйственной деятельности человека вследствие накопления на ней промышленных отходов и невозможности использования районов, где ведется разработка и добыча полезных ископаемых.

Человек всегда использовал окружающую среду в основном как источник ресурсов, однако, в течение очень длительного времени его деятельность не оказывала заметного влияния на биосферу. Лишь в конце прошлого столетия изменения биосферы под влиянием хозяйственной деятельности обратили на себя внимание ученых. Эти изменения нарастали и в настоящее время обрушились на человеческую цивилизацию. Стремясь к улучшению условий своей жизни, человечество постоянно наращивает темпы материального производства, не задумываясь о последствиях. При таком подходе большая часть взятых от природы ресурсов возвращается ей в виде отходов, часто ядовитых или не пригодных для утилизации. Это приносит угрозу и существованию биосферы, и самого человека.

4. Устойчивость биосферы.

Какова устойчивость биосферы, то есть ее способность возвращаться в исходное состояние после любых возмущающих воздействий? Она очень велика. Биосфера существует уже около 3,8 миллиардов лет (Солнце и планеты – около 4,6 миллиарда) и за это время ее эволюция не прерывалась: это следует из того, что все живые организмы, от вирусов до человека, имеют один и тот же генетический код, записанный в молекуле ДНК, а их белки построены из 20 аминокислот, одинаковых у всех организмов. И как бы не были велики возмущающие воздействия, а некоторые из них можно отнести к разряду глобальных катастроф, приводивших к исчезновению многих видов, в биосфере всегда находились внутренние резервы для восстановления и развития.

Только за последние 570 миллионов лет отмечено шесть крупных катастроф. В результате одной из них число семейств морских животных уменьшилось более чем на 40%. Крупнейшая катастрофа на границе пермского и триасового периодов (240 миллионов лет назад) привела к вымиранию около 70% видов, а катастрофа на границе мелового и третичного периодов (67 миллионов лет назад) - вымиранию почти половины видов (тогда-то вымерли и динозавры).

Причины таких катаклизмов могли быть различны: похолодание климата, большие вулканические извержения с обширными излияниями лавы, отступления океана, удары крупных метеоритов – биота все равно развивалась, приспосабливаясь к окружающей среде и одновременно оказывая на последнюю мощное преобразующее влияние. Образование атмосферного кислорода и увеличение его концентрации, кстати, тоже оказалось катастрофичным для некоторых видов – они вымерли, в то же время развитие других ускорилось. Содержание углекислого газа в атмосфере соответственно уменьшилось. Углерод начал накапливаться в биоте и детрите (запас мертвого органического вещества: опад листьев, засохшие деревья, торф, каменный уголь, нефть) и преобразовываться в уголь, нефть и газ. В океанах из раковин и скелетов морских организмов образовались мощные морские отложения карбонатов (известняк, мел, мрамор) и силикатов. Полосчатые железняки, составляющие главные промышленные запасы железа, в том числе и запасы Курской магнитной аномалии, образовались около 2 миллиардов лет назад под воздействием кислорода, выделенного фотосинтезирующими бактериями (только после этого кислород стал накапливаться в атмосфере). Ряд организмов, накапливающих определенные элементы, участвовал в создании месторождений других полезных ископаемых.

Биота прошла огромный путь эволюции от простейших организмов до животных и растений и достигла видового разнообразия, которое исследователи оценивают 2-10 миллионами видов животных, растений и микроорганизмов, каждый из которых занял свою экологическую нишу.

Состояние биоты определяется в основном физико-химическими характеристиками окружающей среды. Совокупность среднемноголетних характеристик атмосферы, гидросферы и сушы мы называем климатом. Основная климатическая характеристика – температура у поверхности Земли – изменялась за время эволюции биоты относительно мало (при современном значении средней глобальной температуры 288 0 К (шкала Кельвина отсчитывает градусы от абсолютного нуля, 288 0 = 15 0)изминения, с учетом ледниковых периодов, не превышали 10-20 0).

Хотя на состояние экосистем и биосферы в целом физико-химические процессы в окружающей среде оказывают определенное влияние, сильно и обратное влияние биоты на окружающую среду. Причем воздействует она как на положительные, так и на отрицательные обратные связи, поэтому ее развитие иногда ускоряется, а иногда замедляется.

Но этот цикл не замкнут, не стационарен, как показали геологические данные и теоретические модели, содержащие в атмосфере СО 2 (и связанное с ним содержание О 2) за последние 570 миллионов лет неоднократно колебалось, причем количество СО 2 каждый раз уменьшалось или увеличивалось в несколько раз. В одних случаях это способствовало развитию биоты, а в других – мешало.

