Математика, которая мне нравится. Определение треугольника паскаля

Все узнают о треугольнике Паскаля в юности. Но, видимо, узнают не все чудеса, которые содержит треугольник. В самом деле, мы до сих пор открываем новые вещи!

Строится треугольник довольно легко: по внешним краям нужно поставить единицы, а каждое число внутри равно сумме двух чисел, которые стоят над ним. Так, третье число в шестой строке равно , потому что это сумма чисел и .

Внимание! На самом деле мы будем говорить, что является вторым числом в пятой строке. По причинам, которые скоро станут ясны, мы начинаем нумеровать строки и столбцы треугольника с нуля. Например, второе число в четвертой строке равно .

Зная правило сложения, можно продолжать бесконечно: вы можете написать столько строк, сколько позволит ваше терпение.

Первые 10 строк треугольника Паскаля

Паскаль ввел свой треугольник в 1653 г. в Traité du triangle arithmétique как часть задачи исследования вероятностей и для вычислений. Задачи были примерно такие: “Если я хочу выбрать двух человек из четырех данных, сколько существует возможных пар?’’ или “Какова вероятность выпадения фулл-хауса (примеч. в покере три карты одного достоинства и две другого), когда раздается по пять карт из колоды, которая хорошо перемешана?’’ Паскаль и Ферма в основном обсуждали вероятность в письмах, которыми они обменивались в то время. Вы можете увидеть исходный треугольник Паскаля .

Каким образом треугольник связан с вероятностью? Ну, если вы хотите выбрать объектов из данных, то количество возможных вариантов выбора равно -му числу в -й строке треугольника. Помните, что номера строк и чисел в строках треугольника начинаются с нуля! Используя это правило, мы видим, что существует ровно способов выбрать двух человек из четырех данных. И так — третье число в девятой строке треугольника, то существует способа выбрать трех человек из девяти данных. Научившись вычислять это, вы сделаете маленький шаг к вычислению всевозможных вероятностей.

На первый взгляд, кажется довольно непонятным, почему треугольник дает правильный ответ на этот вопрос. Может также показаться странным, что мы должны всегда начинать с нуля, чтобы заставить его работать. Чтобы увидеть, что все это совершенно верно, мы сделаем два замечания.

Во-первых, если у вас есть группа объектов, каким количеством способов вы можете выбрать нуль объектов из них? Есть ровно один способ выбрать нуль объектов, а именно: просто заявив, что вы не берете ни одного из них. Кроме того, у вас есть только один способ выбрать все объекты. И это как раз соответствует единицам на двух концах каждой строки.

Блез Паскаль

Во-вторых, если мы хотим выбрать предметов из данных , мы замечаем, что есть два взаимоисключающих сценария: либо наш любимый предмет является одним из выбранных, либо это не так. Если мы выбираем его, то мы должны также выбрать предмет из оставшихся предметов, чтобы выбрать ровно предметов. Если мы не выбираем данный предмет, то мы должны выбрать все предметов из данных предмета, оставшихся после исключения нашего любимого предмета. Так как это взаимоисключающие возможности, чтобы получить общее количество вариантов выбора, мы должны сложить количества вариантов в каждом сценарии.

Короче говоря, чтобы получить число способов выбора объектов из данных , мы должны сложить количество способов выбрать объект из , и число способов выбрать объектов из . Но это именно и есть правило сложения для треугольника Паскаля!

Мы уже знаем, что треугольник полностью определяется расположением единиц по его сторонам и правилом сложения. Так как эти свойства применимы также к ответу на вопрос о количестве вариантов выбора объектов, треугольник должен и здесь давать правильный ответ.

Возможность сделать такие расчеты неоценима во множестве случаев. Поэтому мало удивляет, что Паскаль не был первым. Данные числа были рассмотрены индийскими, китайскими и иранскими математиками в разное время, начиная с момента более чем тысячелетней давности. И, конечно, все узнают треугольник Яна Хуэя, 1303 г.:

Забавно, даже не будучи в состоянии различить числа, вы можете найти опечатку в этом треугольнике, которому больше 700 лет! Подсказка: правило сложения делает треугольник Паскаля симметричным относительно вертикальной прямой, проходящей через его вершину. Если вы посмотрите внимательно, в треугольнике Ян Хуэя эта симметрия в одном месте нарушается.

В треугольнике много чудесного. Где же чудеса? Некоторые из них легко заметить. Если вы сложите числа в -й строке треугольника, вы всегда получите в степени (например, ). Для нас это довольно скучно.

Несколько более интересным является тот факт, что если вы сложите числа, стоящие в треугольнике по диагоналям, получится последовательность чисел Фибоначчи. А последовательность чисел Фибоначчи сама содержит множество сюрпризов.

Недавно нечто удивительное и новое было обнаружено в треугольнике Паскаля. Как мы видели, если сложить числа, стоящие в строке треугольника, происходит что-то интересное. Этот факт о суммах так же стар, как и сам треугольник. Однако до 2012 г., до Харлана Бразерса, никто не пытался выяснить, что произойдет, если перемножить числа в каждой строке.

Давайте обозначим через произведение чисел в -й строке треугольника. Так, , и так далее. Числа, которые получаются, кажется, не имеют каких-либо явных чудесных свойств. У Бразерса возникла идея посмотреть, что произойдет, если вы разделить эти произведения, вычисленные для рядом стоящих строк. Точнее, для он нашел числа , получающиеся по следующей формуле:

Т. е. для каждой строки он рассмотрел дробь, числитель которой равен произведению всех чисел в строке, стоящей под ней, и в строке, стоящей над ней, а знаменатель — произведению всех чисел в данной строке в квадрате.

