Первичный углевод. Простые и сложные Углеводы

Углеводами называют вещества с общей формулой C n (H 2 O) m , где n и m могут иметь разные значения. Название «углеводы» отражает тот факт, что водород и кислород присутствуют в молекулах этих веществ в том же соотношении, что и в молекуле воды. Кроме углерода, водорода и кислорода, производные углеводов могут содержать и другие элементы, например азот.

Углеводы - одна из основных групп органических веществ клеток. Они представляют собой первичные продукты фотосинтеза и исходные продукты биосинтеза других органических веществ в растениях (органические кислоты, спирты, аминокислоты и др.), а также содержатся в клетках всех других организмов. В животной клетке содержание углеводов находится в пределах 1-2 %, в растительных оно может достигать в некоторых случаях 85-90 % массы сухого вещества.

Выделяют три группы углеводов:

  • моносахариды или простые сахара;
  • олигосахариды - соединения, состоящие из 2-10 последовательно соединенных молекул простых сахаров (например, дисахариды, трисахариды и т. д.).
  • полисахариды состоят более чем из 10 молекул простых сахаров или их производных (крахмал, гликоген, целлюлоза, хитин).

Моносахариды (простые сахара)

В зависимости от длины углеродного скелета (количества атомов углерода) моносахариды разделяют на триозы (C 3), тетрозы (C 4), пентозы (C 5), гексозы (C 6), гептозы (C 7).

Молекулы моносахаридов являются либо альдегидоспиртами (альдозами), либо кетоспиртами (кетозами). Химические, свойства этих веществ определяются прежде всего альдегидными или кетонными группировками, входящими в состав их молекул.

Моносахариды хорошо растворяются в воде, сладкие на вкус.

При растворении в воде моносахариды, начиная с пентоз, приобретают кольцевую форму.

Циклические структуры пентоз и гексоз - обычные их формы: в любой данный момент лишь небольшая часть молекул существует в виде «открытой цепи». В состав олиго- и полисахаридов также входят циклические формы моносахаридов.

Кроме сахаров, у которых все атомы углерода связаны с атомами кислорода, есть частично восстановленные сахара, важнейшим из которых является дезоксирибоза.

Олигосахариды

При гидролизе олигосахариды образуют несколько молекул простых сахаров. В олигосахаридах молекулы простых сахаров соединены так называемыми гликозидными связями, соединяющими атом углерода одной молекулы через кислород с атомом углерода другой молекулы.

К наиболее важным олигосахаридам относятся мальтоза (солодовый сахар), лактоза (молочный сахар) и сахароза (тростниковый или свекловичный сахар). Эти сахара называют также дисахаридами. По своим свойствам дисахариды блоки к моносахаридам. Они хорошо растворяются в воде и имеют сладкий вкус.

Полисахариды

Это высокомолекулярные (до 10 000 000 Да) полимерные биомолекулы, состоящие из большого числа мономеров - простых сахаров и их производных.

Полисахариды могут состоять из моносахаридов одного или разных типов. В первом случае они называются гомополисахариды (крахмал, целлюлоза, хитин и др.), во втором - гетерополисахариды (гепарин). Все полисахариды не растворимы в воде и не имеют сладкого вкуса. Некоторые из них способны набухать и ослизняться.

Наиболее важными полисахаридами являются следующие.

Целлюлоза - линейный полисахарид, состоящий из нескольких прямых параллельных цепей, соединенных между собой водородными связями. Каждая цепь образована остатками β-D-глюкозы. Такая структура препятствует проникновению воды, очень прочна на разрыв, что обеспечивает устойчивость оболочек клеток растений, в составе которых 26-40 % целлюлозы.

Целлюлоза служит пищей для многих животных, бактерий и грибов. Однако большинство животных, в том числе и человек, не могут усваивать целлюлозу, поскольку в их желудочно-кишечном тракте отсутствует фермент целлюлаза, расщепляющий целлюлозу до глюкозы. В то же время целлюлозные волокна играют важную роль в питании, поскольку они придают пище объемность и грубую консистенцию, стимулируют перистальтику кишечника.

Крахмал и гликоген . Эти полисахариды являются основными формами запасания глюкозы у растений (крахмал), животных, человека и грибов (гликоген). При их гидролизе в организмах образуется глюкоза, необходимая для процессов жизнедеятельности.

Хитин образован молекулами β-глюкозы, в которой спиртовая группа при втором атоме углерода замещена азотсодержащей группой NHCOCH 3 . Его длинные параллельные цепи так же, как и цепи целлюлозы, собраны в пучки.

Хитин - основной структурный элемент покровов членистоногих и клеточных стенок грибов.

Функции углеводов

Энергетическая . Глюкоза является основным источником энергии, высвобождаемой в клетках живых организмов в ходе клеточного дыхания (1 г углеводов при окислении высвобождает 17,6 кДж энергии).

Структурная . Целлюлоза входит в состав клеточных оболочек растений; хитин является структурным компонентом покровов членистоногих и клеточных стенок грибов.

Некоторые олигосахариды входят в состав цитоплазматической мембраны клетки (в виде гликопротеидов и гликолипидов) и образуют гликокаликс.

