Изучение явления эми лабораторная работа. Изучение явления электромагнитной индукции

Государственное бюджетное профессиональное общеобразовательное учреждение

«Невинномысский энергетический техникум»

Методическая разработка открытого занятия по дисциплине «Математика»

Тема занятия :

Уравнения, приводящиеся к квадратным

уравнениям.

Преподаватель математики:

Скрыльникова Валентина Евгеньевна

Невинномысск 2016 год.

Цели урока: Слайд №2

Обучающие: способствовать организации деятельности учащихся по восприятию,

осмыслению и первичному запоминанию новых знаний (метод введения новой переменной, определение биквадратного уравнения) и способов

действий (научить решать уравнения методом введения новой

переменной), помочь учащимся осознать социальную и личностную

значимость учебного материала;

Развивающие: способствовать повышению вычислительной способности учащихся;

развитию устной математической речи; создать условия для

формирования навыков самоконтроля и взаимоконтроля,

алгоритмической культуры учащихся;

Воспитательные: способствовать воспитанию доброжелательного отношения

друг к другу.

Тип урока: изучение нового материала,.

Методы: словесный, наглядный, практический, поисковый

Формы работы : индивидуальная, парная, коллективная

Оборудование: интерактивная доска, презентация

Ход урока.

I. Организационный момент.

Отметить отсутствующих, проверить готовность класса к уроку.

Преподаватель: Ребята, мы начинаем изучение новой темы. Тему урока пока не записываем, вы ее сформулируете сами чуть попозже. Скажу лишь, что речь пойдет об уравнениях.

Слайд № 3.

Посредством уравнений, теорем

Он уйму всяких разрешил проблем.

И засуху предсказал, и ливни –

Поистине его познанья дивны.

Госер.

Вы, ребята, уже решили не один десяток уравнений, Задачи с помощью уравнений можете решать. С помощью уравнений можно описать различные явления в природе, физические, химические явления, даже рост населения в стране описывается уравнением. Сегодня на уроке мы с вами познаем еще одну истину, истину, касающуюся метода решения уравнений.

II. Актуализация знаний.

Но для начала, давайте вспомним:

Вопросы: Слайд4

    Какие уравнения называются квадратными? (Уравнение вида, где х – переменная, - некоторые числа, причем а≠0.)

    Среди данных уравнений выберите те, которые являются квадратными?

1) 4х – 5 = х + 11

2) х 2 +2х = 3

3) 2х + 6х 2 = 0

4) 2х 3 – х 2 – 4 = 8

5) 4х 2 – 1х + 7 = 0 Ответ:(2,3,5)

    Какие уравнения называются неполными квадратными уравнениями? (Уравнения, в которых хотя бы один из коэффициентов в или с равен 0.)

Среди данных уравнений выберите те, которые являются неполными квадратными уравнениями.(3)

Тест-прогноз

1) 3х-5х 2 +2=0

2) 2х 2 +4х-6=0

3) 8х 2 -16=0

4) х 2 -4х+10=0

5) 4х 2 +2х=0

6) –2х 2 +2=0

7) -7х 2 =0

8) 15-4х 2 +3х=0

1вариант

1) Выпишите номера полных квадратных уравнений.

2) Выпишите коэффициенты а, в, с в уравнении 8.

3) Выпишите номер неполного квадратного уравнения, имеющего один корень.

4) Выпишите коэффициенты а, в, с в уравнении 6.

5) Найдите Д в уравнении 4 и сделайте вывод о количестве корней.

2вариант

1)Выпишите номера неполных квадратных уравнений.

2)Выпишите коэффициенты а, в, с в уравнении 1.

3)Выпишите номер неполного квадратного уравнения, имеющего один корень 0.

4)Выпишите коэффициенты а, в, с в уравнении 3.

5)Найдите Д в уравнении 3и сделайте вывод о количестве корней.


Учащиеся меняются тетрадями, выполняют взаимопроверку и выставляют оценки.

1в.

    1,2,4,8

    а=-4, в=3,с=15

    а=-2, в=0,с=2

    24, Д<0, корней нет

2в.

    3,5,6,7

    а=-5, в=3,с=2

    а=8, в=0,с=-16

    Д>0, 2корня.