И вот удивительная вещь: когда становится все больше, это отношение становится все ближе к числу ! Помните, — это десятичное число с бесконечным числом цифр, приближенно равное . Оно появляется при капитализации процентов, модели роста численности населения и других ситуациях с экспоненциальным ростом. Удивительно, что это число может быть таким довольно простым способом найдено в треугольнике Паскаля. Так как вы знаете, что нужно искать , несложно понять, что рассмотренное отношение действительно становится все ближе к с ростом . Как вы можете видеть , для вычислений требуется всего лишь немного алгебры.

Вот такая симпатичная анимация Ричарда Грина наглядно показывает результат Харлана Бразерса:

Существует еще одно чудо в треугольнике, которое каждый должен знать. Давайте каждое число в треугольнике покрасим в один из двух цветов, в зависимости от того, является оно четным или нечетным. Например, мы могли бы покрасить четные числа белым, а нечетные — синим. Если мы сделаем это для первых 500 строк треугольника, получим вот такую закономерность:

Это известный фрактал, известный как треугольник Серпинского! Это приводит к разного рода вопросам. Число четное или нечетное, если оно при делении на дает остаток или соответственно. Что происходит, когда разделим на ? Остатки могут быть равны или . Что произойдет, если использовать восемь цветов и покрасить каждое число в соответствии с его остатком при делении на восемь? Для первых 500 строк треугольника получим прекрасную картину:

Комментариев: 6

  1. 1 Murad :