Метаболическая . Пентозы участвуют в синтезе нуклеотидов (рибоза входит в состав нуклеотидов РНК, дезоксирибоза - в состав нуклеотидов ДНК), некоторых коферментов (например, НАД, НАДФ, кофермента А, ФАД), АМФ; принимают участие в фотосинтезе (рибулозодифосфат является акцептором СO 2 в темновой фазе фотосинтеза).

Пентозы и гексозы участвуют в синтезе полисахаридов; в этой роли особенно важна глюкоза.

Вспомните!

Какие вещества называют биологическими полимерами?

Это полимеры – высокомолекулярные соединения, входящие в состав живых организмов. Белки, некоторые углеводы, нуклеиновые кислоты.

Каково значение углеводов в природе?

Широко распространена в природе фруктоза - фруктовый сахар, который значительно слаще других сахаров. Этот моносахарид придаёт сладкий вкус плодам растений и мёду. Самый распространённый в природе дисахарид - сахароза, или тростниковый сахар, - состоит из глюкозы и фруктозы. Её получают из сахарного тростника или сахарной свёклы. Крахмал для растений и гликоген для животных и грибов являются резервом питательных веществ и энергии. Целлюлоза и хитин выполняют в организмах структурную и защитную функции. Целлюлоза, или клетчатка, образует стенки растительных клеток. По общей массе она занимает первое место на Земле среди всех органических соединений. По своему строению очень близок к целлюлозе хитин, который составляет основу наружного скелета членистоногих и входит в состав клеточной стенки грибов.

Назовите известные вам белки. Какие функции они выполняют?

Гемоглобин – белок крови, транспорт газов в крови

Миозин – белок мышц, сокращение мышц

Коллаген – белок сухожилий, кож, эластичность, растяжимость

Казеин – белок молока, питательное вещество

Вопросы для повторения и задания

1. Какие химические соединения называют углеводами?

Это обширная группа природных органических соединений. В животных клетках углеводы составляют не более 5% сухой массы, а в некоторых растительных (например, клуб ни картофеля) их содержание достигает 90% сухого остатка. Углеводы подразделяют на три основных класса: моносахариды, дисахариды и полисахариды.

2. Что такое моно- и дисахариды? Приведите примеры.

Моносахариды состоят из мономеров, низкомолекулярные органические вещества. Моносахариды рибоза и дезоксирибоза входят в состав нуклеиновых кислот. Самый распространенный моносахарид – глюкоза. Глюкоза присутствует в клетках всех организмов и является одним из основных источников энергии для животных. Если в одной молекуле объединяются два моносахарида, такое соединение называют дисахаридом. Самый распространённый в природе дисахарид - сахароза, или тростниковый сахар.

3. Какой простой углевод служит мономером крахмала, гликогена, целлюлозы?

4. Из каких органических соединений состоят белки?

Длинные белковые цепи построены всего из 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала. Соединяясь, молекулы аминокислот образуют так называемые пептидные связи. Две полипептидные цепи, из которых состоит гормон поджелудочной железы - инсулин, содержат 21 и 30 аминокислотных остатков. Это одни из самых коротких «слов» в белковом «языке». Миоглобин - белок, связывающий кислород в мышечной ткани, состоит из 153 аминокислот. Белок коллаген, составляющий основу коллагеновых волокон соединительной ткани и обеспечивающий её прочность, состоит из трёх полипептидных цепей, каждая из которых содержит около 1000 аминокислотных остатков.

5. Как образуются вторичная и третичная структуры белка?

Закручиваясь в виде спирали, белковая нить приобретает более высокий уровень организации - вторичную структуру. И наконец, спираль полипептида сворачивается, образуя клубок (глобулу). Именно такая третичная структура белка и является его биологически активной формой, обладающей индивидуальной специфичностью. Однако для ряда белков третичная структура не является окончательной. Вторичная структура – это полипептидная цепь, закрученная в спираль. Для более прочного взаимодействия во вторичной структуре, происходит внутримолекулярное взаимодействие с помощью –S–S– сульфидных мостиков между витками спирали. Это обеспечивает прочность данной структуры. Третичная структура – это вторичная спиральная структура закручена в глобулы – компактные комочки. Эти структуры обеспечивают максимальную прочность и большую распространенность в клетках по сравнению с другими органическими молекулами.

6. Назовите известные вам функции белков. Чем вы можете объяснить существующее многообразие функций белков?

Одна из основных функций белков – ферментативная. Ферменты – это белки-катализаторы, ускоряющие химические реакции в живых организмах. Ферментативная реакция – это химическая реакция, протекающая только при наличии фермента. Без фермента не протекает не одна реакции в живых организмах. Работа ферментов строго специфична, у каждого фермента свой субстрат, который он расщепляет. Фермент подходит к своему субстрату как «ключ к замку». Так, фермент уреаза регулирует расщепление мочевины, фермент амилаза – крахмала, а ферменты протеазы – белки. Поэтому для ферментов применяют выражение «специфичность действия».

Белки выполняют и другие разнообразные функции в организмах: структурная, транспортная, двигательная, регуляторная, защитная, энергетическая. Функции белков довольно многочисленны, так как лежат в основе многообразия проявления жизни. Это компонент биологических мембран, перенос питательных веществ, например, гемоглобин, работа мышц, гормональная функция, защита организма – работа антигенов и антител, и прочие важнейшие функции в организме.

