Как построить график функции синусоиды. Преобразование графиков

§ 11. Графики синуса и косинуса

Повторить: § 5. Часы, или современный взгляд на тригонометрию.

Построим график функции y = sin x. При этом нам опять при-

годятся часы из § 5.

Если x = 0, то, очевидно, y = 0. Когда x воз-

растает от 0 до π/2, число sin x возрастает от 0 до

1 (представьте себе, как меняется ордината кон-

ца стрелки на наших фирменных часах). Участок

графика для x от 0 до π/2 изображен на рис. 11.1 .

При малых x наш график близок к прямой

y = x: вспомним, что при малых x верна при-

ближенная формула sin x ≈ x. Можно сказать,

что прямая y = x касается кривой с уравнением

y = sin x в точке (0; 0). Заметим также, что наш участок графика

расположен ниже этой прямой: ведь для острых углов x, измерен-

ных в радианах, выполнено неравенство sin x < x.

Чем ближе x к π/2, тем более полого идет наша кривая. Это

происходит потому, что проекция конца стрелки на ось ординат,

колеблясь по отрезку [−1; 1], быстрее всего движется в середине

отрезка и замедляется у его краев: мы это уже обсуждали в § 5.

от π до 3π/2, sin x уменьшается от 0 до −1, а когда x возрастает от 3π/2 до 2π, возрастает от −1 до 0. Итак, участок графика для 0 6 x 6 2π готов (рис. 11.2 б). Заметим, кстати, что кривая на рис11.2 а симметрична относительно вертикальной прямой с уравнением x = π/2. В самом деле, формула приведения sin(π/2 − x) = sin x показывает, что точки с абсциссами x и π − x имеют на графике одинаковые ординаты и, стало быть, симметричны относительно прямой x = π/2 (рис.11.3 а).

Задача 11.1. Запишите уравнение прямой, касающейся графика функции y = sin x в точке с координатами (π; 0).

Кривая на рис 11.2 б центрально симметрична относительно точки с координатами (π; 0); это следует из другой формулы приведения: sin(2π − x) = − sin x (рис.11.3 б).

После того, как у нас есть участок графика функции y = sin x для 0 6 x 6 2π, весь график строится уже просто. В самом деле, когда конец стрелки прошел путь 2π, стрелка вернулась в исходное положение; при дальнейшем движении все будет повторяться. Значит, график будет состоять из таких же кусков, как на рис 11.2 б. Окончательно график функции y = sin x выглядит так, как на рис.11.4 . При этом участки графика при x , , [−2π; 0],. . . получаются из графика на рис11.2 б сдвигом вдоль оси абсцисс на 2π, 4π, −2π,. . . соответственно. Это - просто переформулировка того факта, что функция y = sin x имеет период 2π.

Рис. 11.4. y = sin x.

Рис. 11.5. y = cos x.

Теперь построим график функции y = cos x. Можно было бы строить его так же, как мы строили график синуса. Мы, однако, изберем другой путь, который позволит использовать уже имеющуюся у нас информацию.

Именно, воспользуемся формулой приведения sin(x + π/2) = = cos x. Эту формулу можно понимать так: функция y = cos x принимает те же значения, что и функция y = sin x, но на π/2 раньше. Например, функция y = sin x принимает значение 1 при x = π/2, а функция y = cos x = sin(x + π/2) принимает это же значение уже при x = 0. На графике это означает следующее: для каждой точки графика y = sin x есть точка графика y = cos x, у которой ордината та же, а абсцисса на π/2 меньше (рис. 11.5 ). Стало быть, график y = cos x получится, если сдвинуть график y = sin x вдоль оси абсцисс на π/2 влево. На рис.11.5 график функции y = cos x изображен сплошной кривой.

Итак, мы выяснили, что график косинуса получается преобра-

зованием (сдвигом) из графика синуса. Случаи, когда график одной функции можно получить преобразованием из графика другой функции, интересны и сами по себе, поэтому скажем о них несколько слов.