    Грубые ошибки – абсурды, допущенные предками и нами

    Мои исследования раскрыли следующие грубые ошибки – абсурды, допущенные предками и нами:
    1. Считали, что человек – смертен, а оказывается, он вечен и идеален. Во Вселенной созданные тела, откуда вышли, туда никогда не возвращаются. Тогда нет смерти – все созданные тела во Вселенной живые. Все, до сих пор рожденные человеком восстанавливаются в вечном и идеальном виде, каждые 30-разрядными кодами – номерами находят свои идеальные пары, причем сумма кодов – номеров пар 30 девятки.
    2. Мы только поднимается на 4 ступени умственного развития, а их 7: Дальше не разделяемая величина 1бутто =1000 ст.-7 = 10 ст.-21 – начало, вес и объем живой клетки – живой души и дальше не расширяемая величина 1сапа =1000 ст.7 = 10 ст.21. Это размер каждой Солнечной системы и их будут 3 секстиллиона.
    3. Все созданные тела во Вселенной состоят одних и тех же клеток – кубов, веса и объема 1бутто = 10-21. Идеальная женщина 25-летная состоит из 360 секстиллионов клеток, а идеальный мужчина 25-летний 366 секстиллионов = 366х10ст.21 клеток, при этом каждая клетка есть сам человек. Это означает, что часть равна целому: Один «Я» за всех «366х10ст.21Я» и «366х10ст.21 Я» за одного «Я» – это для мужчин.
    4. Часть равна целому и нет никаких дробных чисел, а считали наоборот. Тогда нет иррациональных и трансцендентных чисел. Также нет логарифмы, тригонометрические функции, пределы, дифференциалы и интегралы, вариационные счисления, теории вероятности и статистики. Вселенная и знания конечны, а считали наоборот. Нет необходимости использования подкоренные выражения.
    5. Мы равенство Zn = Xn +Yn считали великой теоремой Ферма или Диофанта уравнение, а есть решение уравнения (Zn – Xn)Xn = (Zn – Yn)Yn. Тогда Zn = – (Xn +Yn) есть решение уравнения (Zn+Xn)Xn = (Zn + Yn)Yn. Перепутали решение с уравнением, а не знали само уравнение. Это абсурд, для математиков позор!
    Решения оптимизационных задач приводили к системам линейных, степенных и дифференциальных уравнений. Оказывается, что мы перепутали решение с системой уравнением, а не знали само уравнение: Zn = Xn +Yn есть решение уравнения (Zn- Xn)Xn = (Zn – Yn)Yn. Решение Zn = Xn +Yn есть +103n = +(500 x 103(n-1) + 500 x103(n-1)) и -103n = – (500 x 103(n-1) + 500 x103(n-1)). Каждые 103n =10n х 102n – есть основание куба и одновременно рубика порядка 10n.
    Мы равенство c2= a2+ b2: квадрат гипотенузы = сумме квадрата катетов, считали теоремой Пифагора, а оказывается, что оно есть решение уравнения (c2- a2) a2 = (c2- b2) b2 . Тогда c2= – (a2+ b2) есть решение уравнения (c2+ a2) a2 = (c2+ b2) b2. Это означает, что из 2-х равных прямоугольных треугольников, равными катетами можно образовать квадрат – основание куба. Из 12 равных прямоугольных треугольников, равными катетами можно образовать куб. В зависимости от длины катета можно образовать различные кубы и одновременно рубики.
    6. Мы не понимали смысла сложения и умножения 1(единиц). Если имеются 9 мужчин и 9 женщин, то 9 + 9 =18 человек. 10 мужчин и 9 женщин, то 10 + 9 =19 человек, 10 мужчин и 10 женщин, то 10 +10 =20 человек, 11 мужчин и 10 женщин, то 11 +10 =21 человек. Произведения 1(единиц):
    111111111 х 111111111= 12345678987654321; 1111111111 х 111111111= 123456789987654321. 0111111111 х 1111111110 = 0123456789876543210; 01111111111 х 1111111110 = 01234567899876543210. Эти операции над 1-разрядными отрицательными и положительными целыми числами.
    Если 2 куба поставим в концах отрезка длины 20 единиц. Придадим одному заряд минус, 2-ому плюс, то они одновременно встречаются в середине отрезка, каждый проходя 10 единиц пути, если в пути нет преград: 01234567899876543210. Затем им дадим одноименные заряды, то они займут начальные положения, при этом номера меняются: 98765432100123456789.
    Если 2 куба поставим в концах отрезка длины 200 единиц. Придадим одному заряд минус, 2-ому плюс, то они одновременно встречаются в середине отрезка, каждый проходя 100 единиц пути, если в пути нет преград: 00…9999…00. Затем им дадим одноименные заряды, то они займут начальные положения, при этом номера меняются: 99…0000…99.
    Если 2 куба поставим в концах отрезка длины 2000 единиц. Придадим одному заряд минус, 2-ому плюс, то они одновременно встречаются в середине отрезка, каждый проходя 1000 единиц пути, если в пути нет преград: 000…999999…000. Затем им дадим одноименные заряды, то они займут начальные положения, при этом номера меняются: 999…000000…999.
    Продолжая этот процесс, дойдем до 2секстиллиона единиц, то каждый куб, пройдя, 1секстиллинов пути встречаются в середине. Закон Ньютона о притяжении дополнить отталкиванием. Каждой 1 (единице) пути надо присвоить номер, и начинать с 21 нулей и закончить 21 девятки.
    Кода – номера, присваиваемые каждой паре – созданные тела во Вселенной, является произведением целых чисел, составленные из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Например, каждой человеческой паре присваивается 30 – разрядный код – номер, их сумма 30 девяток. Присвоение кода – номера каждого человека начинается с 30 нулей и заканчивается 30 девятки.
    Использования целые числа для нужды Человечества достаточны 3-й степени:
    -(0 + 1 + 2 + … + n) + (0 + 1 + 2 + … + n); -(02 + 12 + 22 + … + n2) + (02 + 12 + 22 + … + n2);
    -(03 + 13 + 23 + … + n3) + (03 + 13 + 23 + … + n3); -(04 + 14 + 24 + … + n4) + (04 + 14 + 24 + … + n4);
    7. Считали, что 1Кб = 1024б, а 1Kб =1000б, 1Kг =1000г, 1м =1000мм. У времени основание 60. 1час= 60мин., 1мин. = 60сек., 1сек = 60миллисек, 1миллисек =60микросек,1микросек =60наносек, 1наносек =60пикосек, 1пикосек =60фемтосек, 1фемтосек =60оттосек, 1оттоосек =60буттосек.
    8. В мире кубическая (основание квадратная) система координат, не прямоугольная (не декартовая). Это из того, что X = a, Y = a, X + Y =2a, XY= a x a – основание. X = a, Y = a, Z = a, X + Y+ Z =3a, XYZ= a x a x a.
    Прямоугольная (декартовая) система координат получается из свойства целых чисел: Сумма 2 чисел X и Y не меняется от сложения и вычитания числа b, а произведения меняются.
    X = a + b, Y = a – b, X + Y =2a, XY= (a + b) x (a – b) = a2- b2.
    X = a +√b, Y = a – √b, X + Y =2a, XY= (a + √b) x (a – √b) = a2- b.
    X = a + bi, Y = a – bi, X + Y =2a, XY= (a + bi) x (a – bi) = a2+ b2.
    X = a +√bi, Y = a – √bi, X + Y =2a, XY= (a + √bi) x (a – √bi) = a2 + b
    9. Модель Земли не глобус, а куб и одновременно рубик порядка 24 – поверхности большой квадрат, разделенный на 576 маленьких квадратов, одинакового размера. Длина стороны маленького квадрата 1000 км = 10 ст.6 м. Каждый кв. м. поверхности Земли должно покрыто парами, а мы живем абсурдами.
    10. Центр Земли (начало, пупок) и началом времени находится на севере Туркмении (г. Куня-Ургенч, святое место 360), а считали, что начало времени Гринвичем.
    11. В мире множество календарей, а должен быть универсальный календарь Сапарова М;
    12. Новый год встречать – восход Солнца и вечером новолуние.
    13. Носит часы, показывающие 24 часов. Сутки -24 часов начинается и заканчивается восходом Солнца;
    14. В мире множество алфавитов и языков, а должен быть единственный цифровой язык.
    15 В мире множество наук, а должна быть единственная наука – Арифграф.
    16. Человек рождается через 9 месяцев = ¾ года, а день рождения отмечаем через год. Возраст человека определить формулой: (4n)/3, где n – число, делящее на 3 – через 3 года прибавить 1лет = 9 месяцев.
    17.В Периодической системе химических элементов Д. И. Менделеева каждый химический элемент живой организм, все деньги – бумажные, металлические также живые организмы, то что едим, пьем, дышим и ходим по ними также являются живыми организмами. В этом убедимся, получив величину 1бутто=10ст.-21.
    Можете добавлять абсурды и как их исправлять, от этого выиграем, скоро станем вечными и идеальными.
    Только один выход – полный переход на 10-ю систему счисления. Если исправим все абсурды, то наши головы – компьютеры будут работать 1000 ст.1000 операции в секунду, и все наши проблемы решены.
    Обо всем в teoremaferma.far.ru, опубликовал в блогах и сообществах facebook.com и в группах yandex.ru.

Числовой треугольник Паскаля

В верхней строчке треугольника располагается одинокая единица. В остальных строках каждое число является суммой двух своих соседей этажом выше - слева и справа. Если какой-то из соседей отсутствует, он считается равным нулю. Треугольник бесконечно простирается вниз; мы приводим лишь восемь верхних строчек: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 …

Обозначим буквой n номер строки треугольника, а буквой k - номер числа в строке (нумерация начинается в обоих случаях с нуля). Чаще всего число в n -ой строке и на k -ом месте в этой строке обозначается C n k , реже - n k .

Назовём лишь некоторые факты, относящиеся к треугольнику Паскаля.