Не является замкнутым и медленный геохимический цикл: СО 2 поступает в атмосферу через вулканы, а расходуется на выветривание горных пород и на образование биоты. Часть атмосферного углерода откладывается, захороняется надолго, создавая запасы ископаемого топлива, а освободившийся кислород поступает в атмосферу. В результате за 4 миллиарда лет концентрация СО 2 в атмосфере уменьшилась в 100 – 1000 раз (из-за ослабления вулканизма, в результате расхода радиоактивных элементов в недрах Земли), что отрицательно повлияло на питание растений. В то же время накопление кислорода в атмосфере резко ускорило развитие биоты, но не было на пользу самым анаэробным (безкислородным) организмам, в результате жизнедеятельности которых появился кислород. Они были почти полностью вытеснены вновь возникшими аэробными организмами.

Большое влияние биоты на окружающую среду привело некоторых исследователей к выводу, что биота могла поддерживать в окружающей среде условия, благоприятные для ее жизнедеятельности. Но эта гипотеза противоречит ряду факторов (массовые вымирания, исчезновение миллиардов видов), а так же дарвиновской теории эволюции. Биота не поддерживала условия окружающей среды, оптимальные для живущих организмов, поэтому многие организмы и виды не могли пережить изминений географических и климатических условий. Есть оценки, что за время существования биосферы исчезло несколько миллиардов видов, тогда как сейчас существуют несколько миллионов. Но зато организмы, которые сумели пережить изменение условий, давали начало новым видам. Именно приспособление к изменяющимся условиям окружающей среды создало многочисленные и приспособленные виды, то есть двигало эволюцию, как это впервые показал Дарвин. Если бы было верным допущение о том, что существующая в определенный момент биота может поддерживать параметры окружающей среды в оптимальных для себя пределах, то сейчас могли бы существовать климат и богатейшая растительность каменноугольного периода, но эволюция биоты прекратилась бы.

Имеются данные о том, что становлению человека как вида способствовали тяжелые условия окружающей среды, в которых жили наши предки. Когда он научился поддерживать благоприятные условия своего существования, его эволюция как биологического вида прекратилась, сменившись эволюцией общества.

Итак, в процессе развития биоты были периоды устойчивого развития и периоды катастроф.

Биопродуктивность экосистем.

Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества . Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах - эквивалентном числе джоулей.

Валовая первичная продукция - количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание). Эта часть может быть достаточно большой, она составляет от 40 до 70% валовой продукции. Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию, которая представляет собой величину прироста растений, энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов - это вторичная продукция сообщества . Ее вычисляют отдельно для каждого трофического уровня, т.к. прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, живут в конечном итоге за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют её с разной полнотой. Если скорость первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению общей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Часто биомассу выражают в эквивалентных энергетических единицах.

Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, т.к. практически вся первичная продукция тратится в целях питания и размножения.

Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира начиная с 1969 года в целях изучения потенциальной биологической продуктивности Земли.

Мировое распределение первичной биологической продукции крайне неравномерно. Самый большой абсолютный прирост растительного мира достигает в среднем 25 г в день в очень благоприятных условиях. На больших площадях продуктивность не превышает 0,1 г/м (жаркие пустыни и полярные пустыни). Общая годовая продукция сухого органического вещества на Земле составляет 150-200 млрд. тонн. Около трети его образуется в океанах, около двух третей - на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, органических осадках водоемов и гумосе почв.

Эффективность связывания растительностью солнечной радиации снижается при недостатке тепла и влаги, при неблагоприятных физических и химических свойствах почвы и т.п. Продуктивность растительности изменяется не только при переходе от одной климатической зоны к другой, но и в пределах каждой зоны.

Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятные.

Питание людей обеспечивается в основном сельскохозяйственными культурами, занимающими приблизительно 10% площади суши (около 1,4 млрд. га). Общий годовой прирост культурных растений составляет около 16% от всей продуктивности суши, большая часть которой приходится на леса. Приблизительно 1/2 урожая идет непосредственно на питание людей, остальная часть - на корм домашним животным, используется в промышленности и теряется в отбросах. Всего человек потребляет около 0,2% первичной продукции Земли.

Растительная пища обходится для людей энергетически дешевле, чем животная. Сельскохозяйственные площади при рациональном использовании и распределении продукции могли бы обеспечить примерно вдвое большее население Земли, чем существующее. Но это требует больших затрат труда и капиталовложений. Особенно трудно обеспечить население вторичной продукцией. В рацион человека должно входить не менее 30 г белков в день. Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно около 50% потребностей современного населения Земли. Большая часть населения Земли находится, таким образом, в состоянии белкового голодания, а значительная часть людей страдает также и от общего недоедания.