7. Что такое денатурация белка? Что может явиться причиной денатурации?

Денатурация – это нарушения третичной пространственной структуры белковых молекул под действием различных физических, химических, механических и других факторов. Физические факторы – это температура, излучение, Химические факторы – это действие на белки любых химических веществ: растворители, кислоты, щелочи, концентрированные вещества и прочее. Механические факторы – встряхивание, давление, растяжение, скручивание и прочее.

Подумайте! Вспомните!

1. Используя знания, полученные при изучении биологии растений, объясните, почему в растительных организмах углеводов значительно больше, чем в животных.

Так как в основе жизни – питания растений лежит фотосинтез, это процесс образования сложных органических соединений углеводов из более простых неорганических углекислого газа и воды. Основной углевод синтезируемый растения для воздушного питания – глюкоза, также это может быть крахмал.

2. К каким заболеваниям может привести нарушение превращения углеводов в организме человека?

Регуляция углеводного обмена в основном осуществляется гормонами и центральной нервной системой. Глюкокортикостероиды (кортизон, гидрокортизон) тормозят скорость транспорта глюкозы в клетки тканей, инсулин ускоряет его; адреналин стимулирует процесс сахарообразования из гликогена в печени. Коре больших полушарий также принадлежит определенная роль в регуляции углеводного обмена, так как факторы психогенного характера усиливают образование сахара в печени и вызывают гипергликемию.

О состоянии углеводного обмена можно судить по содержанию сахара в крови (в норме 70-120 мг%). При сахарной нагрузке эта величина возрастает, но затем быстро достигает нормы. Нарушения углеводного обмена возникают при различных заболеваниях. Так, при недостатке инсулина наступает сахарный диабет.

Понижение активности одного из ферментов углеводного обмена - мышечной фосфорилазы - ведет к мышечной дистрофии.

3. Известно, что, если в рационе отсутствует белок, даже несмотря на достаточную калорийность пищи, у животных останавливается рост, изменяется состав крови и возникают другие патологические явления. Какова причина подобных нарушений?

В организме всего 20 различных типов аминокислот, имеющих общий план строения, но отличающихся друг от друга по строению радикала, они образуют разные белковые молекулы, если не употреблять белки, например, незаменимые, которые не могут в организме образовываться самостоятельно, а должны потребляться с пищей. Таким образом, если не есть белки, не смогут образовываться многие белковые молекулы внутри самого организма и возникнуть патологические изменения. Рост контролируется ростом костных клеток, основной любой клетки является белок; гемоглобин основной белок крови, который обеспечивает перенос основных газов в организме (кислород, углекислый газ).

4. Объясните трудности, возникающие при пересадке органов, опираясь на знания специфичности белковых молекул в каждом организме.

Белки являются генетическим материалом, так как в них записана структура ДНК и РНК организма. Тем самым белки имеют генетические особенности у каждого организма, в них зашифрована информация генов, в этом заключается трудность при пересадке от чужих (неродственных) организмов, так как у них различные гены, а значит и белки.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц – олигосахариды, а более десяти – полисахариды.

Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.

Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН 2 ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы глюкоза , фруктоза , манноза и галактоза – по стереохимической конфигурациям относят к соединениям D-ряда.

Полисахари́ды – общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров моносахаридов . С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

https :// ru . wikipedia . org / wiki /Углеводы

1.6. Липиды - номенклатура и строение. Полиморфизм липидов.

Липи́ды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот , сложных – из спирта, высокомолекулярных жирных кислот и других компонентов.

Классификация липидов

Простые липиды – это липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Сложные липиды – это липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) и другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).

https :// ru . wikipedia . org / wiki /Липиды

Литература:

1) Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;

2) Маркман А. Л., Химия липидов, в. 12, Таш., 1963 – 70;

3) Тютюнников Б. Н., Химия жиров, М., 1966;

4) Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.

1.7. Биологические мембраны. Формы агрегации липидов. Понятие о жидко-кристаллическом состоянии. Латеральная диффузия и флип-флоп.

Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндо-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Схема строения мембраны: а – трехмерная модель; б – плоскостное изображение;

1 – белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 – слои молекул липидов; 3 – гликопротеины; 4 – гликолипиды; 5 – гидрофильный канал, функционирующий как пора.

Функции биологических мембран следующие:

1) Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2) Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3) Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4) Являются катализаторами (обеспечение примембранных химических процессов).

5) Участвуют в преобразовании энергии.

http :// sbio . info / page . php ? id =15

Латеральная диффузия – это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны.

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток – флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Флип-флоп – это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах – липосомах.

Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

Понятие о жидко-кристаллическом состоянии

Твердое тело может быть как кристаллическим , так и аморфным. В первом случае имеется дальний порядок в расположении частиц на расстояниях, много превышающих межмолекулярные расстояния (кристаллическая решетка). Во втором – нет дальнего порядка в расположении атомов и молекул.

