Что такое дрейф генов. Дрейф генов

ДРЕЙФ ГЕНОВ, генетический дрейф (от голландского drijven - гнать, плавать), случайные колебания частоты аллелей гена в ряду поколений популяции с ограниченной численностью. Дрейф генов был установлен в 1931 году одновременно и независимо С. Райтом, предложившим этот термин, и российскими генетиками Д. Д. Ромашовым и Н. П. Дубининым, назвавшими такие колебания «генетико-автоматическими процессами». Причина дрейфа генов - вероятностный характер процесса оплодотворения на фоне ограниченного числа потомков. Величина колебаний частоты аллеля в каждом поколении обратно пропорциональна числу особей в популяции и прямо пропорциональна произведению частот аллелей гена. Такие параметры дрейфа генов теоретически должны приводить к сохранению в генофонде только одного из 2 или более аллелей гена, причём какой из них сохранится - событие вероятностное. Дрейф генов, как правило, снижает уровень генетической изменчивости и в малочисленных популяциях приводит к гомозиготности всех особей по одному аллелю; скорость этого процесса тем больше, чем меньше число особей в популяции. Эффект дрейфа генов, смоделированный на ЭВМ, подтверждён как экспериментально, так и в природных условиях на многих видах организмов, включая человека. Например, в самой малочисленной популяции эскимосов Гренландии (около 400 человек) абсолютное большинство представителей имеет группу крови 0 (I), то есть являются гомозиготными по аллелю I0, почти «вытеснившему» другие аллели. В 2 популяциях намного большей численности с существенной частотой представлены все аллели гена (I0, IA и IB) и все группы крови системы AB0. Дрейф генов в постоянно малочисленных популяциях нередко приводит к их вымиранию, что является причиной относительно кратковременного существования демов. В результате уменьшения резерва изменчивости такие популяции оказываются в неблагоприятной ситуации при изменении условий среды. Это обусловлено не только низким уровнем генетической изменчивости, но и наличием неблагоприятных аллелей, постоянно возникающих в результате мутаций. Уменьшение изменчивости отдельных популяций за счёт дрейфа генов может частично компенсироваться на уровне вида в целом. Так как в разных популяциях фиксируются разные аллели, генофонд вида остаётся разнообразным даже на низком уровне гетерозиготности каждой популяции. Кроме того, в небольших популяциях могут закрепляться аллели с малым адаптивным значением, которые, однако, при изменении среды будут определять приспособленность к новым условиям существования и обеспечивать сохранение вида. В целом дрейф генов является элементарным эволюционным фактором, вызывает длительные и направленные изменения генофонда, хотя сам по себе и не имеет приспособительного характера. Случайные изменения частот аллелей происходят и при резком однократном снижении популяционной численности (в результате катастрофических событий или миграции части популяции). Это не является дрейфом генов и обозначается как «эффект горлышка бутылки» или «эффект основателя». У человека такие эффекты лежат в основе повышенной встречаемости отдельных наследственных болезней в некоторых популяциях и этнических группах.

Лит.: Кайданов Л.З. Генетика популяций. М., 1996.

Обусловленное случайными статистическими причинами.

Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток - гамет . Большая часть этих гамет не формирует зигот . Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.

Дрейф генов на примере

Механизм дрейфа генов может быть продемонстрирован на небольшом примере. Представим очень большую колонию бактерий, находящуюся изолированно в капле раствора. Бактерии генетически идентичны за исключением одного гена с двумя аллелями A и B . Аллель A присутствует у одной половины бактерий, аллель B - у другой. Поэтому частота аллелей A и B равна 1/2. A и B - нейтральные аллели, они не влияют на выживаемость или размножение бактерий. Таким образом, все бактерии в колонии имеют одинаковые шансы на выживание и размножение.

Затем размер капли уменьшаем таким образом, чтобы питания хватало лишь для 4 бактерий. Все остальные умирают без размножения. Среди четырёх выживших возможно 16 комбинаций для аллелей A и B :

(A-A-A-A), (B-A-A-A), (A-B-A-A), (B-B-A-A),
(A-A-B-A), (B-A-B-A), (A-B-B-A), (B-B-B-A),
(A-A-A-B), (B-A-A-B), (A-B-A-B), (B-B-A-B),
(A-A-B-B), (B-A-B-B), (A-B-B-B), (B-B-B-B).