Таким образом, увеличение биопродуктивности экосистем, и особенно вторичной продукции, является одной из основных задач, стоящих перед человечеством.

6. Биосфера и человек. Ноосфера.

Вернадский, анализируя геологическую историю Земли, утверждает, что наблюдается переход биосферы в новое состояние – в ноосферу под действием новой геологической силы, научной мысли человечества. Однако в трудах Вернадского нет законченного и непротиворечивого толкования сущности материальной ноосферы как преобразованной биосферы. В одних случаях он писал о ноосфере в будущем времени (она еще не наступила), в других в настоящем (мы входим в нее), а иногда связывал формирование ноосферы с появлением человека разумного или с возникновением промышленного производства. Надо заметить, что когда в качестве минералога Вернадский писал о геологической деятельности человека, он еще не употреблял понятий “ноосфера” и даже “биосфера”. О формировании на Земле ноосферы он наиболее подробно писал в незавершенной работе “Научная мысль как планетное явление”, но преимущественно с точки зрения истории науки.

Итак, что же ноосфера: утопия или реальная стратегия выживания? Труды Вернадского позволяют более обоснованно ответить на поставленный вопрос, поскольку в них указан ряд конкретных условий, необходимых для становления и существования ноосферы. Перечислим эти условия:

1. заселение человеком всей планеты;

2. резкое преобразование средств связи и обмена между странами;

3. усиление связей, в том числе политических, между всеми странами Земли;

4. начало преобладания геологической роли человека над другими геологическими процессами, протекающими в биосфере;

5. расширение границ биосферы и выход в космос;

6. открытие новых источников энергии;

7. равенство людей всех рас и религий;

8. увеличение роли народных масс в решении вопросов внешней и внутренней политики;

9. свобода научной мысли и научного искания от давления религиозных, философских и политических построений и создание в государственном строе условий, благоприятных для свободной научной мысли;

10.продуманная система народного образования и подъем благосостояния трудящихся. Создание реальной возможности не допустить недоедания и голода, нищеты и чрезвычайно ослабить болезни;

11.разумное преобразование первичной природы Земли с целью сделать ее способной удовлетворить все материальные, эстетические и духовные потребности численно возрастающего населения;

12.исключение войн из жизни общества.

7. Роль человеческого фактора в развитии биосферы.

Центральной темой учения о ноосфере является единство биосферы и человечества. Вернадский в своих работах раскрывает корни этого единства, значение организованности биосферы в развитии человечества. Это позволяет понять место и роль исторического развития человечества в эволюции биосферы, закономерности ее перехода в ноосферу.

Одной из ключевых идей, лежащих в основе теории Вернадского о ноосфере, является то, что человек не является самодостаточным живым существом, живущим отдельно по своим законам, он сосуществует внутри природы и является частью ее. Это единство обусловлено прежде всего функциональной неразрывностью окружающей среды и человека, которую пытался показать Вернадский как биогеохимик. Человечество само по себе есть природное явление и естественно, что влияние биосферы сказывается не только на среде жизни но и на образе мысли.

Но не только природа оказывает влияние на человека, существует и обратная связь. Причем она не поверхностная, отражающая физическое влияние человека на окружающую среду, она гораздо глубже. Это доказывает тот факт, что в последнее время заметно активизировались планетарные геологические силы. “...мы все больше и ярче видим в действии окружающие нас геологические силы. Это совпало, едва ли случайно, с проникновением в научное сознание убеждения о геологическом значении Homo sapiens, с выявлением нового состояния биосферы - ноосферы - и является одной из форм ее выражения. Оно связано, конечно, прежде всего с уточнением естественной научной работы и мысли в пределах биосферы, где живое вещество играет основную роль” Так, в последнее время резко меняется отражение живых существ на окружающей природе. Благодаря этому процесс эволюции переносится в область минералов. Резко меняются почвы, воды и воздух. То есть эволюция видов сама превратилась в геологический процесс, так как в процессе эволюции появилась новая геологическая сила. Вернадский писал: “Эволюция видов переходит в эволюцию биосферы”.

Вернадский видел неизбежность ноосферы, подготавливаемой как эволюцией биосферы, так и историческим развитием человечества. С точки зрения ноосферного подхода по-иному видятся и современные болевые точки развития мировой цивилизации. Варварское отношение к биосфере, угроза мировой экологической катастрофы, производство средств массового уничтожения - все это должно иметь преходящее значение. Вопрос о коренном повороте к истокам жизни, к организованности биосферы в современных условиях должен звучать как набат, призыв к тому, чтобы мыслить и действовать, в биосферном – планетном аспекте.