Как, например, будет выглядеть график функции y = 2 sin x? Ясно, что ординаты точек этого графика получаются из ординат соответствующих точек графика y = sin x умножением на 2, так что наш график изобразится сплошной кривой на рис. 11.6 . Можно сказать, что график y = 2 sin x получается из графика y = sin x растяжением в два раза вдоль оси ординат.

Рис. 11.6. y = 2 sin x.

Рис. 11.7. y = sin 2x.

Теперь построим график функции y = sin 2x. Легко понять,

Рис. 11.8. y = sin(2x + π/3).

что функция y = sin 2x принимает те же самые значения, что и функция y = sin x, но при в два раза меньших значениях x. Например, функция y = sin x принимает значение 1 при x = π/2, а функция y = sin 2x - уже при x = π/4; иными словами, чтобы получить график y = sin 2x, надо абсциссы всех точек графика y = sin x уменьшить в два раза, а ординаты оставить неизменными. То, что получается, изображено на рис. 11.7 . Можно сказать, что график y = sin 2x (сплошная линия на рис.11.7 ) получается из графика y = sin x сжатием в 2 раза к оси ординат.

Попробуем еще построить график функции y = sin(2x + π/3). Понятно, что он должен получаться каким-то преобразованием из графика y = sin 2x. На первый взгляд может показаться, что это преобразование - сдвиг влево на π/3 вдоль оси абсцисс, по аналогии с тем, что изображено на рис.11.5 . Однако, если бы это было так, то вышло бы, например, что функция y = sin(2x + π/3) принимает значение 1 при x = π/4 − π/3 = π/12, что не соответствует действительности (проверьте!). Правильно рассуждать так: sin(2x + π/3) = sin 2(x + π/6), так что функция y = sin(2x+π/3) принимает те же значения, что и функция y = sin 2x, но на π/6 раньше. Так что сдвиг влево - не на π/3, а на π/6 (рис.11.8 ).

Кривые, являющиеся графиками функций y = a sin bx, где a 6= 0, b 6= 0, называются синусоидами. Заметим, что кривой «косинусоида» вводить не надо: как мы видели, график косинуса - это та же кривая, что и график синуса, только иначе расположен-

ная относительно осей координат.

Задача 11.2. Каковы координаты точек, помеченных на рис. 11.8 вопросительными знаками?

Задача 11.3. Возьмите свечу, тонкий лист бумаги и острый нож. Намотайте лист бумаги на свечу в несколько слоев и аккуратно разрежьте эту свечу вместе с бумагой наискосок ножом. Теперь разверните бумагу. Вы увидите, что она оказалась разрезанной по волнистой линии. Докажите, что эта волнистая линия является синусоидой.

Задача 11.4. Постройте графики функций:

г) y = 3 cos 2x;

а) y = − sin x; б)

в) y = cos(x/2);

ж) y = sin(πx). д)

Замечание. Если вы строите графики тригонометрических функций на клетчатой бумаге, удобно выбрать немного разные масштабы по осям, с тем чтобы на оси абсцисс числу π соответствовало целое число клеточек. Например, часто выбирают такой масштаб: по оси ординат отрезок длины 1 занимает две клеточки, по оси абсцисс отрезок длины π занимает 6 клеточек.

Задача 11.5. Постройте графики функций:

а) y = arcsin x; б) y = arccos x.

Посмотрим, как выглядят на графиках уже известные нам решения уравнений sin x = a и cos x = a. Эти решения являются абсциссами точек пересечения горизонтальной прямой y = a с графиком функций y = sin x (соответственно y = cos x). На рис. 11.9 ,11.10 хорошо видны две серии решений, получающихся при −1 < a < 1.

По графикам синуса и косинуса видно, на каких промежутках эти функции возрастают, а на каких убывают. Ясно, например, что функция y = sin x возрастает на отрезках [−π/2; π/2],

Параллельный перенос.