Различие между аморфным телом и жидкостью состоит не в наличии или отсутствии дальнего порядка, а в характере движения частиц. Молекулы жидкости и твердого тела совершают колебательные (иногда вращательные) движения около положения равновесия. Через некоторое среднее время («время оседлой жизни») происходит перескок молекул в другое положение равновесия. Различие заключается в том, что «время оседлой жизни» в жидкости намного меньше, чем в твердом состоянии.

Липидные двухслойные мембраны при физиологических условиях – жидкие, «время оседлой жизни» фосфолипидной молекулы в мембране составляет 10 −7 – 10 −8 с.

Молекулы в мембране расположены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты примерно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных голов.

Физиологическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием. Жидкие кристаллы могут образовываться не во всех веществах, а в веществах из «длинных молекул» (поперечные размеры которых меньше продольных). Могут существовать различные жидкокристаллические структуры: нематическая (нитевидная), когда длинные молекулы ориентированы параллельно друг другу; смектическая – молекулы параллельны друг другу и располагаются слоями; холестическая – молекулы располагаются параллельно друг другу в одной плоскости, но в разных плоскостях ориентации молекул разные.

http :// www . studfiles . ru / preview /1350293/

Литература: Н.А. Лемеза, Л.В.Камлюк, Н.Д. Лисов. «Пособие по биологии для поступающих в ВУЗы».

1.8. Нуклеиновые кислоты. Гетероциклические основания, нуклеозиды, нуклеотиды, номенклатура. Пространственная структура нуклеиновых кислот - ДНК, РНК (тРНК, рРНК, мРНК). Рибосомы и ядро клетки. Методы определения первичной и вторичной структуры нуклеиновых кислот (секвенирование, гибридизация).

Нуклеиновые кислоты – фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации.

Нуклеиновые кислоты представляют собой биополимеры. Их макромолекулы состоят из неоднократно повторяющихся звеньев, которые представлены нуклеотидами. И их логично назвали полинуклеотидами. Одной из главных характеристик нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида (структурного звена нуклеиновых кислот) входят три составные части:

Азотистое основание. Может быть пиримидиновое и пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов.

Остаток фосфорной кислоты.

Моносахарид – рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

Нуклеотид по своей сути – это фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

http :// sbio . info / page . php ? id =11

Азо́тистые основа́ния гетероциклические органические соединения, производные пиримидина и пурина , входящие в состав нуклеиновых кислот . Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.

УГЛЕВОДЫ

Углеводы входят в состав клеток и тканей всех растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. На долю углеводов приходится около 80% сухого вещества растений и около 20% животных. Растения синтезируют углеводы из неорганических соединений - углекислого газа и воды (СО 2 и Н 2 О ).

Углеводы делятся на две группы: моносахариды (монозы) и полисахариды (полиозы).

Моносахариды

Для подробного изучения материала, связанного с классификацией углеводов, изомерией, номенклатурой, строением и др., необходимо просмотреть анимационные фильмы " Углеводы. Генетический D - ряд сахаров" и "Построение формул Хеуорса для D - галактозы" (данный видеоматериал доступен только на CD - ROM ). Тексты, сопровождающие эти фильмы, в полном объеме перенесены в данный подраздел и ниже следуют.

Углеводы. Генетический D- ряд сахаров

"Углеводы широко распространены в природе и выполняют в живых организмах различные важные функции. Они поставляют энергию для биологических процессов, а также являются исходным материалом для синтеза в организме других промежуточных или конечных метаболитов. Углеводы имеют общую формулу C n (H 2 O ) m , откуда и возникло название этих природных соединений.

Углеводы делятся на простые сахара или моносахариды и полимеры этих простых сахаров или полисахариды. Среди полисахаридов следует выделить группу олигосахаридов, содержащих в молекуле от 2 до 10 моносахаридных остатков. К ним относятся, в частности, дисахариды.

Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например , глюкоза – это альдоза, а фруктоза – это кетоза.

(глюкоза (альдоза)) (фруктоза (кетоза))

В зависимости от числа атомов углерода в молекуле моносахарид называется тетрозой, пентозой, гексозой и т.д. Если объединить последние два типа классификации, то глюкоза – это альдогексоза, а фруктоза – кетогексоза. Большинство встречающихся в природе моносахаридов – это пентозы и гексозы.

Моносахариды изображаются в виде проекционных формул Фишера, т.е. в виде проекции тетраэдрической модели атомов углерода на плоскость чертежа. Углеродная цепь в них записывается вертикально. У альдоз наверху помещают альдегидную группу, у кетоз – соседнюю с карбонильной первичноспиртовую группу. Атом водорода и гидроксильную группу при асимметрическом атоме углерода располагают на горизонтальной прямой. Асимметрический атом углерода находится в образующемся перекрестье двух прямых и не обозначается символом. С групп, расположенных вверху, начинают нумерацию углеродной цепи. (Дадим определение асимметрическому атому углерода: это атом углерода, связанный с четырьмя различными атомами или группами).

Установление абсолютной конфигурации, т.е. истинного расположения в пространстве заместителей у асимметрического атома углерода является весьма трудоемкой, а до некоторого времени было даже невыполнимой задачей. Существует возможность характеризовать соединения путем сравнения их конфигураций с конфигурациями эталонных соединений, т.е. определять относительные конфигурации.