Числа в n -ой строке треугольника являются биномиальными коэффициентами , то есть коэффициентами в разложении n -ой степени бинома Ньютона : a + b n = ∑ k = 0 n C n k ⁢ a k ⁢ b n − k .

Сумма всех чисел в n -ой строке равна n -ой степени двойки: ∑ k = 0 n C n k = 2 n . Эта формула получается из формулы бинома, если положить a = b = 1 .

Можно доказать явную формулу для вычисления биномиального коэффициента: C n k = n ! k ! ⁢ n − k ! .

Если строки в треугольнике Паскаля выровнять по левому краю, то суммы чисел, расположенных вдоль диагоналей, идущих слева направо и снизу вверх, равны числам Фибоначчи - 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 … (каждое число в этой последовательности равно сумме двух предыдущих, а начинают последовательность две единицы): 1 ⬃ 1 2 1 ⬃ ⬃ 3 5 1 1 ⬃ ⬃ 8 13 1 2 1 ⬃ ⬃ 21 34 1 3 3 1 ⬃ ⬃ 55 89 1 4 6 4 1 ⬃ ⬃ 144 233 1 5 10 10 5 1 ⬃ ⬃ 377 610 1 6 15 20 15 6 1 ⬃ ⬃ 987 1597 1 7 21 35 35 21 7 1 ⬃ ⬃ 2584 4181 … ⬃ ⬃

Если раскрасить нечётные числа в треугольнике Паскаля в один цвет, а чётные - в другой, получится такая картина (на рисунке 10.1. «Треугольник Паскаля - Серпинского» указанным образом раскрашены числа в первых 128 строчках):


Похожее изображение можно построить следующим образом. В закрашенном треугольнике перекрасим в другой цвет его серединный треугольник (образованный серединами сторон исходного). Три маленьких треугольника, расположенные по углам большого, останутся закрашенными в прежний цвет. Поступим с каждым из них точно так же, как мы поступили с большим, то есть перекрасим в каждом серединный треугольник. То же самое сделаем с оставшимися треугольниками старого цвета. Если эту процедуру проделывать до бесконечности, на месте исходного треугольника останется двухцветная фигура. Та её часть, которая не перекрашена, называется треугольником Серпинского . Несколько первых этапов построения треугольника Серпинского показаны на рисунке 10.2. «Построение треугольника Серпинского» .


Важным свойством треугольника Серпинского является его самоподобие - ведь он состоит из трёх своих копий, уменьшенных в два раза (это части треугольника Серпинского, содержащиеся в маленьких треугольниках, примыкающих к углам). Самоподобие - одно из характерных свойств фракталов , о которых мы ещё поговорим в главе 44. «L-системы » . Треугольник Серпинского также будет упомянут в этой главе.

О таинственной связи треугольника Паскаля с простыми числами мы вычитали в книге в небольшой заметке Ю. Матиясевича . Заменим в треугольнике Паскаля числа на их остатки от деления на номер строки. Расположим строки в полученном треугольнике таким образом, чтобы следующая строка начиналась на две колонки правее начала предыдущей (см. рисунок 10.3. «Связь треугольника Паскаля с простыми числами»). Тогда столбцы с простыми номерами будут состоять из одних нулей, а в столбцах, чьи номера составные, найдётся ненулевое число.

Рассмотрим следующие выражения со степенями (a + b) n , где a + b есть любой бином, а n - целое число.

Каждое выражение - это полином. Во всех выражениях можно заметить особенности.

1. В каждом выражении на одно слагаемое больше, чем показатель степени n.

2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.

3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.

4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до "половины пути", а потом уменьшаются на те же значения обратно к 1.

Давайте рассмотрим коэффициенты подробнее. Предположим, что мы хотим найти значение (a + b) 6 . Согласно особенности, которую мы только что заметили, здесь должно быть 7 членов
a 6 + c 1 a 5 b + c 2 a 4 b 2 + c 3 a 3 b 3 + c 4 a 2 b 4 + c 5 ab 5 + b 6 .
Но как мы можем определить значение каждого коэффициента, c i ? Мы можем сделать это двумя путями. Первый метод включает в себя написание коэффициентов треугольником, как показано ниже. Это известно как Треугольник Паскаля :


Есть много особенностей в треугольнике. Найдите столько, сколько сможете.
Возможно вы нашли путь, как записать следующую строку чисел, используя числа в строке выше. Единицы всегда расположены по сторонам. Каждое оставшееся число это сумма двух чисел, расположенных выше этого числа. Давайте попробуем отыскать значение выражения (a + b) 6 путем добавления следующей строки, используя особенности, которые мы нашли:

Мы видим, что в последней строке

первой и последнее числа 1 ;
второе число равно 1 + 5, или 6 ;
третье число это 5 + 10, или 15 ;
четвертое число это 10 + 10, или 20 ;
пятое число это 10 + 5, или 15 ; и
шестое число это 5 + 1, или 6 .

Таким образом, выражение (a + b) 6 будет равно
(a + b) 6 = 1 a 6 + 6 a 5 b + 15 a 4 b 2 + 20 a 3 b 3 + 15 a 2 b 4 + 6 ab 5 + 1 b 6 .

Для того, чтобы возвести в степень (a + b) 8 , мы дополняем две строки к треугольнику Паскаля:

Тогда
(a + b) 8 = a 8 + 8a 7 b + 28a 6 b 2 + 56a 5 b 3 + 70a 4 b 4 + 56a 3 b 5 + 28a 2 b 6 + 8ab 7 + b 8 .

Мы можем обобщить наши результаты следующим образом.