ПЕРЕНОС ВДОЛЬ ОСИ ОРДИНАТ

f(x) => f(x) - b
Пусть требуется построить график функции у = f(х) - b. Нетрудно заметить, что ординаты этого графика для всех значений x на |b| единиц меньше соответствующих ординат графика функций у = f(х) при b>0 и на |b| единиц больше - при b 0 или вверх при b Для построения графика функции y + b = f(x) следует построить график функции y = f(x) и перенести ось абсцисс на |b| единиц вверх при b>0 или на |b| единиц вниз при b

ПЕРЕНОС ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(x + a)
Пусть требуется построить график функции у = f(x + a). Рассмотрим функцию y = f(x), которая в некоторой точке x = x1 принимает значение у1 = f(x1). Очевидно, функция у = f(x + a) примет такое же значение в точке x2, координата которой определяется из равенства x2 + a = x1, т.е. x2 = x1 - a, причем рассматриваемое равенство справедливо для совокупности всех значений из области определения функции. Следовательно, график функции у = f(x + a) может быть получен параллельным перемещением графика функции y = f(x) вдоль оси абсцисс влево на |a| единиц при a > 0 или вправо на |a| единиц при a Для построения графика функции y = f(x + a) следует построить график функции y = f(x) и перенести ось ординат на |a| единиц вправо при a>0 или на |a| единиц влево при a

Примеры:

1.y=f(x+a)

2.y=f(x)+b

Отражение.

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = F(-X)

f(x) => f(-x)
Очевидно, что функции y = f(-x) и y = f(x) принимают равные значения в точках, абсциссы которых равны по абсолютной величине, но противоположны по знаку. Иначе говоря, ординаты графика функции y = f(-x) в области положительных (отрицательных) значений х будут равны ординатам графика функции y = f(x) при соответствующих по абсолютной величине отрицательных (положительных) значениях х. Таким образом, получаем следующее правило.
Для построения графика функции y = f(-x) следует построить график функции y = f(x) и отразить его относительно оси ординат. Полученный график является графиком функции y = f(-x)

ПОСТРОЕНИЕ ГРАФИКА ФУНКЦИИ ВИДА Y = - F(X)

f(x) => - f(x)
Ординаты графика функции y = - f(x) при всех значениях аргумента равны по абсолютной величине, но противоположны по знаку ординатам графика функции y = f(x) при тех же значениях аргумента. Таким образом, получаем следующее правило.
Для построения графика функции y = - f(x) следует построить график функции y = f(x) и отразить его относительно оси абсцисс.

Примеры:

1.y=-f(x)

2.y=f(-x)

3.y=-f(-x)

Деформация.

ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ ОРДИНАТ

f(x) => k f(x)
Рассмотрим функцию вида y = k f(x), где k > 0. Нетрудно заметить, что при равных значениях аргумента ординаты графика этой функции будут в k раз больше ординат графика функции у = f(x) при k > 1 или 1/k раз меньше ординат графика функции y = f(x) при k Для построения графика функции y = k f(x) следует построить график функции y = f(x) и увеличить его ординаты в k раз при k > 1(произвести растяжение графика вдоль оси ординат) или уменьшить его ординаты в 1/k раз при k
k > 1 - растяжение от оси Ох
0 - сжатие к оси OX


ДЕФОРМАЦИЯ ГРАФИКА ВДОЛЬ ОСИ АБСЦИСС

f(x) => f(k x)
Пусть требуется построить график функции y = f(kx), где k>0. Рассмотрим функцию y = f(x), которая в произвольной точке x = x1 принимает значение y1 = f(x1). Очевидно, что функция y = f(kx) принимает такое же значение в точке x = x2, координата которой определяется равенством x1 = kx2, причем это равенство справедливо для совокупности всех значений х из области определения функции. Следовательно, график функции y = f(kx) оказывается сжатым (при k 1) вдоль оси абсцисс относительно графика функции y = f(x). Таким образом, получаем правило.
Для построения графика функции y = f(kx) следует построить график функции y = f(x) и уменьшить его абсциссы в k раз при k>1 (произвести сжатие графика вдоль оси абсцисс) или увеличить его абсциссы в 1/k раз при k
k > 1 - сжатие к оси Оу
0 - растяжение от оси OY




Работу выполнили Чичканов Александр, Леонов Дмитрий под руководством Ткач Т.В, Вязовова С.М, Островерховой И.В.
©2014

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").