Относительная конфигурация моносахаридов определяется по конфигурационному стандарту – глицериновому альдегиду, которому еще в конце прошлого столетия произвольно были приписаны определенные конфигурации, обозначенные как D - и L - глицериновые альдегиды. С конфигурацией их асимметрических атомов углерода сравнивается конфигурация наиболее удаленного от карбонильной группы асимметрического атома углерода моносахарида. В пентозах таким атомом является четвертый атом углерода (С 4 ), в гексозах – пятый (С 5 ), т.е. предпоследние в цепи углеродных атомов. При совпадении конфигурации этих атомов углерода с конфигурацией D - глицеринового альдегида моносахарид относят к D - ряду. И, наоборот, при совпадении с конфигурацией L - глицеринового альдегида считают, что моносахарид принадлежит к L - ряду. Символ D означает, что гидроксильная группа при соответствующем асимметрическом атоме углерода в проекции Фишера располагается справа от вертикальной линии, а символ L - что гидроксильная группа расположена слева.

Генетический D- ряд сахаров

Родоначальником альдоз является глицериновый альдегид. Рассмотрим генетическое родство сахаров D - ряда с D - глицериновым альдегидом.

В органической химии существует метод увеличения углеродной цепи моносахаридов путем последовательного введения группы

Н–

I
С
I

–ОН

между карбонильной группой и соседним атомом углерода. Введение этой группы в молекулу D - глицеринового альдегида приводит к двум диастереомерным тетрозам – D - эритрозе и D - треозе. Это объясняется тем, что введенный в цепь моносахарида новый атом углерода становится асимметрическим. По этой же причине каждая полученная тетроза, а далее и пентоза при введении в их молекулу еще одного углеродного атома тоже дают два диастереомерных сахара. Диастереомеры – это стереоизомеры, отличающиеся конфигурацией одного или нескольких асимметрических атомов углерода.

Так получен D - ряд сахаров из D - глицеринового альдегида. Как видно, все члены приведенного ряда, будучи полученными из D - глицеринового альдегида, сохранили его асимметрический атом углерода. Это – последний асимметрический атом углерода в цепи углеродных атомов представленных моносахаридов.

Каждой альдозе D -ряда соответствует стереоизомер L - ряда, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение. Такие стереоизомеры называются энантиомерами.

Следует отметить в заключение, что приведенный ряд альдогексоз не исчерпывается четырьмя изображенными. Представленным выше образом из D - рибозы и D - ксилозы можно получить еще две пары диастереомерных сахаров. Однако мы остановились лишь на альдогексозах, имеющих наибольшее распространение в природе."

Построение формул Хеуорса для D- галактозы

"Одновременно с введением в органическую химию представлений о строении глюкозы и других моносахаридов как о полигидроксиальдегидах или полигидроксикетонах, описываемых открытоцепными формулами, в химии углеводов стали накапливаться факты, которые трудно было объяснить с позиций таких структур. Оказалось, что глюкоза и другие моносахариды существуют в виде циклических полуацеталей, образующихся в результате внутримолекулярной реакции соответствующих функциональных групп.

Обычные полуацетали образуются при взаимодействии молекул двух соединений – альдегида и спирта. В процессе реакции разрывается двойная связь карбонильной группы, по месту разрыва к которой присоединяются атом водорода гидроксила и остаток спирта. Циклические полуацетали образуются за счет взаимодействия аналогичных функциональных групп, принадлежащих молекуле одного соединения – моносахарида. Реакция протекает в том же направлении: разрывается двойная связь карбонильной группы, к карбонильному кислороду присоединяется атом водорода гидроксила и образуется цикл за счет связывания атомов углерода карбонильной и кислорода гидроксильной групп.

Наиболее устойчивые полуацетали образуются за счет гидроксильных групп при четвертом и пятом углеродных атомах. Возникающие при этом пятичленные и шестичленные кольца называют соответственно фуранозной и пиранозной формами моносахаридов. Эти названия происходят от названий пяти- и шестичленных гетероциклических соединений с атомом кислорода в цикле – фурана и пирана.

Моносахариды, имеющие циклическую форму, удобно изображать перспективными формулами Хеуорса. Они представляют собой идеализированные плоские пяти- и шестичленные циклы с атомом кислорода в цикле, дающие возможность видеть взаимное расположение всех заместителей относительно плоскости кольца.

Рассмотрим построение формул Хеуорса на примере D - галактозы.