Игра «Угадай слово».

А теперь вы должны угадать слово, которое записано на доске. Для этого вам необходимо решить уравнения и найти для них правильные ответы. Каждому ответу соответствует буква, а каждой букве соответствует номер карточки и номер в таблице которому соответствует данная буква. На доске изображены таблица №1 полностью и таблица, №2 в которой, записаны только цифры, буквы по мере решения примеров вписывает преподаватель. Преподаватель раздает карточки с квадратными уравнениями каждому студенту. Каждая карточка пронумерована. Студент решает квадратное уравнение и получает ответ -21. В таблице находит свой ответ и узнает, какая буква соответствует его ответу. Это буква А. Затем говорит преподавателю, какая у него буква и называет номер карточки. Номер карточки соответствует месту буквы в таблице №2. Например ответ -21 буква А номер карточки 5. Преподаватель в таблице №2 под цифрой 5 записывает букву А и т.д. пока выражение не будет полностью записано.

    х 2 -5х+6=0 (2;3) Б

    х 2 -2х-15=0 (-3;5) И

    х 2 +6х+8=0 (-4;-2) К

    х 2 -3х-18=0 (-3;6) В

    х 2- 42х+441=0 -21 А

    х 2 +8х+7=0 (-7;-1) Д

    х 2 -34х+289=0 17 Р

    х 2 -42х+441=0 -21 А

    х 2 +4х-5=0 (-5;1) Т

    2 +3х+1=0 (-1;-) Н

    2 -3х+4=0 Корней нет О

    2 -8х+3=0 (;1) Е

    х 2 -8х+15=0 (3;5) У

    х 2 -34х+289=0 17 Р

    х 2 -42х+441=0 -21 А

    х 2 -3х-18=0 (-3;6) В

    2 +3х+1=0 (-1;-) Н

    2 -8х+3=0 (;1) Е

    2 +3х+1=0 (-1;-) Н

    х 2 -2х-15=0 (-3;5) И

    2 -8х+3=0 (;1) Е

Таблица 1.

(;1)

(-3;5)

(-4;-2)

(-1;-)

Корней нет

(-5;1)

(3;5)

Соответствующая ему буква

Таблица 2

Итак, мы с вами таким образом сформулировали тему сегодняшнего занятия.

«Биквадратное уравнение.»

III. Изучение нового материала

Вы уже знаете способы решения квадратных уравнений различных видов. Сегодня на уроке мы переходим к рассмотрению уравнений, приводящихся к решению квадратных уравнений. Одним из таких видов уравнений является биквадратное уравнение.

Опр. Уравнения вид ax 4 +bx 2 +c= 0 , где а 0, называется биквадратным уравнением .

БИКВАДРАТНЫЕ УРАВНЕНИЯ – от би – два и латинского quadratus – квадратный, т.е. дважды квадратные.

Пример 1. Решим уравнение

Решение. Решение биквадратных уравнений приводится к решению квадратных уравнений подстановкой у = х 2 .

Для нахождения х возвращаемся к замене:

x 1 = 1; x 2 = -1 x 3 =; x 4 = - Ответ:-1; -1

Из рассмотренного примера видно, что для приведения уравнения четвертой степени к квадратному ввели другую переменную - у . Такой метод решения уравнений называют методом введения новых переменных.

Для решения уравнений, приводящихся к решению квадратных уравнений методом введения новой переменной, можно составить следующий алгоритм:

1) Ввести замену переменной: пусть х 2 = у

2) Составить квадратное уравнение с новой переменной: ау 2 + ву + с = 0

3) Решить новое квадратное уравнение

4) Вернуться к замене переменной

5) Решить получившиеся квадратные уравнения

6) Сделать вывод о числе решений биквадратного уравнения

7) Записать ответ

Решение не только биквадратных, но и некоторых других видов уравнений сводится к решению квадратных уравнений.

Пример 2. Решим уравнение

Решение. Введем новую переменную

корней нет.

Корней нет

Ответ: -

IV. Первичное закрепление

Мы с вами учились вводить новую переменную, вы устали, поэтому немного отдохнем.

Физминутка

1. Зажмурить глаза. Открыть глаза (5 раз).

2. Круговые движения глазами. Головой не вращать (10 раз).

3. Не поворачивая головы, отвести глаза как можно дальше влево. Не моргать. Посмотреть прямо. Несколько раз моргнуть. Закрыть глаза и отдохнуть. То же самое вправо (2-3 раза).

4. Смотреть на какой-либо предмет, находящийся перед собой, и поворачивать голову вправо и влево, не отрывая взгляда от этого предмета (2-3 раза).

5. Смотреть в окно вдаль в течение 1 минуты.

6. Поморгать 10-15 с.

Отдохнуть, закрыв глаза.

Итак, мы открыли новый метод решения уравнений, однако успешность решения уравнений этим методом зависит от правильности составления уравнения с новой переменной, давайте остановимся на этом этапе решения уравнений более подробно. Научимся вводить новую переменную и составлять новое уравнение, карточка № 1

Карточка у каждого ученика

КАРТОЧКА № 1

Запишите уравнение, полученное в результате введения новой переменной

х 4 -13х 2 +36=0

пусть у= ,

тогда

х 4 +3х 2 -28 = 0

пусть у=

тогда

(3х–5) 2 – 4(3х–5)=12

пусть у=

тогда

(6х+1) 2 +2(6х+1) –24=0

пусть у=

тогда

х 4 – 25х 2 + 144 = 0

пусть у=

тогда

16х 4 – 8х 2 + 1 = 0

пусть у=

тогда

Проверка знаний:

х 4 -13х 2 +36=0

пусть у= х 2 ,

тогда у 2 -13у+36=0

х 4 +3х 2 -28 = 0

пусть у=х 2 ,

тогда у 2 +3у-28=0

(3х–5) 2 – 4(3х–5)=12

пусть у=3х-5,

тогда у 2 -4у-12=0

(6х+1) 2 +2(6х+1) –24=0

пусть у= 6х+1,

тогда у 2 +2у-24=0

х 4 – 25х 2 + 144 = 0

пусть у= х 2 ,

тогда у 2 -25у+144=0

16х 4 – 8х 2 + 1 = 0

пусть у= х 2 ,

тогда 16у 2 -8у+1=0

Решение примеров у доски:

    1. (t 2 -2 t ) 2 -2(t 2 -2 t )-3=0 Ответ: -1;1;3.

      (2х 2 +х-1)(2х 2 +х-4)=40 Ответ: -3;2

Самостоятельная работа:

Вариант 1 Вариант 2

1)х 4 -5х 2 -36=0 1) х 4 -6х 2 +8=0

2)(2х 2 +3) 2 -12(2х 2 +3)+11=0 2) (х 2 +3) 2 -11(х 2 +3)+28=0

Ответы:

Вариант 1 Вариант 2

1) -3;3 1) -;-2;2

2) -2;2 2) -1;1;-2;2.

V. Итоги урока

Чтобы подвести итог урока, сделать выводы, что удалось или не удалось прошу закончить предложения на листах.

- Было интересно, потому что..

- Я бы хотел(а) похвалить себя за то, что…

- Урок я бы оценил(а) на…

VI. Домашнее задание :

    (2х 2 +х-1)(2х 2 +х-4)+2=0

    2 -4х) 2 +9(х 2 -4х)+20=0

    2 +х)(х 2 +х-5)=84

План занятия

Тема занятия: Лабораторная работа: «Изучение явления электромагнитной индукции»

Вид занятия - смешанный.

Тип занятия комбинированный.

Учебные цели занятия : изучить явление электромагнитной индукции

Задачи занятия :

Образовательная: изучить явление электромагнитной индукции

Развивающие. Развивать умение наблюдать, формировать представление о процессе научного познания.

Воспитательная. Развивать познавательный интерес к предмету, вырабатывать умение слушать и быть услышанным.

Планируемые образовательные результаты: способствовать усилению практической направленности в обучении физики, формировании умений применять полученные знания в различных ситуациях.

Личностные: с пособствовать эмоциональному восприятию физических объектов, умению слушать, ясно и точно излагать свои мысли, развивать инициативу и активность при решении физических задач, формировать умение работать в группах.

Метапредметные: р азвивать умение понимать и использовать средства наглядности (чертежи, модели, схемы). Развитие понимания сущности алгоритмических предписаний и умений действовать в соответствии с предлагаемым алгоритмом.

Предметные: о владеть физическим языком, умением распознавать соединения параллельные и последовательные, умение ориентироваться в электрической схеме, собирать схемы. Умение обобщать и делать выводы.

Ход занятия:

1. Организация начала урока (отметка отсутствующих, проверка готовности студентов к уроку, ответы на вопросы студентов по домашнему заданию) - 2-5 мин.

Преподаватель сообщает учащимся тему урока, формулирует цели урока и знакомит учащихся с планом урока. Учащиеся записывают тему урока в тетради. Преподаватель создает условия для мотивации учебной деятельности.

Освоение нового материала:

Теория. Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих контур, меняется.

Магнитное поле в каждой точке пространства характеризуется вектором магнитной индукции В. Пусть замкнутый проводник (контур) помещаем в однородное магнитное поле (см. рис.1.)

Рисунок.1.

Нормаль к плоскости проводника составляет угол с направлением вектора магнитной индукции .

Магнитным потоком Ф через поверхность площадью S называется величина, равная произведению модуля вектора магнитной индукции В на площадь S и косинус угла между векторами и .

Ф=В S cos α (1)

Направление индуктивного тока, возникающего в замкнутом контуре при изменении магнитного потока через него определяется правилом Ленца: возникающий в замкнутом контуре индуктивный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Применять правило Ленца надо так:

1. Установить направление линий магнитной индукции В внешнего магнитного поля.

2. Выяснить, увеличивается ли поток магнитной индукции этого поля через поверхность, ограниченную контуром (Ф 0), или уменьшается ( Ф 0).

3. Установить направление линий магнитной индукции В" магнитного поля

индуктивного тока I пользуясь правилом буравчика.

При изменении магнитного потока через поверхность, ограниченную контуром, в последнем появляются сторонние силы, действие которых характеризуется ЭДС, называемые ЭДС индукции.

Согласно закону электромагнитной индукции, ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Приборы и оборудование: гальванометр, источник питания, катушки с сердечником, дугообразный магнит, ключ, соединительные провода, реостат.

Порядок выполнения работы:

1. Получение индукционного тока. Для этого нужно:

1.1. Используя рисунок 1.1., собрать схему, состоящую из 2х катушек, одна из которых подключается к источнику постоянного тока через реостат и ключ, а вторая располагаясь над первой, подключена к чувствительному гальванометру. (см. рис. 1.1.)

Рисунок 1.1.

1.2. Замкнуть и разомкнуть цепь.

1.3. Убедиться в том, что индукционный ток возникает в одной из катушек в момент замыкания электрической цепи катушки, неподвижной относительно первой, при этом наблюдая направление отклонения стрелки гальванометра.

1.4. Привести в движение катушку, соединенную с гальванометром, относительно катушки, подключенной к источнику постоянного тока.

1.5. Убедиться в том, что гальванометр обнаруживает возникновения электрического тока во второй катушке при всяком ее перемещении, при этом направление стрелки гальвонометра будет изменяться.

1.6. Выполнить опыт с катушкой соединенной с гальванометром (см. рис. 1.2.)

Рисунок 1.2.

1.7. Убедиться в том, что индукционный ток возникает при движении постоянного магнита относительно катушки.

1.8. Сделать вывод о причине возникновения индукционного тока в проделанных опытах.

2. Проверка выполнения правила Ленца.

2.1. Повторить опыт из пункта 1.6.(рис.1.2.)

2.2. Для каждого из 4х случаев данного опыта зарисовать схемы (4 схемы).

Рисунок 2.3.

2.3. Проверить выполнения правила Ленца в каждом случае и заполнить по этим данным таблицу 2.1.

Таблица 2.1.

N опыта

Способ получения индукционного тока

Внесение в катушку северного полюса магнита

возрастает

Удаление из катушки северного полюса магнита

убывает

Внесение в катушку южного полюса магнита

возрастает

Удаление из катушки южного полюса магнита

убывает

3. Сделать вывод о проделанной лабораторной работе.

4. Ответить на контрольные вопросы.

Контрольные вопросы:

1. Как должен двигаться замкнутый контур в однородном магнитном поле, поступательно или вращательно, чтобы в нём возник индуктивный ток?

2. Объясните, почему индуктивный ток в контуре имеет такое направление, чтобы своим магнитным полем препятствовать изменению магнитного потока его вызвавшего?

3. Почему в законе электромагнитной индукции стоит знак « - »?

4. Сквозь намагниченное кольцо вдоль его оси падает намагниченный стальной брусок, ось которого перпендикулярна плоскости кольца. Как будет изменяться ток в кольце?

Допуск к лабораторной работе 11

1.Как называется силовая характеристика магнитного поля? Её графический смысл.

2.Как определяется модуль вектора магнитной индукции?

3.Дайте определение единицы измерения индукции магнитного поля.

4.Как определяется направление вектора магнитной индукции?

5.Сформулируйте правило буравчика.

6.Запишите формулу расчета магнитного потока. Каков его графический смысл?

7.Дайте определение единицы измерения магнитного потока.

8.В чем заключается явления электромагнитной индукции?

9.Какова причина разделения зарядов в проводнике, движущемся в магнитном поле?

10.Какова причина разделения зарядов в неподвижном проводнике,находящемся в переменном магнитном поле?

11.Сформулируйте закон электромагнитной индукции. Запишите формулу.

12.Сформулируйте правило Ленца.

13.Объясните правило Ленца на основе закона сохранения энергии.

Цель работы: Изучить явление электромагнитной индукции.
Оборудование: Миллиамперметр, катушка-моток, магнит дугообразный, источник питания, катушка с железным сердечником от разборного электромагнита, реостат, ключ, провода соединительные, модель генератора электрического тока (одна на класс).
Указания к работе:
1. Подключите катушку-моток к зажимам миллиамперметра.
2. Наблюдая за показаниями миллиамперметра, подводите один из полюсов магнита к катушке, потом на несколько секунд остановите магнит, а затем вновь приближайте его к катушке, вдвигая в неё (рис. 196). Запишите, возникал ли в катушке индукционный ток во время движения магнита относительно катушки; во время его остановки.

Запишите, менялся ли магнитный поток Ф, пронизывающий катушку, во время движения магнита; во время его остановки.
4. На основании ваших ответов на предыдущий вопрос сделайте и запишите вывод о том, при каком условии в катушке возникал индукционный ток.
5. Почему при приближении магнита к катушке магнитный поток, пронизывающий эту катушку, менялся? (Для ответа на этот вопрос вспомните, во-первых, от каких величин зависит магнитный поток Ф и, во-вторых, одинаков
ли модуль вектора индукции В магнитного поля постоянного магнита вблизи этого магнита и вдали от него.)
6. О направлении тока в катушке можно судить по тому, в какую сторону от нулевого деления отклоняется стрелка миллиамперметра.
Проверьте, одинаковым или различным будет направление индукционного тока в катушке при приближении к ней и удалении от неё одного и того же полюса магнита.

4. Приближайте полюс магнита к катушке с такой скоростью, чтобы стрелка миллиамперметра отклонялась не более чем на половину предельного значения его шкалы.
Повторите тот же опыт, но при большей скорости движения магнита, чем в первом случае.
При большей или меньшей скорости движения магнита относительно катушки магнитный поток Ф, пронизывающий эту катушку, менялся быстрее?
При быстром или медленном изменении магнитного потока сквозь катушку сила тока в ней была больше?
На основании вашего ответа на последний вопрос сделайте и запишите вывод о том, как зависит модуль силы индукционного тока, возникающего в катушке, от скорости изменения магнитного потока Ф, пронизывающего этукатушку.
5. Соберите установку для опыта по рисунку 197.
6. Проверьте, возникает ли в катушке-мотке 1 индукционный ток в следующих случаях:
а) при замыкании и размыкании цепи, в которую включена катушка 2;
б) при протекании через катушку 2 постоянного тока;
в) при увеличении и уменьшении силы тока, протекающего через катушку 2, путём перемещения в соответствующую сторону движка реостата.
10. В каких из перечисленных в пункте 9 случаев меняется магнитный поток, пронизывающий катушку 1? Почему он меняется?
11. Пронаблюдайте возникновение электрического тока в модели генератора (рис. 198). Объясните, почему в рамке, вращающейся в магнитном поле, возникает индукционный ток.
Рис. 196

Изучением явления электромагнитной индукции занялся вплотную первым Майкл Фарадей. Точнее сказать, он установил и исследовал это явление в поисках способов превратить магнетизм в электричество.

У него на решение такой задачи ушло десять лет, мы же сейчас пользуемся плодами его труда повсеместно, и не представляем себе современную жизнь без применения электромагнитной индукции . В 8 классе, мы уже рассматривали эту тему, в 9 классе это явление рассматривается уже более детально, но вывод формул относится к курсу 10 класса. По этой ссылке вы можете перейти для ознакомления со всеми аспектами данного вопроса.

Явление электромагнитной индукции: рассмотрим опыт

Мы рассмотрим, что представляет собой явление электромагнитной индукции. Можно провести опыт, для которого понадобится гальванометр, постоянный магнит и катушка. Соединив гальванометр с катушкой, мы вдвигаем внутрь катушки постоянный магнит. При этом гальванометр покажет изменение тока в цепи.

Так как никакого источника тока у нас в цепи нет, то логично предположить, что ток возникает вследствие появления магнитного поля внутри катушки. Когда мы будем вытаскивать магнит обратно из катушки, мы увидим, что снова изменятся показания гальванометра, но его стрелка при этом отклонится в противоположную сторону. Мы опять получим ток, но уже направленный в другую сторону.

Теперь проделаем похожий опыт с теми же элементами, только при этом мы зафиксируем магнит неподвижно, а надевать на магнит и снимать с него мы теперь будем саму катушку, подсоединенную к гальванометру. Мы получим те же результаты стрелка гальванометра будет показывать нам появление тока в цепи. При этом, когда магнит неподвижен, тока в цепи нет стрелка стоит на ноле.

Можно провести измененный вариант такого же опыта, только постоянный магнит заменить электрическим, который можно включать и выключать. Мы получим схожие с первым опытом результаты при движении магнита внутри катушки. Но, кроме того, при выключении и выключении неподвижного электромагнита, он будет вызывать кратковременное появление тока в цепи катушки.

Катушку можно заменить проводящим контуром и проделать опыты по перемещению и вращению самого контура в постоянном магнитном поле, либо же магнита внутри неподвижного контура. Результаты будут те же появление тока в цепи при движении магнита или контура.

Изменение магнитного поля вызывает появление тока

Из всего этого следует вывод, что изменение магнитного поля вызывает появление электрического тока в проводнике . Ток этот ничем не отличается от тока, который мы можем получить от батареек, например. Но чтобы указать причину его возникновения, такой ток назвали индукционным.

Во всех случаях у нас менялось магнитное поле, а точнее, магнитный поток через проводник, вследствие чего и возникал ток. Таким образом, можно вывести следующее определение:

При всяком изменении магнитного потока, пронизывающего контур замкнутого проводника, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока.

Вы уже знаете, что вокруг электрического тока всегда существует магнитное поле. Электрический ток и магнитное поле неотделимы друг от друга.

Но если электрический ток, как говорят, «создаёт» магнитное поле, то не существует ли обратного явления? Нельзя ли с помощью магнитного поля «создать» электрический ток?

Такую задачу в начале XIX в. пытались решить многие учёные. Поставил её перед собой и английский учёный Майкл Фарадей. «Превратить магнетизм в электричество» - так записал в своём дневнике эту задачу Фарадей в 1822 г. Почти 10 лет упорной работы потребовалось учёному для её решения.

Майкл Фарадей (1791-1867)
Английский физик. Открыл явление электромагнитной индукции, экстратоки при замыкании и размыкании

Чтобы понять, как Фарадею удалось «превратить магнетизм в электричество», выполним некоторые опыты Фарадея, используя современные приборы.