Бином Ньютона с использованием треугольника Паскаля

Для любого бинома a+ b и любого натурального числа n,
(a + b) n = c 0 a n b 0 + c 1 a n-1 b 1 + c 2 a n-2 b 2 + .... + c n-1 a 1 b n-1 + c n a 0 b n ,
где числа c 0 , c 1 , c 2 ,...., c n-1 , c n взяты с (n + 1) ряда треугольника Паскаля.

Пример 1 Возведите в степень: (u - v) 5 .

Решение У нас есть (a + b) n , где a = u, b = -v, и n = 5. Мы используем 6-й ряд треугольника Паскаля:
1 5 10 10 5 1
Тогда у нас есть
(u - v) 5 = 5 = 1 (u) 5 + 5 (u) 4 (-v) 1 + 10 (u) 3 (-v) 2 + 10 (u) 2 (-v) 3 + 5 (u)(-v) 4 + 1 (-v) 5 = u 5 - 5u 4 v + 10u 3 v 2 - 10u 2 v 3 + 5uv 4 - v 5 .
Обратите внимание, что знаки членов колеблются между + и -. Когда степень -v есть нечетным числом, знак -.

Пример 2 Возведите в степень: (2t + 3/t) 4 .

Решение У нас есть (a + b) n , где a = 2t, b = 3/t, и n = 4. Мы используем 5-й ряд треугольника Паскаля:
1 4 6 4 1
Тогда мы имеем

Разложение бинома используя значения факториала

Предположим, что мы хотим найти значение (a + b) 11 . Недостаток в использовании треугольника Паскаля в том, что мы должны вычислить все предыдущие строки треугольника, чтобы получить необходимый ряд. Следующий метод позволяет избежать этого. Он также позволяет найти определенную строку - скажем, 8-ю строку - без вычисления всех других строк. Этот метод полезен в вычислениях, статистике и он использует биномиальное обозначение коэффициента .
Мы можем сформулировать бином Ньютона следующим образом.

Бином Ньютона с использованием обозначение факториала

Для любого бинома (a + b) и любого натурального числа n,
.

Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом .

Пример 3 Возведите в степень: (x 2 - 2y) 5 .

Решение У нас есть (a + b) n , где a = x 2 , b = -2y, и n = 5. Тогда, используя бином Ньютона, мы имеем


Наконец, (x 2 - 2y) 5 = x 10 - 10x 8 y + 40x 6 y 2 - 80x 4 y 3 + 80x 2 y 4 - 35y 5 .

Пример 4 Возведите в степень: (2/x + 3√x ) 4 .

Решение У нас есть (a + b) n , где a = 2/x, b = 3√x , и n = 4. Тогда, используя бином Ньютона, мы получим


Finally (2/x + 3√x ) 4 = 16/x 4 + 96/x 5/2 + 216/x + 216x 1/2 + 81x 2 .

Нахождение определенного члена

Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.

Обратите внимание, что в биноме Ньютона дает нам 1-й член, дает нам 2-й член, дает нам 3-й член и так далее. Это может быть обощено следующим образом.

Нахождение (k + 1) члена

(k + 1) член выражения (a + b) n есть .

Пример 5 Найдите 5-й член в выражении (2x - 5y) 6 .

Решение Во-первых, отмечаем, что 5 = 4 + 1. Тогда k = 4, a = 2x, b = -5y, и n = 6. Тогда 5-й член выражения будет

Пример 6 Найдите 8-й член в выражении (3x - 2) 10 .

Решение Во-первых, отмечаем, что 8 = 7 + 1. Тогда k = 7, a = 3x, b = -2 и n = 10. Тогда 8-й член выражения будет

Общее число подмножеств

Предположим, что множество имеет n объектов. Число подмножеств, содержащих k элементов есть . Общее число подмножеств множества есть число подмножеств с 0 элементами, а также число подмножеств с 1 элементом, а также число подмножеств с 2-мя элементами и так далее. Общее число подмножеств множества с n элементами есть
.
Теперь давайте рассмотрим возведение в степень (1 + 1) n:

.
Так. общее количество подмножеств (1 + 1) n , или 2 n . Мы доказали следующее.

Полное число подмножеств

Полное число подмножеств множества с n элементами равно 2 n .

Пример 7 Сколько подмножеств имеет множество {A, B, C, D, E}?

Решение Множество имеет 5 элементов, тогда число подмножеств равно 2 5 , или 32.

Пример 8 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
{кетчуп, горчица, майонез, помидоры, салат, лук, грибы, оливки, сыр }.
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?

Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно

. Таким образом, Венди может предложить 512 различных гамбургеров.

Треугольник Паскаля

Введение 3

1.Определение треугольника Паскаля 4

2.Построение треугольника Паскаля 6

3.Свойства треугольника Паскаля и их применения 7

4.Применение свойств треугольника Паскаля 13

Заключение 16

Список использованной литературы 17

Треугольник Паскаля так прост,

что выписать его сможет даже

десятилетний ребенок.

В тоже время он таит в себе

неисчерпаемые сокровища и связывает

воедино различные аспекты математики,

не имеющие на первый взгляд между

собой ничего общего.

Столь необычные свойства позволяют

наиболее изящных схем

во всей математике".
Мартин Гарднер

"Математические новеллы"

Введение

В школьном курсе алгебры рассматриваются формулы сокращенного умножения второй и третей степени, но меня заинтересовала задача возведение двучлена в более высокую степень.

Изучая треугольник Паскаля знакомимся с множеством интересных и удивительных свойств. Применение этих свойств поможет при решение задач комбинаторики. Изучение этих свойств и их применение рассмотрено в данной работе.

  1. Определение треугольника Паскаля

Треугольник Паскаля - арифметический треугольник, образованный биномиальными коэффициентами. Назван в честь Блеза Паскаля, данный треугольник представлен на рисунке 1.

Если очертить треугольник Паскаля, то получится равнобедренный треугольник. В этом треугольнике на вершине и по бокам стоят единицы. Каждое число равно сумме двух, расположенных над ним чисел. Продолжать треугольник можно бесконечно. Строки треугольника симметричны относительно вертикальной оси. Имеет применение в теории вероятности и обладает занимательными свойствами.

Рисунок 1 Треугольник Паскаля
Из истории.

Первое упоминание треугольной последовательности биномиальных коэффициентов под названием meru-prastaara встречается в комментарии индийского математика X века Халаюдхи к трудам другого математика, Пингалы. Треугольник исследуется также Омаром Хайямом около 1100 года, поэтому в Иране эту схему называют треугольником Хайяма. В 1303 году была выпущена книга «Яшмовое зеркало четырёх элементов» китайского математика Чжу Шицзе, в которой был изображен треугольник Паскаля на одной из иллюстраций; считается, что изобрёл его другой китайский математик, Ян Хуэй (поэтому китайцы называют его треугольником Яна Хуэя). Данный треугольник приведен на рисунке 2. На титульном листе учебника арифметики, написанном в 1529 году Петром Апианом, астрономом из Ингольтштадского университета, также изображён треугольник Паскаля. А в 1653 году (в других источниках в 1655 году) вышла книга Блеза Паскаля «Трактат об арифметическом треугольнике».

Рисунок 2 Треугольник Яна Хуэя в китайском средневековом манускрипте, 1303 год

  1. Построение треугольника Паскаля

Треугольник Паскаля часто выписывают в виде равнобедренного треугольника рисунок 3, в котором на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Треугольник можно продолжать неограниченно. Он обладает симметрией относительно вертикальной оси, проходящей через его вершину.

Рисунок 3 Треугольник Паскаля

  1. Свойства треугольника Паскаля и их применения

1 - Второе число каждой строки соответствует её номеру.
2 - Третье число каждой строки равно сумме номеров строк, ей предшествующих.
3 – Треугольник Паскаля представляет собой различные системы измерения пространства:

одномерное, двухмерное, трехмерное, четырехмерное и т.д. На рисунке 4 каждая зеленая линия показывает пространство, т.е. то количество шаров которые можно выложить друг под другом.

Рисунок 4 Треугольник Паскаля

3.1 – Одномерное пространство - первая зеленая линия

Это треугольные числа в одномерном пространстве - сколько бы шаров мы не взяли - больше одного расположить не сможем.

3.2. – Двухмерное пространство – вторая зеленая линия

Треугольное число - это число кружков, которые могут быть расставлены в форме равностороннего треугольника, смотри рисунок 5.

Рисунок 5 Треугольное число

Последовательность треугольных чисел для n = 0, 1, 2, … начинается так:

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120

Классический пример треугольных чисел встречающихся в повседневной жизни – это начальная расстановка шаров в бильярде, представлена на рисунке 6.

Рисунок 6 Треугольные числа на бильярдном столе
3.3 – Трехмерное пространство это третья зеленая линия.

Это треугольные числа в трехмерном пространстве т.е. один шар мы можем положить на три – итого четыре, под три подложим шесть, представлено на рисунке 7.

Рисунок 7 Расположение четырех шаров в трехмерном пространстве
4 - Сумма чисел n-й восходящей диагонали, проведенной через строку треугольника с номером n − 1, есть n-е число Фибоначчи:

Числа Фибоначчи - элементы числовой последовательности

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946,…

в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (известного как Фибоначчи).

Более формально, последовательность чисел Фибоначчи задается линейным рекуррентным соотношением:

Иногда числа Фибоначчи рассматривают и для отрицательных номеров n как двусторонне бесконечную последовательность, удовлетворяющую тому же рекуррентному соотношению. Члены с такими номерами легко получить с помощью эквивалентной формулы «назад»: F n = F n + 2 − F n + 1


n

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

10

F n

-55

34

-21

13

-8

5

-3

2

-1

1

0

1

1

2

3

5

8

13

21

34

55

5 - Если вычесть из центрального числа в строке с чётным номером соседнее число из той же строки, то получится число Каталана.

Числа Катала́на - числовая последовательность, встречающаяся в многих задачах комбинаторики. Последовательность названа в честь бельгийского математика Каталана, хотя была известна ещё Л. Эйлеру.

Первые несколько чисел Каталана:

1, 1, 2, 5, 14, 42, 132, 429, 1430,…

Числа Каталана удовлетворяют рекуррентному соотношению

И для
6 - Сумма чисел n-й строки треугольника Паскаля равна 2 n .
7 - Простые делители чисел треугольника Паскаля образуют симметричные самоподобные структуры.

Рассмотрите треугольник, построенный "относительно" числа 7, то есть, числа, не делящиеся на 7 без остатка, нарисованы черным цветом, делящиеся - белым, и попробуем увидеть закономерность.

Рисунок 8 Треугольник Паскаля относительно делителя 7

8 - Если в треугольнике Паскаля все нечётные числа окрасить в чёрный цвет, а чётные - в белый, то образуется треугольник Серпинского. Данный треугольник представлен на рисунке 9.

Рисунок 9 Треугольник Серпинского

  1. Применение свойств треугольника Паскаля


  1. Предположим, что вы входите в город как показано на схеме синей стрелкой, и можете двигаться только вперед, точнее, все время выбирая, вперед налево, или вперед направо. Узлы, в которые можно попасть только единственным образом, отмечены зелеными смайликами, точка, в которую можно попасть двумя способами, показана красным смаликом, а тремя, соответственно, розовым. Это один из вариантов построения треугольника, предложенный Гуго Штейнгаузом в его классическом "Математическом калейдоскопе".


  1. Практическая значимость треугольника Паскаля заключается в том, что с его помощью можно запросто восстанавливать по памяти не только известные формулы квадратов суммы и разности, но и формулы куба суммы (разности), четвертой степени и выше.
Например, четвертая строчка треугольника как раз наглядно демонстрирует биномиальные коэффициенты для бинома четвертой степени:

Альтернатива треугольнику Паскаля:

перемножить почленно четыре скобки:

вспомнить разложение бинома Ньютона четвертой степени:

общий член разложения бинома n-й степени: ,

где Т – член разложения; – порядковый номер члена разложения.


  1. Используя свойства треугольника Паскаля мы можем вычислить сумму чисел натурального ряда. Например: нам необходимо вычислить сумму натурального ряда от 1 до 9. "Спустившись" по диагонали до числа 9, мы увидим слева снизу от него число 45. Оно то и дает искомую сумму.

Заключение

В работе приведены треугольник Паскаля, его интересные и удивительные свойства. Треугольник Паскаля применяется при решении различных алгебраических задач.

Данная работа позволяет научиться возводить двучлен в любую целую положительную степень, познакомиться с биномом Ньютона.

Список использованной литературы


  1. В.А. Успенский Популярные лекции по математике «Треугольник Паскаля» Главная редакция физико-математической литературы Москва «Наука» 1979г..

  2. Квант «Треугольник Паскаля».

  3. В. Байдикова Вариации на тему «Треугольник Паскаля»

  4. Энциклопедия юного математика.

  5. О. В. Кузьмин Треугольник и пирамида Паскаля: свойства и обобщения

Вариации на тему "Треугольник Паскаля"

История

Треугольник Паскаля является, пожалуй, одной из наиболее известных и изящных числовых схем во всей математике.

Блез Паскаль, французский математик и философ, посвятил ей специальный "Трактат об арифметическом треугольнике".

Впрочем, эта треугольная таблица была известна задолго до 1665 года - даты выхода в свет трактата.

Так, в 1529 году треугольник Паскаля был воспроизведен на титульном листе учебника арифметики, написанного астрономом Петром Апианом.

Изображен треугольник и на иллюстрации книги "Яшмовое зеркало четырех элементов" китайского математика Чжу Шицзе, выпущенной в 1303 году.

Омар Хайям, бывший не только философом и поэтом, но и математиком, знал о существовании треугольника в 1110 году, в свою очередь заимствовав его из более ранних китайских или индийских источников.

Построение треугольника Паскаля

Треугольник Паскаля - это просто бесконечная числовая таблица "треугольной формы", в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Таблица обладает симметрией относительно оси, проходящей через его вершину.

Свойства треугольника Паскаля

Свойства строк

    Сумма чисел n-й строки Паскаля равна 2 n (потому что при переходе от каждой строки к следующей сумма членов удваивается, а для нулевой строки она равна 20=1) Все строки Паскаля симметричны (потому что при переходе от каждой строки к следующей свойство симметричности сохраняется, а нулевая строка симметрична) Каждый член строки Паскаля с номером n тогда и только тогда делится на т, когда т - простое число, а n - степень этого простого числа

Треугольные числа
Вдоль диагоналей, параллельных сторонам треугольника, выстроены треугольные, тетраэдрические и другие числа. Треугольные числа указывают количество шаров или других предметов, уложенных в виде треугольника (эти числа образуют следующую последовательность: 1,3,6,10,15,21,..., в которой 1- первое треугольное число, 3- второе треугольное число, 6-третье и т. д. до m-ro, которое показывает, сколько членов треугольника Паскаля содержится в первых m его строках - от нулевой до (m-1)-й).

Тетраэдрические числа
Члены последовательности 1,4, 10, 20, 36, 56,... называются пирамидальными, или, более точно, тетраэдрическими числами: 1- первое тетраэдрическое число, 4- второе, 10- третье и т. д. до m-ro. Эти числа показывают, сколько шаров может быть уложено в виде треугольной пирамиды (тетраэдра).

Числа Фибоначчи
В 1228 году выдающийся итальянский математик Леонардо из Пизы, более известный сейчас под именем Фибоначчи, написал свою знаменитую "Книгу об абаке". Одна из задач этой книги - задача о размножении кроликов - приводила к последовательности чисел 1,1,2,3,5,8,13,21..., в которой каждый член, начиная с третьего, представляет собой сумму двух предыдущих членов. Эта последовательность носит название ряда Фибоначчи, члены ряда Фибоначчи называют числами Фибоначчи. Обозначая n-е число Фибоначчи через

Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как пять начальных чисел Фибоначчи. Оказывается, что всегда сумма чисел n-й диагонали есть n-е число Фибоначчи. Для доказательства интересующего нас предложения достаточно показать, что сумма всех чисел, составляющих n-ю и (n+1) диоганали треугольника Паскаля равна сумме чисел, составляющих его т+2-ю диагональ.

Биномиальные коэффициенты
Числа, стоящие по горизонтальным строкам, являются биномиальными коэффициентами. Строка с номером n состоит из коэффициентов разложения бинома (1+n)n. Покажем это при помощи операции Паскаля. Но сначала представим, как биномиальные коэффициенты определяются.

Возьмем бином 1+х и начнем возводить его в степени 0, 1, 2, 3 и т. д., располагая получающиеся при этом многочлены по возрастающим степеням буквы х. Мы получим

1.(1+х)0=1,
2.(1+х)1=1+х,
3. (1 +х)2=(1 +х)(1 +х)= 1 +2х+х2,
4.(1+х)3=1+Зх+Зх2+хЗ
и т. д.

Вообще, для любого целого неотрицательного числа n
(1+x)n=a0+a1x+a2x2+...+apxp,
где a0,a1,...,ap

Последнее соотношение можно переписать в виде а из соотношений 1-4 получаем

Образовался треугольник Паскаля, каждый элемент которого

Именно это фундаментальное свойство треугольника Паскаля связывает его не только с комбинаторикой и теорией вероятностей, но и с другими областями математики и ее приложений.

Решение задач с применением треугольника Паскаля

Старинные задачи о случайном
Еще в глубокой древности появились различные азартные игры. В Древней Греции и Риме широкое распространение получили игры в астрагалы, когда игроки бросали кости животных. Также пользовались популярностью игральные кости - кубики с нанесенными на гранях точками. Позднее азартные игры распространились в средневековой Европе.

Эти игры подарили математикам массу интересных задач, которые потом легли в основу теории вероятностей. Очень популярны были задачи о дележе ставки. Ведь, как правило, игра велась на деньги: игроки делали ставки, а победитель забирал всю сумму. Однако игра иногда прерывалась раньше финала, и возникал вопрос: как разделить деньги.

Многие математики занимались решением этой проблемы, но до середины XVII века так и не нашли его. В 1654 году между французскими математиками Блезом Паскалем, уже хорошо известным нам, и Пьером Ферма возникла переписка по поводу ряда комбинаторных задач, в том числе и задач о дележе ставки. Оба ученых, хотя и несколько разными путями, пришли к верному решению, деля ставку пропорционально вероятности выигрыша всей суммы при продолжении игры.

Следует отметить, что до них никто из математиков вероятность событий не вычислял, в их переписке теория вероятностей и комбинаторика впервые были научно обоснованы, и поэтому Паскаль и Ферма считаются основателями теории вероятностей.

Рассмотрим одну из задач Ферма, решенную Паскалем с помощью своей числовой таблицы.

Пусть до выигрыша всей встречи игроку А недостает двух партий, а игроку В - трех партий. Как справедливо разделить ставку, если игра прервана?

Паскаль складывает количество партий, недостающих игрокам, и берет строку таблицы, в которой количество членов равно найденной сумме, т. е. 5. Тогда доля игрока А будет равна сумме трех (по количеству партий, недостающих игроку В) первых членов пятой строки, а доля игрока В - сумме оставшихся двух чисел. Выпишем эту строку: 1,4,6,4, 1. Доля игрока А равна 1+4+6=11, а доля В -1+4=5.

Другие арифметические треугольники

Рассмотрим треугольники, построение которых связано с известными однопараметрическими комбинаторными числами. Создание таких треугольников основано на принципе построения рассматриваемого выше треугольника Паскаля.

Треугольник Люка

Рассмотрим построенный арифметический треугольник. Данный треугольник носит название треугольника Люка, так как суммы чисел, стоящих на восходящих диагоналях, дают последовательность чисел Люка: 1, 3, 4, 7, 11, 18, / которые могут быть определены как

Ln=Ln-1+Ln-2, L0=2, L1=1

Каждый элемент треугольника определяется по правилу Паскаля Ln+1,k=Ln, k-1+Ln, k при начальных условиях L1,0=1, L1,1=2 и L0,k=0

т. е. n-я строка треугольника люка может быть получена сложением n-й и (n-1)-й строк треугольника Паскаля.

Треугольник Фибоначчи

Из чисел (fm, n), удовлетворяющих уравнениям
fm, n=fm-1,n+fm-2,n,
fm, n=fm-1,n-1+fm-2,n-2, где с начальными условиями f0,0=f1,0=f1,1=f2,1=1 строится следующий треугольник.

fm, n =fn fn-m, m Є n Є 0, где fn - n - е число Фибоначчи. Построенный треугольник назван треугольником Фибоначчи.

Треугольник Трибоначчи

Рассмотрим еще один треугольник, создание которого основано на методе построения треугольника Паскаля. Это треугольник Трибоначчи. Он назван так потому, что суммы элементов, стоящих на восходящих диагоналях, образуют последовательность чисел Трибоначчи: 1,1,2,4,7,13,24,44,..., которая может быть определена следующим рекуррентным соотношением: tn+3 = tn+2 + tn+1 + tn с начальными условиями t0 = 1, t1 = 1, t2 = 2

"Знаковый треугольник"

Построение "знакового треугольника"

Перед нами треугольник, составленный из одних знаков, плюсов и минусов, по принципу образования треугольника Паскаля. В отличие от последнего, он расположен основанием вверх.

Сначала задается первая строка, состоящая из произвольного количества знаков и их расположения. Каждый знак следующей строки получается путем перемножения двух вышестоящих знаков.

Одной из наших задач является установить, при каком количестве знаков первой строки число минусов и плюсов будет одинаковым. Общее количество знаков в таблице можно определить формулой

где n - число знаков в первой строке.

Образуется последовательность чисел, при которых количество минусов и плюсов может быть равным: 3, 4, 7, 8, 11, 12, 15, 16,..., каждое из которых показывает количество знаков в первой строке. Однако не установлено, при каком расположении знаков число минусов и плюсов будет однозначно одинаковым.

Второй нашей задачей, касающейся треугольника произведения знаков, является установление наименьшего количества плюсов, которое может иметь "знаковый треугольник".

Существует интересная последовательность знаков первой строки: +, -, -, +, -, -, ... (или -, -, + ,- ,- ,+ , ...), при которой число плюсов, как до сих пор считается, будет наименьшим и равным 1/3 от общего числа знаков, т. е. равным

Важно заметить, что если постепенно обходить треугольник, то последовательность знаков +, -, -, ... сохранится.

Обратим внимание на тот факт, что наименьшее количество плюсов, равное 1/3 от общего числа знаков, можно увидеть и в треугольнике при n = 2.