Для построения формул Хеуорса необходимо в первую очередь пронумеровать углеродные атомы моносахарида в проекции Фишера и повернуть ее направо так, чтоб цепь углеродных атомов заняла горизонтальное положение. Тогда атомы и группы, расположенные в проекционной формуле слева, будут находиться вверху, а расположенные справа – внизу от горизонтальной прямой, а при дальнейшем переходе к циклическим формулам – соответственно над и под плоскостью цикла. В действительности же углеродная цепь моносахарида не расположена на прямой линии, а принимает в пространстве изогнутую форму. Как видно, гидроксил при пятом углеродном атоме значительно удален от альдегидной группы, т.е. занимает положение, неблагоприятное для замыкания кольца. Для сближения функциональных групп осуществляется поворот части молекулы вокруг валентной оси, соединяющей четвертый и пятый углеродный атомы, против часовой стрелки на один валентный угол. В результате такого поворота гидроксил пятого атома углерода приближается к альдегидной группе, при этом два других заместителя также меняют свое положение – в частности, группировка – СН 2 ОН располагается над цепью углеродных атомов. Одновременно с этим и альдегидная группа за счет поворота вокруг s - связи между первым и вторым углеродными атомами сближается с гидроксилом. Сблизившиеся функциональные группы взаимодействуют между собой по указанной выше схеме, приводя к образованию полуацеталя с шестичленным пиранозным циклом.

Возникающую в результате реакции гидроксильную группу называют гликозидной. Образование циклического полуацеталя приводит к появлению нового асимметрического атома углерода, называемого аномерным. В результате возникают два диастереомера – a - и b - аномеры, различающиеся конфигурацией только первого углеродного атома.

Различные конфигурации аномерного атома углерода возникают вследствии того, что альдегидная группа, имеющая плоскую конфигурацию, из-за поворота вокруг s - связи между первым и вторым углеродными атомами обращается к атакующему реагенту (гидроксильной группе) как одной, так и противоположной сторонами плоскости. Гидроксильная группа при этом атакует карбонильную группу с любой стороны двойной связи, приводя к полуацеталям с различными конфигурациями первого атома углерода. Другими словами, основная причина одновременного образования a - и b -аномеров состоит в нестереоселективности обсуждаемой реакции.

У a - аномера конфигурация аномерного центра одинакова с конфигурацией последнего асимметрического атома углерода, опеределяющего принадлежность к D - и L - ряду, а у b - аномера – противоположна. У альдопентоз и альдогексоз D - ряда в формулах Хеуорса гликозидная гидроксильная группа у a - аномеров расположена под плоскостью, а у b - аномеров – над плоскостью цикла.

По аналогичным правилам осуществляется переход и к фуранозным формам Хеуорса. Разница лишь в том, что в реакции участвует гидроксил четвертого углеродного атома, а для сближения функциональных групп необходим поворот части молекулы вокруг s - связи между третьим и четвертым атомами углерода и по часовой стрелке, в результате чего пятый и шестой углеродный атомы расположатся под плоскостью цикла.

Названия циклических форм моносахаридов включают в себя указания на конфигурацию аномерного центра (a - или b -), на название моносахарида и его ряда (D - или L -) и размер цикла (фураноза или пираноза). Например , a , D - галактопираноза или b , D - галактофураноза."

Получение

В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза:

6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза ) + 6O 2

Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым.

В промышленности глюкозу получают гидролизом крахмала в присутствии серной кислоты.

(C 6 H 10 O 5) n (крахмал) + nH 2 O –– H 2 SO 4 ,t ° ® nC 6 H 12 O 6 (глюкоза )

Физические свойства

Моносахариды – твердые вещества, легко растворимые в воде, плохо – в спирте и совсем нерастворимые в эфире. Водные растворы имеют нейтральную реакцию на лакмус. Большинство моносахаридов обладают сладким вкусом, однако меньшим, чем свекловичный сахар.

Химические свойства

Моносахариды проявляют свойства спиртов и карбонильных соединений.

I. Реакции по карбонильной группе

1. Окисление.

a) Как и у всех альдегидов, окисление моносахаридов приводит к соответствующим кислотам. Так, при окислении глюкозы аммиачным раствором гидрата окиси серебра образуется глюконовая кислота (реакция "серебряного зеркала").

b) Реакция моносахаридов с гидроксидом меди при нагревании так же приводит к альдоновым кислотам.

c) Более сильные окислительные средства окисляют в карбоксильную группу не только альдегидную, но и первичную спиртовую группы, приводя к двухосновным сахарным (альдаровым) кислотам. Обычно для такого окисления используют концентрированную азотную кислоту.

2. Восстановление.

Восстановление сахаров приводит к многоатомным спиртам. В качестве восстановителя используют водород в присутствии никеля, алюмогидрид лития и др.

3. Несмотря на схожесть химических свойств моносахаридов с альдегидами, глюкоза не вступает в реакцию с гидросульфитом натрия (NaHSO 3 ).

II. Реакции по гидроксильным группам

Реакции по гидроксильным группам моносахаридов осуществляются, как правило, в полуацетальной (циклической) форме.

1. Алкилирование (образование простых эфиров).

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу.

При использовании более сильных алкилирующих средств, каковыми являются, например , йодистый метил или диметилсульфат, подобное превращение затрагивает все гидроксильные группы моносахарида.

2. Ацилирование (образование сложных эфиров).

При действии на глюкозу уксусного ангидрида образуется сложный эфир – пентаацетилглюкоза.

3. Как и все многоатомные спирты, глюкоза с гидроксидом меди (II ) дает интенсивное синее окрашивание (качественная реакция).