На рисунке 119, а показано, что если в катушку, замкнутую на гальванометр, вдвигается магнит, то стрелка гальванометра при этом отклоняется, указывая на появление индукционного (наведённого) тока в цепи катушки. Индукционный ток в проводнике представляет собой такое же упорядоченное движение электронов, как и ток, полученный от гальванического элемента или аккумулятора. Название «индукционный» указывает только на причину его возникновения.

Рис. 119. Возникновение индукционного тока при движении магнита и катушки относительно друг друга

При извлечении магнита из катушки снова наблюдается отклонение стрелки гальванометра, но в противоположную сторону, что указывает на возникновение в катушке тока противоположного направления.

Как только движение магнита относительно катушки прекращается, прекращается и ток. Следовательно, ток в цепи катушки существует только во время движения магнита относительно катушки.

Опыт можно изменить. На неподвижный магнит будем надевать катушку и снимать её (рис. 119, б). И опять можно обнаружить, что во время движения катушки относительно магнита в цепи снова появляется ток.

На рисунке 120 изображена катушка А, включённая в цепь источника тока. Эта катушка вставлена в другую катушку С, подключённую к гальванометру. При замыкании и размыкании цепи катушки А в катушке С возникает индукционный ток.

Рис. 120. Возникновение индукционного тока при замыкании и размыкании электрической цепи

Можно вызвать появление индукционного тока в катушке С и путём изменения силы тока в катушке А или движением этих катушек относительно друг друга.

Проделаем ещё один опыт. Поместим в магнитное поле плоский контур из проводника, концы которого соединим с гальванометром (рис. 121, а). При повороте контура гальванометр отмечает появление в нём индукционного тока. Ток будет появляться и в том случае, если рядом с контуром или внутри него вращать магнит (рис. 121, б).

Рис. 121. При вращении контура в магнитном поле(магнита относительно контура) изменение магнитного потока приводит к возникновению индукционного тока

Во всех рассмотренных опытах индукционный ток возникал при изменении магнитного потока, пронизывающего охваченную проводником площадь.

В случаях, изображённых на рисунках 119 и 120, магнитный поток менялся за счёт изменения индукции магнитного поля. Действительно, при движении магнита и катушки относительно друг друга (см. рис. 119) катушка попадала в области поля с большей или меньшей магнитной индукцией (так как поле магнита неоднородное). При замыкании и размыкании цепи катушки А (см. рис. 120) индукция создаваемого этой катушкой магнитного поля менялась за счёт изменения силы тока в ней.

При вращении проволочного контура в магнитном поле (см. рис. 121, а) или магнита относительно контура (см. рис. 121, б") магнитный поток менялся за счёт изменения ориентации этого контура по отношению к линиям магнитной индукции.

Таким образом,

  • при всяком изменении магнитного потока, пронизывающего площадь, ограниченную замкнутым проводником, в этом проводнике возникает электрический ток, существующий в течение всего процесса изменения магнитного потока

В этом и заключается явление электромагнитной индукции.

Открытие электромагнитной индукции принадлежит к числу самых замечательных научных достижений первой половины XIX в. Оно вызвало появление и бурное развитие электротехники и радиотехники.

На основании явления электромагнитной индукции были созданы мощные генераторы электрической энергии, в разработке которых принимали участие учёные и техники разных стран. Среди них были и наши соотечественники: Эмилий Христианович Ленц, Борис Семёнович Якоби, Михаил Иосифович Доливо-Добровольский и другие, внёсшие большой вклад в развитие электротехники.

Вопросы

  1. С какой целью ставились опыты, изображённые на рисунках 119-121? Как они проводились?
  2. При каком условии в опытах (см. рис. 119, 120) в катушке, замкнутой на гальванометр, возникал индукционный ток?
  3. В чём заключается явление электромагнитной индукции?
  4. В чём важность открытия явления электромагнитной индукции?

Упражнение 36

  1. Как создать кратковременный индукционный ток в катушке К 2 , изображённой на рисунке 118?
  2. Проволочное кольцо помещено в однородное магнитное поле (рис. 122). Стрелочки, изображённые рядом с кольцом, показывают, что в случаях а и б кольцо движется прямолинейно вдоль линий индукции магнитного поля, а в случаях в, г и д - вращается вокруг оси ОО". В каких из этих случаев в кольце может возникнуть индукционный ток?