Экологические проблемы биосферы.

Экологические проблемы биосферы - это парниковый эффект, истощение озонового слоя, массовое сведение лесов, которое нарушает процесс круговорота кислорода и углерода в биосфере, отходы производства, сельского хозяйства, производство энергии (ГЭС наносят урон природе и людям - затопление огромных территорий под водохранилища, непреодолимые препятствия на путях миграций проходных и полупроходных рыб, поднимающихся на нерест в верховья рек, застой вод, замедление проточности, что сказывается на жизни всех живых существ, обитающих в реке и у реки; местное повышение воды влияет на грунт водохранилища, приводит к подтоплению, заболачиванию, эрозии берегов и оползням; существует опасность от плотин в районах с высокой сейсмичностью). Все это ведет к глобальному экологическому кризису и требует незамедлительного перехода к рациональному природопользованию.

Охрана природы и перспективы рационального природопользования.

Рациональное природопользование - единственный выход из ситуации.

Общая задача рационального управления природными ресурсами состоит в нахождении наилучших или оптимальных способов эксплуатации естественных и искусственных (например, в сельском хозяйстве) экосистем. Под эксплуатацией понимается сбор урожая и воздействие теми или иными видами хозяйственной деятельности на условия существования биогеоценозов.

Решение задачи по созданию оптимальной системы управления природными ресурсами существенно осложняется наличием не одного, а множества критериев оптимизации. К ним относятся: получение максимального урожая, сокращение производственных затрат, сохранение природных ландшафтов, поддержание видового разнообразия сообществ, обеспечение чистоты окружающей среды, сохранение нормального функционирования экосистем и их комплексов.

Охрана окружающей среды и задачи восстановления природных ресурсов должны предусматривать:

Рациональную стратегию борьбы с вредителями, знание и соблюдение агротехнических приемов, дозировку минеральных удобрений, хорошее знание экологических агроценозов и процессов, происходящих в них, а также на их границах с природными системами;

Cовершенствование технологии и добычи природных ресурсов;

Максимально полное и комплексное извлечение из месторождения всех полезных компонентов;

Рекультивацию земель после использования месторождений;

Экономичное и безотходное использование сырья в производстве;

Глубокую очистку и технологии использования отходов производства;

Вторичное использование материалов после выхода изделий из употребления;

Использование технологий, позволяющих извлечение рассеянных минеральных веществ;

Использование природных и ископаемых заменителей дефицитных минеральных соединений;

Замкнутые циклы производства (разработку и применение);

Применение энергосберегающих технологий;

Разработку и использование новых экологически чистых источников энергии.

В целом охрана окружающей среды и задачи восстановления природных ресурсов должны предусматривать:

Локальный и глобальный логический мониторинг, т.е. измерение и контроль состояния важнейших характеристик состояния окружающей среды, концентрации вредных веществ в атмосфере, воде, почве;

Восстановление и сохранение лесов от пожаров, вредителей, болезней;

Расширение и увеличение числа заповедников, зон эталонных экосистем, уникальных природных комплексов;

Охрану и разведение редких видов растений и животных;

Широкое просвещение и экологическое образование населения;

Международное сотрудничество в деле охраны окружающей среды.

Такая активная работа во всех областях человеческой деятельности по формированию отношения к природе, разработка рационального природоиспользования, природосберегающие технологии будущего смогут решать экологические проблемы сегодняшнего дня и перейти к гармоничному сотрудничеству с Природой.

В наши дни потребительское отношение к природе, изъятие ее ресурсов без осуществления мероприятий по их восстановлению уходит в прошлое. Проблема рационального использования природных ресурсов, охрана природы от губительных последствий хозяйственной деятельности человека приобретает государственное значение.

Охрана природы и рациональное природопользование - проблема комплексная, и ее решение зависит как от последовательного осуществления государственных мероприятий, направленных на сбережение экосистем, так и от расширения научных знаний, которые обществу для собственного благополучия рентабельно и выгодно финансировать.