III. Специфические реакции

Кроме приведенных выше, глюкоза характеризуется и некоторыми специфическими свойствами - процессами брожения. Брожением называется расщепление молекул сахаров под воздействием ферментов (энзимов). Брожению подвергаются сахара с числом углеродных атомов, кратным трем. Существует много видов брожения, среди которых наиболее известны следующие:

a) спиртовое брожение

C 6 H 12 O 6 ® 2CH 3 –CH 2 OH (этиловый спирт ) + 2CO 2 ­

b) молочнокислое брожение

c) маслянокислое брожение

C 6 H 12 O 6 ® CH 3 –CH 2 –СН 2 –СОOH (масляная кислота ) + 2 Н 2 ­ + 2CO 2 ­

Упомянутые виды брожения, вызываемые микроорганизмами, имеют широкое практическое значение. Например , спиртовое – для получения этилового спирта, в виноделии, пивоварении и т.д., а молочнокислое – для получения молочной кислоты и кисломолочных продуктов.

Дисахариды

Дисахариды (биозы) при гидролизе образуют два одинаковых или разных моносахарида. Для установления строения дисахаридов необходимо знать: из каких моносахаридов он построен, какова конфигурация аномерных центров у этих моносахаридов (a - или b -), каковы размеры цикла (фураноза или пираноза) и с участием каких гидроксилов связаны две молекулы моносахарида.

Дисахариды подразделяются на две группы: восстанавливающие и невосстанавливающие.

К восстанавливающим дисахаридам относится, в часности, мальтоза (солодовый сахар), содержащаяся в солоде, т.е. проросших, а затем высушенных и измельченных зернах хлебных злаков.

(мальтоза )

Мальтоза составлена из двух остатков D - глюкопиранозы, которые связаны (1–4) -гликозидной связью, т.е. в образовании простой эфирной связи участвуют гликозидный гидроксил одной молекулы и спиртовой гидроксил при четвертом атоме углерода другой молекулы моносахарида. Аномерный атом углерода (С 1 ), участвующий в образовании этой связи, имеет a - конфигурацию, а аномерный атом со свободным гликозидным гидроксилом (обозначен красным цветом) может иметь как a - (a - мальтоза), так и b - конфигурацию (b - мальтоза).

Мальтоза представляет собой белые кристаллы, хорошо растворимые в воде, сладкие на вкус, однако значительно меньше, чем у сахара (сахарозы).

Как видно, в мальтозе имеется свободный гликозидный гидроксил, вследствие чего сохраняется способность к раскрытию цикла и переходу в альдегидную форму. В связи с этим, мальтоза способна вступать в реакции, характерные для альдегидов, и, в частности, давать реакцию "серебряного зеркала", поэтому ее называют восстанавливающим дисахаридом. Кроме того, мальтоза вступает во многие реакции, характерные для моносахаридов, например , образует простые и сложные эфиры (см. химические свойства моносахаридов).

К невосстанавливающим дисахаридам относится сахароза (свекловичный или тростниковый сахар). Она содержится в сахарном тростнике, сахарной свекле (до 28% от сухого вещества), соках растений и плодах. Молекула сахарозы построена из a , D - глюкопиранозы и b , D - фруктофуранозы.

(сахароза)

В противоположность мальтозе гликозидная связь (1–2) между моносахаридами образуется за счет гликозидных гидроксилов обеих молекул, то есть свободный гликозидный гидроксил отсутствует. Вследствие этого отсутствует восстанавливающая способность сахарозы, она не дает реакции "серебряного зеркала", поэтому ее относят к невосстанавливающим дисахаридам.

Сахароза – белое кристаллическое вещество, сладкое на вкус, хорошо растворимое в воде.

Для сахарозы характерны реакции по гидроксильным группам. Как и все дисахариды, сахароза при кислотном или ферментативном гидролизе превращается в моносахариды, из которых она составлена.

Полисахариды

Важнейшие из полисахаридов – это крахмал и целлюлоза (клетчатка). Они построены из остатков глюкозы. Общая формула этих полисахаридов ( C 6 H 10 O 5 ) n . В образовании молекул полисахаридов обычно принимает участие гликозидный (при С 1 -атоме) и спиртовой (при С 4 -атоме) гидроксилы, т.е. образуется (1–4) -гликозидная связь.

Крахмал

Крахмал представляет собой смесь двух полисахаридов, построенных из a , D - глюкопиранозных звеньев: амилозы (10-20%) и амилопектина (80-90%). Крахмал образуется в растениях при фотосинтезе и откладывается в виде "резервного" углевода в корнях, клубнях и семенах. Например , зерна риса, пшеницы, ржы и других злаков содержат 60-80% крахмала, клубни картофеля – 15-20%. Родственную роль в животном мире выполняет полисахарид гликоген, "запасающийся", в основном, в печени.

Крахмал – это белый порошок, состоящий из мелких зерен, не растворимый в холодной воде. При обработке крахмала теплой водой удается выделить две фракции: фракцию, растворимую в теплой воде и состоящую из полисахарида амилозы , и фракцию, лишь набухающую в теплой воде с образованием клейстера и состоящую из полисахарида амилопектина .

Амилоза имеет линейное строение, a , D - глюкопиранозные остатки связаны (1–4) -гликозидными связями. Элементная ячейка амилозы (и крахмала вообще) представляется следующим образом:

Молекула амилопектина построена подобным образом, однако имеет в цепи разветвления, что создает пространственную структуру. В точках разветвления остатки моносахаридов связаны (1–6) -гликозидными связями. Между точками разветвления располагаются обычно 20-25 глюкозных остатков.