Вероятность каждой из комбинаций

где 1/2 (вероятность аллеля A или B для каждой выжившей бактерии) перемножается 4 раза (общий размер результирующей популяции выживших бактерий)

Если сгруппировать варианты по числу аллелей, то получится следующая таблица:

Как видно из таблицы, в шести вариантах из 16 в колонии будет одинаковое количество аллелей A и B . Вероятность такого события 6/16. Вероятность всех прочих вариантов, где количество аллелей A и B неодинаково несколько выше и составляет 10/16.

Дрейф генов происходит при изменении частот аллелей в популяции из-за случайных событий. В данном примере популяция бактерий сократилась до 4 выживших (эффект бутылочного горлышка). Сначала колония имела одинаковые частоты аллелей A и B , но шансы, что частоты изменятся (колония подвергнется дрейфу генов) выше, чем шансы на сохранение оригинальной частоты аллелей. Также существует высокая вероятность (2/16), что в результате дрейфа генов один аллель будет утрачен полностью.

Экспериментальное доказательство С. Райта

С. Райт экспериментально доказал, что в маленьких популяциях частота мутантного аллеля меняется быстро и случайным образом. Его опыт был прост: в пробирки с кормом он посадил по две самки и по два самца мух дрозофил, гетерозиготных по гену А (их генотип можно записать Аа). В этих искусственно созданных популяциях концентрация нормального (А) и мутационного (а) аллелей составила 50 %. Через несколько поколений оказалось, что в некоторых популяциях все особи стали гомозиготными по мутантному аллелю (а), в других популяциях он был вовсе утрачен, и, наконец, часть популяций содержала как нормальный, так и мутантный аллель. Важно подчеркнуть, что, несмотря на снижение жизнеспособности мутантных особей и, следовательно, вопреки естественному отбору, в некоторых популяциях мутантный аллель полностью вытеснил нормальный. Это и есть результат случайного процесса - дрейфа генов .

Литература

  • Воронцов Н.Н., Сухорукова Л.Н. Эволюция органического мира. - М .: Наука, 1996. - С. 93-96. - ISBN 5-02-006043-7
  • Грин Н., Стаут У., Тейлор Д. Биология. В 3 томах. Том 2. - М .: Мир, 1996. - С. 287-288. - ISBN 5-03-001602-3

ДРЕЙФ ГЕНОВ

Иногда эта концепция называется «эффект Сьюэлла - Райта», в честь предложивших ее двух популяционных генетиков. После того как Мендель доказал, что гены являются единицами наследственности, а Харди и Вайнберг продемонстрировали механизм их поведения, биологи поняли, что эволюция признаков может происходить не только посредством естественного отбора, но и случайно. Дрейф генов зависит от того, что изменение частоты аллелей в малых популяциях обусловлено исключительно случаем. Если число скрещиваний невелико, тогда реальное соотношение различных аллелей гена может сильно отличаться от рассчитанного на основе теоретической модели. Дрейф генов - это один из факторов, нарушающих равновесие Харди - Вайнберга.

На большие популяции со случайным скрещиванием огромное воздействие оказывает естественный отбор. В этих группах отбираются особи с адаптивными признаками, а другие безжалостно отсеиваются, и популяция методом естественного отбора становится более приспособленной к окружающей среде. В малых популяциях идут другие процессы и на них влияют другие факторы. Например, в малых популяциях велика вероятность случайного изменения частоты генов. Такие изменения не вызваны естественным отбором. Понятие дрейфа генов очень важно для малых популяций, поскольку они имеют малый генофонд. Это значит, что случайное исчезновение или появление аллеля гена у потомства приведет к значительным изменениям в генофонде. В больших популяциях такие колебания не приводят к заметным результатам, поскольку уравновешиваются большим числом скрещиваний и притоком генов со стороны других особей. В малых популяциях случайные события могут привести к эффекту «бутылочного горлышка».

Согласно определению, под дрейфом генов понимают случайные изменения генных частот, вызванные малой численностью популяции и нечастым скрещиванием. Дрейф генов наблюдается среди малых популяций, например, у островных переселенцев, у коала или больших панд.

См. также статьи «Эффект "бутылочного горлышка"», «Равновесие Харди - Вайнберга», «Менделизм», «Естественный отбор».

Из книги ЧЕЛОВЕК - ты, я и первозданный автора Линдблад Ян

Глава 10 Следы, оставленные три с половиной миллиона лет назад! Дарт, Брум и современные исследователи. Дрейф континентов. Поименный список гоминидов. Люси и ее сородичи. Столь длительная сохранность доисторических следов у Лаетоли – случай фантастический, но не

Из книги Генетика окрасов собак автора Робинсон Рой

СРАВНИТЕЛЬНАЯ СИМВОЛИКА ГЕНОВ Читатели, которые интересуются литературой по генетике, рано или поздно сталкиваются с проблемой путаницы в обозначениях генов. Дело в том, что различные авторы пользуются различными символами для обозначения одного и того же гена. Это

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Из книги Эволюция автора Дженкинс Мортон

ДРЕЙФ МАТЕРИКОВ В 1912 году немецкий ученый Альфред Вегенер предположил, что около 200 миллионов лет назад все материки Земли составляли единый массив суши, который он назвал Пангеей. В последующие 200 миллионов лет Пангея разделилась на несколько материков, которые стали

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Из книги Эволюция [Классические идеи в свете новых открытий] автора

Нейтральные мутации и генетический дрейф - движение без правил Ландшафт приспособленности - образ яркий и полезный, но, как и всякая модель, он несовершенен. Многие аспекты эволюционного процесса с его помощью отразить трудно или невозможно. Реальный ландшафт

Из книги Удивительная палеонтология [История земли и жизни на ней] автора Еськов Кирилл Юрьевич

Дрейф и отбор: кто кого? Генетический дрейф царствует над нейтральными мутациями (аллелями), отбор - над полезными и вредными. Отбор, повышающий частоту полезных мутаций, называют положительным. Отбор, отбраковывающий вредные мутации, - отрицательным, или

Из книги Гены и развитие организма автора Нейфах Александр Александрович

Дупликация генов МНОГОФУНКЦИОНАЛЬНЫЕ ГЕНЫ - ОСНОВА ЭВОЛЮЦИОННЫХ НОВШЕСТВ.Мысль о том, что дупликация генов служит важнейшим источником эволюционных новшеств, была высказана еще в 1930-е годы выдающимся биологом Джоном Холдейном (Haldane, 1933). Сегодня в этом нет никаких

Из книги Эволюция человека. Книга 1. Обезьяны, кости и гены автора Марков Александр Владимирович

ГЛАВА 3 Эволюция земной коры. Дрейф континентов и спрединг океанического дна. Мантийная конвекция Горные породы, формирующие кору Земли, как мы помним, бывают изверженные - первичные, образовавшиеся при охлаждении и затвердевании магмы, и осадочные - вторичные,

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

1. Промоторы генов В этом разделе мы кратко расскажем о том, какие нуклеотидные последовательности, прилегающие к генам, а иногда и внутри гена, ответственны за процесс транскрипции. У прокариот эти участки, с которыми связывается молекула РНК-полимеразы и откуда

Из книги Коннектом. Как мозг делает нас тем, что мы есть автора Сеунг Себастьян

Изменения активности генов Эволюция животных в целом и приматов в частности протекает не столько за счет изменения структуры белок-кодирующих генов, сколько за счет изменения их активности. Небольшое изменение в верхних этажах иерархически организованных

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора Курчанов Николай Анатольевич

В поисках "генов доброты" Мы уже знаем, что, если закапать человеку в нос окситоцин, у него повышаются доверчивость и щедрость. Еще мы знаем, что эти черты характера являются отчасти наследственными. Исходя их этих фактов, естественно предположить, что те или иные варианты

Из книги автора

Глава 6. Разведение генов …воспитывавшихся в разных приемных семьях. Bouchard et al., 1990.…чем у изучавшихся пар людей, выбранных случайным образом. Строго говоря, корректное сравнение следует проводить с двумя представителями различных пар однояйцевых близнецов, выросших

Из книги автора

4.3. Взаимодействие генов В организме одновременно функционирует множество генов. В процессах реализации генетической информации в признак возможны многочисленные «пункты» взаимодействия разных генов на уровне биохимических реакций. Такие взаимодействия неизбежно

Из книги автора

7.1. Выделение генов Возможно использование нескольких путей выделения генов. Каждый из них имеет свои достоинства и недостатки.Химический синтез генов, т. е. синтез нуклеотидов с заданной последовательностью, соответствующей одному гену, впервые был осуществлен в

Из книги автора

8.4. Эволюция генов и геномов Анализ структуры и изменчивости генетического материала служит основой для различных теорий эволюции гена как элементарного носителя генетической информации. Какова была исходная организация гена? Или, другими словами, обусловлены ли




Никола́й Петро́вич Дуби́нин Областью научных интересов Н. П. Дубинина была общая и эволюционная генетика, а также применение генетики в сельском хозяйстве. эволюционная генетика Вместе с А. С. Серебровским показал дробимость гена, а также явление комплементарности гена.А. С. Серебровскимгена комплементарности Опубликовал ряд важных научных работ по структуре и функциям хромосом, показал наличие в популяциях генетического груза летальных и сублетальных мутаций.хромосом генетического груза мутаций Также работал в области космической генетики, над проблемами радиационной генетики.радиационной


Дрейф генов как фактор эволюции Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого. В разных популяциях гены «дрейфуют» независимо. Таким образом, дрейф генов ведет с одной стороны к уменьшению генетического разнообразия внутри популяций, а с другой стороны - к увеличению различий между популяциями, к их дивергенции по ряду признаков. Эта дивергенция в свою очередь может служить основой для видообразования.


Дрейф генов как фактор эволюции При высокой интенсивности отбора и высокой численности популяций влияние случайных процессов на динамику частот генов в популяциях становится пренебрежимо малым. Наоборот, в малых популяциях при небольших различиях по приспособленности между генотипами дрейф генов приобретает решающее значение. В таких ситуациях менее адаптивный аллель может зафиксироваться в популяции, а более адаптивный может быть утрачен. Аллель, утраченный в результате дрейфа, может возникать вновь и вновь за счет мутирования. Поскольку дрейф генов – ненаправленный процесс, то одновременно с уменьшением разнообразия внутри популяций, он увеличивает различия между локальными популяциями. Этому противодействует миграция. Если в одной популяции зафиксирован аллель А, а в другой а, то миграция особей между этими популяциями приводит к тому, что внутри обеих популяций вновь возникает аллельное разнообразие.


Популяционные волны и дрейф генов Численность популяций редко остается постоянной во времени. За подъемами численности следуют спады. С.С.Четвериков одним из первых обратил внимание на периодические колебания численности природных популяций, популяционные волны играют очень важную роль в эволюции популяций.


Серге́й Серге́евич Четверико́в () выдающийся русский биолог, генетик- эволюционист, сделавший первые шаги в направлении синтеза менделевской генетики и эволюционной теории Ч. Дарвина. Он раньше других ученых организовал экспериментальное изучение наследственных свойств у естественных популяций животных. Эти исследования позволили ему стать основоположником современной эволюционной генетики генетик эволюционист


Популяционные волны и дрейф генов В периоды резкого спада численности роль дрейфа генов сильно возрастает. В такие моменты он может становиться решающим фактором эволюции. В период спада частота определенных аллелей может резко и непредсказуемо меняться. Может происходить утеря тех или иных аллелей и резкое обеднение генетического разнообразия популяций. Потом, когда численность популяции начинает возрастать, популяция будет из поколения в поколение воспроизводить ту генетическую структуру, которая установилась в момент прохождения через «бутылочное горлышко» численности.



Эффект бутылочного горлышка в реальных популяциях Пример: Ситуация с гепардами – представителями кошачьих. Ученые обнаружили, что генетическая структура всех современных популяций гепардов очень сходна. При этом генетическая изменчивость внутри каждой из популяций крайне низка. Эти особенности генетической структуры популяций гепардов можно объяснить, если предположить, что относительно недавно данный вид прошел через очень узкое горлышко численности, и все современные гепарды являются потомками нескольких (по подсчетам американских исследователей, 7) особей.


Современный пример действия эффекта бутылочного горлышка популяция сайгака. Численность антилопы сайгак сократилась на 95 % от приблизительно 1 миллиона в 1990 году до менее чем в 2004, главным образом по причинам браконьерства для нужд традиционной китайской медицинысайгака сайгак1990 году 2004


Год Популяция американского бизона до особей особей особей


Эффект основателя Животные и растения, как правило, проникают на новые для вида территории относительно малыми группами. Частоты аллелей таких группах могут значительно отличаться от частот этих аллелей в исходных популяциях. За вселением на новую территорию следует увеличение численности колонистов. Возникающие многочисленные популяции воспроизводит генетическую структуру их основателей. Это явление американский зоолог Эрнст Майр, один их основоположников синтетической теории эволюции, назвал эффектом основателя.


Ясно, что основатели представляли собой очень маленькие выборки из родительских популяций и частоты аллелей в этих выборках могли сильно отличаться. Именно эффект основателя объясняет удивительно разнообразие океанических фаун и флор и обилие эндемичных видов на островах. Эффект основателя сыграл важную роль и в эволюции человеческих популяций. Обратите внимание, что аллель В (по системе групп крови АВ0) полностью отсутствует у американских индейцев и у аборигенов Австралии. Эти континенты были заселены небольшими группами людей. В силу чисто случайных причин среди основателей этих популяций могло не оказаться ни одного носителя аллеля В. Естественно, этот аллелей отсутствует и в производных популяциях.





Дрейф генов и молекулярные часы эволюции Конечным результатом дрейфа генов является полное устранение одного аллеля из популяции и закрепление (фиксация) в ней другого аллеля. Чем чаще тот или иной аллель встречается в популяции, тем выше вероятность его фиксации вследствие дрейфа генов. Расчеты показывают, что вероятность фиксации нейтрального аллеля равна его частоте в популяции.


Закономерность Большие популяции недолго «ждут» мутационного возникновения нового аллеля, но долго его фиксируют. Малые популяции очень долго «ждут» возникновения мутации, но после того, как она возникла, она может быть быстро зафиксирована. Из этого следует парадоксальный на первый взгляд вывод: вероятность фиксации нейтральных аллелей зависит только от частоты их мутационного возникновения и не зависит от численности популяций.


Закономерность Чем больше времени прошло с момента выделения двух видов из общего предкового вида, тем больше нейтральных мутационных замен различают эти виды. На этом принципе строится метод «молекулярных часов эволюции» - определения времени, прошедшего с момента, когда предки разных систематических групп стали эволюционировать независимо друг от друга.


Закономерность Американские исследователи Э. Цукуркендл и Л.Поллинг впервые обнаружили, что количество различий в последовательности аминокислот в гемоглобине и цитохроме с у разных видов млекопитающих тем больше, чем раньше разошлись их эволюционные пути.


ДОПОЛНИТЕЛЬНЫЕ ЭЛЕМЕНТАРНЫЕ ЭВОЛЮЦИОННЫЕ ФАКТОРЫ

Дрейф генов . Случайные ненаправленные изменения частот аллелей в популяциях называются дрейфом генов в широком смысле этого слова.

Дрейфом генов в узком смысле слова Сьюэлл Райт назвал случайное изменение частоты аллелей при смене поколений в малых изолированных популяциях. В малых популяциях велика роль отдельных особей. Случайная гибель одной особи может привести к значительному изменению аллелофонда. Чем меньше популяция, тем больше вероятность флуктуации – случайного изменения частот аллелей. В сверхмалых популяциях по совершенно случайным причинам мутантный аллель может занять место нормального аллеля, т.е. происходит случайная фиксация мутантного аллеля.

В отечественной биологии случайное изменение частоты аллеля в сверхмалых популяциях некоторое время называли генетико-автоматическими (Н.П. Дубинин) или стохастическими процессами (А.С. Серебровский). Эти процессы были открыты и изучались независимо от С. Райта.

Дрейф генов доказан в лабораторных условиях. Например, в одном из С. Райта опытов с дрозофилой было заложено 108 микропопуляций – по 8 пар мушек в пробирке. Начальные частоты нормального и мутантного аллелей были равны 0,5. В течение 17 поколений случайным образом в каждой микропопуляции оставляли 8 пар мушек. По окончании эксперимента оказалось, что в большинстве пробирок сохранился только нормальный аллель, в 10 пробирках – оба аллеля, а в 3 пробирках произошла фиксация мутантного аллеля.

В природных популяциях наличие дрейфа генов до сих пор не доказано. Поэтому разные эволюционисты по-разному оценивают вклад дрейфа генов в общий процесс эволюции.

Дрейф генов связан с утратой части аллелей и общим снижением уровня биоразнообразия. Следовательно, должны существовать механизмы, компенсирующие действие дрейфа генов.

Частным случаем дрейфа генов является эффект генетической воронки (или эффект «бутылочного горлышка») – изменение частот аллелей в популяции при снижении ее численности.

Эффект генетической воронки достигается за счет множества дополнительных ЭЭФ.

1. Популяционные волны . Обеспечивают проявление эффекта генетической воронки во времени.

Популяционными волнами (волнами жизни, волнами численности) называют колебания численности природных популяций. Различают следующие типы популяционных волн:

1. Апериодические с высокой амплитудой. Характерны для некоторых организмов с высокой скоростью размножения в благоприятных условиях и высокой смертностью в неблагоприятных условиях (r –стратегия). Например, у майского жука в течение 5 лет численность популяции может изменяться в 1 миллион раз!

2. Апериодические и периодические с низкой амплитудой. Характерны для некоторых организмов с низкой скоростью размножения и низкой смертностью независимо от условий (К –стратегия).

3. Периодические с высокой амплитудой. Встречаются у самых разнообразных организмов. Часто носят периодический характер, например, в системе «хищник–жертва». Могут быть связаны с экзогенными ритмами. Именно этот тип популяционных волн играет наибольшую роль в эволюции.

Историческая справка .

Выражение «волны жизни» («Wave of life»), вероятно, употребил впервые исследователь южноамериканских пампасов Хэдсон (W.H. Hudson, 1872–1873). Хэдсон отметил, что в благоприятных условиях (свет, частые ливни) сохранилась обыкновенно выгорающая растительность; обилие цветов породило обилие шмелей, затем мышей, а затем и птиц, кормившихся мышами (в т.ч., кукушек, аистов, болотных сов). С.С. Четвериков обратил внимание на волны жизни, отметив появление в 1903 г. в Московской губернии некоторых видов бабочек, не обнаруживаемых там на протяжении 30…50 лет. Перед этим, в 1897 г. и несколько позже, отмечалось массовое появление непарного шелкопряда, оголившего громадные площади лесов и нанесшего существенный вред плодовым садам. В 1901 г. отмечалось появление в значительном количестве бабочки–адмирала. Результаты своих наблюдений он изложил в кратком очерке «Волны жизни» (1905).

Если в период максимальной численности популяции (например, миллион особей) появится мутация с частотой 10 –6 , то вероятность ее фенотипического проявления составит 10 –12 . Если в период спада численности до 1000 особей носитель этой мутации совершенно случайно выживет, то частота мутантного аллеля возрастет до 10 –3 . Эта же частота сохранится и в период последующего подъема численности, тогда вероятность фенотипического проявления мутации составит 10 –6 .

2. Изоляция . Обеспечивает проявление эффекта генетической воронки в пространстве.

В большой популяции (например, с численностью миллион диплоидных особей) частота мутации порядка 10 –6 означает, что примерно одна из миллиона особей является носителями нового мутантного аллеля. Соответственно, вероятность фенотипического проявления этого аллеля в диплоидной рецессивной гомозиготе составляет 10 –12 (одна триллионная).

Если эту популяцию разбить на 1000 малых изолированных популяций по 1000 особей, то в одной из изолированных популяций наверняка окажется один мутантный аллель, и его частота составит 0,001. Вероятность его фенотипического проявления в ближайших последующих поколениях составит (10 –3) 2 =10 –6 (одна миллионная). В сверхмалых популяциях (десятки особей) вероятность проявления мутантного аллеля в фенотипе возрастает до (10 –2) 2 =10 –4 (одна десятитысячная).

Таким образом, лишь за счет изоляции малых и сверхмалых популяций шансы на фенотипическое проявление мутации в ближайших поколениях возрастут в тысячи раз. В то же время, трудно предположить, чтобы в разных малых популяциях совершенно случайно проявился в фенотипе один и тот же мутантный аллель. Скорее всего, каждая малая популяция будет характеризоваться высокой частотой одного или немногих мутантных аллелей: или a , или b , или c и т.д.