Для вредных веществ в атмосфере законодательно установлены предельные допустимые концентрации, не вызывающие у человека ощутимых последствий. С целью предотвращения загрязнения атмосферы разработаны мероприятия, обеспечивающие правильное сжигание топлива, переход на газифицированное центральное отопление, установку на промышленных предприятиях очистных сооружений. Помимо предохранения воздуха от загрязнения, очистные сооружения позволяют экономить сырье и возвращать в производство многие ценные продукты. Например, улавливание серы из выделяющихся газов дает возможность увеличить выпуск серной кислоты, улавливание цемента сберегает продукцию, равную производительности нескольких заводов. На алюминиевых заводах установка фильтров на трубах предотвращает выброс в атмосферу фтора. Помимо строительства очистных сооружений ведутся поиски технологии, при которой образование отходов было бы сведено к минимуму. Этой же цели служит улучшение конструкций автомобилей, переход на другие виды топлива (сжиженный газ, этиловый спирт), при сжигании которого образуется меньше вредных веществ. Разрабатывается автомобиль с электродвигателем для передвижения в пределах города. Большое значение имеет правильная планировка города и зеленых насаждений. Деревья очищают воздух от взвешенных в нем жидких и твердых частиц (аэрозолей), поглощают вредные газы. Например, сернистый газ хорошо поглощается тополем, липой, кленом, конским каштаном, фенолы - сиренью, шелковицей, бузиной.

Бытовые и промышленные сточные воды подвергаются механической, физической и биологической обработке. Биологическая очистка заключается в разрушении растворенных органических веществ микроорганизмами. Вода пропускается через специальные резервуары, содержащие только так называемый активный ил, в который входят микроорганизмы окисляющие фенолы, жирные кислоты, спирты, углеводороды, и т.д.

Очистка сточных вод не решает всех проблем. Поэтому все больше предприятий переходит на новую технологию - замкнутый цикл, при котором очищенная вода вновь поступает в производство. Новые технологические процессы позволяют в десятки раз сократить количество воды, необходимое для промышленных целей.

Охрана недр заключается прежде всего в предотвращении непроизводительных затрат органических ресурсов в комплексном их использовании. Например, много каменного угля теряется при подземных пожарах, горючий газ сгорает в факелах на нефтепромыслах. Разработка технологии комплексного извлечения металлов из руд позволяет получать дополнительно такие ценные элементы, как титан, кобальт, вольфрам, молибден и др.

Для повышения продуктивности сельского хозяйства громадное значение имеет правильная агротехника и осуществление специальных мероприятий по охране почвы. Например, борьба с оврагами успешно ведется путем посадки растений - деревьев, кустарников, трав. Растения защищают почвы от смыва и уменьшают скорость течения воды. Окультуривание оврагов позволяет использовать их в хозяйственных целях. Посев завезенной из Америки аморфы, имеющей мощную корневую систему, не только эффективно предотвращает смыв почвы: само растение дает бобы, имеющие высокую кормовую ценность. Разнообразие посадок и посевов по оврагу способствует образование стойких биоценозов. В зарослях поселяются птицы, что имеет немаловажное значение для борьбы с вредителями. Защитные лесонасаждения в степях препятствуют водной и ветровой эрозии полей. Развитие биологических методов борьбы с вредителями позволяет сократить использование в сельском хозяйстве пестицидов. В настоящее время в охране нуждаются 2000 видов растений, 236 видов млекопитающих, 287 видов птиц. Международным союзом охраны природы учреждена специальная Красная книга, в которой сообщаются сведения об исчезающих видах и даются рекомендации по их сохранению. Многие виды животных, находящиеся под угрозой исчезновения, сейчас восстановили свою численность. Это относится к лосю, сайгаку, белой цапле, гаге.

Сохранению животного и растительного мира способствует организация заповедников и заказников. Помимо охраны редких и исчезающих видов заповедники служат базой для одомашнивания диких животных, обладающих ценными хозяйственными свойствами. Заповедники являются также центрами по расселению животных, исчезнувших в данной местности, помогают обогащению местной фауны. В России успешно прижилась североамериканская ондатра, дающая ценный мех. В суровых условиях Арктики успешно размножается овцебык, завезенный из Канады и Аляски. Восстановлена численность бобров, почти исчезнувших в начале века.

Подобные примеры многочисленны. Они показывают, что бережное отношение к природе, основанное на глубоких знаниях биологии растений и животных, не только сохраняет ее, но и дает значительный экономический эффект.

Многие люди считают, что природу необходимо охранять только из-за ее реальной или потенциальной пользы для людей, - этот подход называют антропоцентрическим (с “человеком в центре”) взглядом на мир. Некоторые люди придерживаются биоцентрического мировоззрения и убеждены, что недостойно человека ускорять исчезновение каких-либо видов, так как человек не более важен, чем другие виды на земле. “У человека нет превосходства над другими видами, ибо все есть суета сует” - считают они. Другие придерживаются экоцентрического (центр-экосистема) взгляда и полагают, что оправданы только те действия, которые направлены на поддержание систем жизнеобеспечения земли.

ЗАКЛЮЧЕНИЕ.

Таким образом, мы видим, что налицо все те конкретные признаки, все или почти все условия, которые указывал В.И.Вернадский для того, чтобы отличить ноосферу от существовавших ранее состояний биосферы. Процесс её образования постепенный, и, вероятно, никогда нельзя будет точно указать год или даже десятилетие, с которого переход биосферы в ноосферу можно будет считать завершённым. Конечно, мнения по этому вопросу могут быть разные. Ф.Т.Яншина пишет: "Учение академика В.И.Вернадского о переходе биосферы в ноосферу является не утопией, а действительной стратегией выживания и достижения разумного будущего для всего человечества". Мнение Р.К.Баландина несколько иное: "Биосфера не переходит на более высокий уровень сложности, совершенства, а упрощается, загрязняется, деградирует (небывалая скорость вымирания видов, разрушение лесных зон, страшная эрозия земель...). Она переходит на более низкий уровень, т.е. в ней наиболее активной преобразующей и регулирующей силой становится техновещество, совокупность технических систем, посредством которых человек - преимущественно невольно - переиначивает всю область жизни". Сам Вернадский, замечая нежелательные, разрушительные последствия хозяйствования человека на Земле, считал их некоторыми издержками. Он верил в человеческий разум, гуманизм научной деятельности, торжество добра и красоты. Что-то он гениально предвидел, в чём-то, возможно, он ошибался. Ноосферу следует принимать как символ веры, как идеал разумного человеческого вмешательства в биосферные процессы под влиянием научных достижений. Надо в неё верить, надеяться на её пришествие, предпринимать соответствующие меры.


СПИСОК ЛИТЕРАТУРЫ:

1. Чернова Н.М., Былова А.М., Экология. Учебное пособие для педагогических институтов, М., Просвещение, 1988;

2. Криксунов Е.А., Пасечник В.В., Сидорин А.П., Экология, М., Издательский дом "Дрофа", 1995;

3. Общая биология. Справочные материалы, Составитель В.В.Захаров, М., Издательский дом «Дрофа», 1995.

4. “ВернадскийВ.И.: О коренном материально-энергетическом отличии живых и косных тел биосферы.”//”Владимир Вернадский: Жизнеописание. Избранные труды. Воспоминания современников. Суждения потомков.” Сост. Г.П.Аксенов. - М.: Современник, 1993.

5. В.И.Вернадский "Размышления натуралиста. - Научная мысль как планетное явление". М.,Наука,1977. “Изучение явлений жизни и новая физика”,1931; Биогеохимические очерки. М.-Л., изд-во АН СССР, 1940

6. Сб. "Биосфера" ст. "Несколько слов о ноосфере" М.,Мысль,1967.

7. "В.И.Вернадский. Материалы к биографии" М.,изд-во "Молодая гвардия",1988.

8. Лапо А.В. “Следы былых биосфер”. – Москва, 1979.

Понятие о биосфере. Биосфера – это оболочка жизни, которая включает в себя растения, животные и микроорганизмы. В определенном смысле к биосфере могут быть отнесены человек как биологический вид и почва как продукт деятельности живых организмов.

Термин «биосфера» впервые употребил Э.Зюсс (австрийский геолог) в 1875 г., а учение о биосфере было создано лишь в начале XX века трудами В.И. Вернадского.

В настоящее время термин «биосфера» трактуется двояко: в широком смысле – биосфера отождествляется с географической оболочкой (с той лишь разницей, что географическая оболочка старше биосферы); в узком смысле – биосфера – это пленка, «сгусток жизни», и рассматривается параллельно с другими оболочками Земли.

За верхнюю границу биосферы принимают озоновый экран, находящийся на высоте 25-27 км (это высота, на которой еще могут встречаться некоторые споры и бактерии). Нижняя граница биосферы проходит в литосфере на глубине 3-5 км (там, где залегают органогенные горные породы и могут быть бактерии). Эти границы определяются для биосферы, понимаемой в широком смысле.

Наибольшая концентрация жизни находится в сравнительно узких пределах, в зоне контакта трех сред: воды, воздуха и суши (почвы). Наиболее

заселенными являются гидросфера, нижняя часть тропосферы и почва. Этот тонкий горизонт с наибольшей концентрацией живого вещества получил название биострома (живого покрова).

Считают, что зарождение жизни произошло приблизительно 3 миллиарда лет назад (в конце архея) в мелководных водоемах, из которых жизнь распространилась на океан, а уже затем и на сушу (в отсутствии озонового экрана вода хорошо задерживала губительное ультрафиолетовое излучение). В период зарождения жизни климат на Земле был теплым и влажным.

Длительное время жизнь «размещалась» в географической оболочке пятнами, т.е. биосфера была слабо развита и очень прерывиста. На протяжении геологической истории увеличивалось разнообразие живых организмов, усложнялась их организация, возрастала их общая масса. Развитие жизни шло неравномерно. Одни виды сохранились с архея до наших дней (например, сине-зеленые водоросли), развитие других линий привело к возникновению сложных форм живого (приматы, человек), развитие третьих закончилось их вымиранием (динозавры, мамонты и т.д.).

За всю историю биосферы существовало около 500 миллионов видов, а в настоящее время насчитывается лишь около 2 миллионов видов.

Широкому распространению живых организмов на Земле помогла их способность приспосабливаться к самым разнообразным условиям среды и высокая способность к размножению. Так, микроорганизмы были обнаружены в исландских гейзерах при температуре +93 о С, и даже в многолетнемерзлых грунтах при очень низких температурах. Споры некоторых бактерий сохраняют жизнеспособность при t о +100 о С и ниже –200 о С. Потомство одной из бактерий при соответствующих благоприятных условиях могло бы за 5 суток заполнить весь Мировой океан, а клевер за 11 лет мог бы покрыть всю поверхность Земли.

В настоящее время по составу в биосфере преобладают животные – их насчитывается около 1,7 миллионов видов. Растений на Земле около 400 тысяч видов, зато по массе вещества растения во много раз превышают массу животных. На долю растений приходится почти 97% всей биомассы Земли и лишь 3% - на массу животных и микроорганизмов. Подавляющая часть биомассы сосредоточена на суше, она превышает биомассу океана в 1000 раз. В океане гораздо беднее и видовое разнообразие.

Растительность на суше образует почти сплошной покров – фитосферу. Растительная масса состоит из надземной (стволы с ветками, листьями, хвоей; кустарники, травянистый и мохово-лишайный покров) и подземной (корни растений). Например, для смешанного леса растительная масса составляет почти 400 т/га, из них на наземную часть приходится около 300 т/га, а на подземную – 100 т/га. На суше биомасса в целом увеличивается от полюсов к экватору, в этом же направлении возрастает и количество видов растений и животных. В тундре биомасса составляет приблизительно 12 т/га, в тайге – около 320 т/га, в смешанных и широколиственных лесах – 400 т/га, в степях снижается до 25 т/га, а в пустынях даже до 12 т/га, в саваннах вновь увеличивается до 100 т/га и более, в тропических лесах достигает максимума – 500 т/га. Наименьшее количество видов растений и животных - в арктических пустынях и тундрах, наибольшее – в экваториальных лесах.

Растения на суше содержат более 99% всей биомассы суши, а животные и микроорганизмы – всего лишь менее 1%. В океане это соотношение обратное: растения составляют более 6%, а животные и микроорганизмы – около 94%. Суммарная биомасса океана составляет всего 0,13% биомассы всей биосферы, хотя океан и занимает площадь, равную 71%. Таким образом, открытый океан представляет собой, в сущности, водную пустыню.

Рассмотрим подробнее компоненты биосферы и их роль в географической оболочке Земли.

Микроорганизмы (микробы) – это мельчайшая из форм жизни и всепроникающая. Микробы были открыты в XVII в. А.Левенгуком. Различают следующие группы микробов:

а) по строению: одноклеточные организмы (водоросли, грибки, простейшие одноклеточные) – они имеют сравнительно крупную клетку сложного типа (эукариоты); бактерии – организмы более простые в структурном отношении (прокариоты);

б) по химическому признаку (источнику энергии для биохимических процессов): фотосинтезирующие микроорганизмы – используют в качестве источника энергии лучистую энергию Солнца и преобразуют углекислый газ в органический углерод (первичные производители); гетеротрофные микроорганизмы – получают энергию путем разложения молекул органического углерода (молекулярные хищники); фотосинтезирующие и гетеротрофные микроорганизмы играют огромную роль в географической оболочке: они поддерживают в постоянном движении имеющийся на Земле углерод;

в) по использованию кислорода: аэробные – потребляют кислород; анаэробные – не потребляют кислород.

Количество видов микроорганизмов огромно, и на Земле они распространены повсюду. Они разлагают органическое вещество, ассимилируют атмосферный азот и т.д.

Растения – одно из царств органического мира. Главное их отличие от других живых организмов – способность создавать органические вещества из неорганических, поэтому их называют автотрофами . При этом зеленые растения осуществляют фотосинтез – процесс преобразования солнечной энергии в органическое вещество. Растения – главный первичный источник пищи и энергии для всех других форм жизни на Земле.

Растения являются источником кислорода на Земле (экваториальные леса называют «легкими» нашей планеты). Растения считаются первичными продуцентами – производителями. Растения кормят все человечество, в конечном итоге являются источниками энергии и сырья. Растения защищают почву от эрозии, регулируют сток и газовый состав в атмосфере.

В настоящее время известно почти 400 тысяч видов растений, которые делятся на низшие и высшие. С середины XX в. из царства растений выделяют самостоятельное царство – грибы, которые раньше относили к низшим.

Из 40 тысяч видов растений на Земле 25 тысяч видов – покрытосеменные (цветковые). Самой богатой флорой на Земле является флора тропиков.

Животные – организмы, составляющие одно из царств органического мира. Животные являются гетеротрофами , т.е. питаются готовыми органическими соединениями. Почти все животные являются активно подвижными. На Земле существует более 1,7миллионов видов животных, из которых наибольшее число видов составляют насекомые (около 1 млн.)

Животные создают вторичную продукцию, оказывают влияние на растительный покров, на почву, разрушают и минерализируют органические вещества. Животные, как и растения, играют огромную роль в жизни человека.

Компонентом биосферы в определенном смысле может выступать и почва. Почва – верхний рыхлый плодородный слой земной коры, в котором распределены корни растений. Почва – это сложное образование, состоящее из двух основных частей: минеральной (разрушенные горные породы) и органической (гумус). Почвы покрывают тонким слоем – от 0 до 2 м – большую часть поверхности Земли.

Важным свойством почвы является ее плодородие, т.е. способность почвы производить растения. Почва является основой произрастания растений, обиталищем большого числа живых существ. Почвы регулируют водный баланс, оказывают влияние на формирование ландшафта. Известный русский почвовед В.В.Докучаев называл почвы «зеркалом ландшафта».

Почвы аккумулируют и преобразуют солнечную энергию. Почва – это основа сельскохозяйственного производства.

В биосфере непрерывно протекает биологический (малый) круговорот. Взаимодействие живых организмов с атмосферой, гидросферой, литосферой происходит посредством биологического круговорота веществ и энергии.

Биологический круговорот складывается из двух процессов:

– образование живого вещества из неживого за счет солнечной энергии;

– разложение и превращение органического вещества в простое минеральное (косное).

Первый процесс связан с фотосинтезом, осуществляемым зелеными растениями на суше и в океане (воде). В зеленом листе растения за счет солнечного света при участии хлорофилла из углекислого газа и воды образуется органическое вещество и выделяется свободный кислород. Кроме того, растения своей корневой системой поглощают из почвы растворимые минеральные вещества: соли азота, калия, кальция, серы, фосфора – и также превращают эти вещества в органические.

Разложение органического вещества происходит, главным образом под воздействием микроорганизмов. Микроорганизмы для своих жизненных процессов используют органическое вещество, и, хотя часть его идет на образование нового органического вещества (тело микроорганизма), значительная часть органического вещества при этом минерализуется, т.е. органическое вещество разлагается до простейших соединений.

Образование и разрушение органического вещества – противоположные, но неотделимые друг от друга процессы. Отсутствие одного из них неизбежно приведет к исчезновению жизни. Современная жизнь существует на Земле благодаря биологическому круговороту.

Благодаря биологическому круговороту живые организмы оказывают влияние на все оболочки Земли. Так, почти весь кислород в атмосфере Земли биогенного происхождения. Если прекратится процесс фотосинтеза, то свободный кислород быстро исчезнет.

Велика роль живых существ и в гидросфере. Организмы непрерывно потребляют и выделяют воду. Особенно интенсивен процесс транспирации (испарение воды растениями). Газовый и солевой состав вод океана также определяется деятельностью живых организмов. Воды суши становятся химически активными также в значительной степени под воздействием живых организмов.

Воздействием живых организмов на литосферу особенно глубоко и многообразно. Оно проявляется в разрушении горных пород (биологическое выветривание), в образовании органогенных пород: известняки, торф, бурый и каменный уголь, нефть, газ, горючие сланцы. Запасы накопленного в земной коре органического вещества огромны. Они во много раз превосходят живое органическое вещество. Железные, марганцевые руды, фосфориты тоже могут иметь биогенное происхождение. Их образование связано с деятельностью особых бактерий.

Только под воздействием живых организмов на Земле образовались почвы. Почвы считаются сложным биокосным образованием, которое формируется в процессе взаимодействия живого вещества с неживым. Основой для образования почв являются горные почвообразующие породы, а главным фактором почвообразования служат микроорганизмы и растения, в меньшей степени – почвенные животные.