(амилопектин)

Крахмал легко подвергается гидролизу: при нагревании в присутствии серной кислоты образуется глюкоза.

(C 6 H 10 O 5 ) n (крахмал) + nH 2 O –– H 2 SO 4 , t ° ® nC 6 H 12 O 6 (глюкоза)

В зависимости от условий проведения реакции гидролиз может осуществляться ступенчато с образованием промежуточных продуктов.

(C 6 H 10 O 5 ) n (крахмал) ® (C 6 H 10 O 5 ) m (декстрины (m < n )) ® xC 12 H 22 O 11 (мальтоза) ® nC 6 H 12 O 6 (глюкоза)

Качественной реакцией на крахмал является его взаимодействие с йодом – наблюдается интенсивное синее окрашивание. Такое окрашивание появляется, если на срез картофеля или ломтик белого хлеба поместить каплю раствора йода.

Крахмал не вступает в реакцию "серебряного зеркала".

Крахмал является ценным пищевым продуктом. Для облегчения его усвоения продукты, содержащие крахмал, подвергают термообработке, т.е. картофель и крупы варят, хлеб пекут. Процессы декстринизации (образование декстринов), осуществляемые при этом, способствуют лучшему усвоению организмом крахмала и последующему гидролизу до глюкозы.

В пищевой промышленности крахмал используется при производстве колбасных, кондитерских и кулинарных изделий. Применяется также для получения глюкозы, при изготовлении бумаги, текстильных изделий, клеев, лекарственных средств и т.д.

Целлюлоза (клетчатка)

Целлюлоза – наиболее распространенный растительный полисахарид. Она обладает большой механической прочностью и исполняет роль опорного материала растений. Древесина содержит 50-70% целлюлозы, хлопок представляет собой почти чистую целлюлозу.

Как и у крахмала, структурной единицей целлюлозы является D - глюкопираноза, звенья которой связаны (1-4) -гликозидными связями. Однако, от крахмала целлюлоза отличается b - конфигурацией гликозидных связей между циклами и строго линейным строением.

Целлюлоза состоит из нитевидных молекул, которые водородными связями гидроксильных групп внутри цепи, а также между соседними цепями собраны в пучки. Именно такая упаковка цепей обеспечивает высокую механическую прочность, волокнистость, нерастворимость в воде и химическую инертность, что делает целлюлозу идеальным материалом для построения клеточных стенок.

b - Гликозидная связь не разрушается пищеварительными ферментами человека, поэтому целлюлоза не может служить ему пищей, хотя в определенном количестве является необходимым для нормального питания балластным веществом. В желудках жвачных животных имеются ферменты, расщепляющие целлюлозу, поэтому такие животные используют клетчатку в качестве компонента пищи.

Несмотря на нерастворимость целлюлозы в воде и обычных органических растворителях, она растворима в реактиве Швейцера (раствор гидроксида меди в аммиаке), а также в концентрированном растворе хлористого цинка и в концентрированной серной кислоте.

Как и крахмал, целлюлоза при кислотном гидролизе дает глюкозу.

Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом.

Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка. Для этого ацетилцеллюлозу растворяют в смеси дихлорметана и этанола и этот раствор продавливают через фильеры в поток теплого воздуха. Растворитель испаряется и струйки раствора превращаются в тончайшие нити ацетатного шелка.

Целлюлоза не дает реакции "серебряного зеркала".

Говоря о применении целлюлозы, нельзя не сказать о том, что большое количество целлюлозы расходуется для изготовления различной бумаги. Бумага – это тонкий слой волокон клетчатки, проклеенный и спрессованный на специальной бумагоделательной машине.

Из приведенного выше уже видно, что использование целлюлозы человеком столь широко и разнообразно, что применению продуктов химической переработки целлюлозы можно посвятить самостоятельный раздел.

КОНЕЦ РАЗДЕЛА

План:

1.Определение понятия: углеводы. Классификация.

2. Состав, физические и химические свойства углеводов.

3.Рспространение в природе. Получение. Применение.

Углеводы – органические соединения, содержащие карбонильные и гидроксильные группировки атомов, имеющие общую формулу C n (H 2 O) m , (где n и m>3).

Углеводы – вещества, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, С м Н 2п О п. При вынесении «n» за скобки получается формула С м (Н 2 О) n , которая очень наглядно отражает название «угле - воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав, не точно соответствующий формуле С м H 2п О п. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название – глициды.

Углеводы можно разделить на три группы : 1) Моносахариды – углеводы, способные гидролизоваться с образованием более простых углеводов. К данной группе относятся гексозы (глюкоза и фруктоза), а также пентоза (рибоза). 2) Олигосахариды – продукты конденсации нескольких моносахаридов (например, сахароза). 3) Полисахариды – полимерные соединения, содержащие большое число молекул моносахаридов.

Моносахариды . Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например, глюкоза – это альдоза, а фруктоза – это кетоза.

Получение. В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза: 6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза) + 6O 2 Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым