Таблица приближенных значений квадратного корня. "приближенные вычисления квадратного корня"

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема приближенного вычисления корней актуальна всегда, так как задания с квадратными корнями есть в каждом курсе предметов естественнонаучного цикла. В ходе решения многих математических задач, а так же задач по геометрии, по физике, по химии и т.д. приходится сталкиваться с квадратными корнями. Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, но ее бывает недостаточно. Извлечение корня разложением на множители тоже непростая задача, которая не всегда приводит к желаемому результату, и я решила изучить различные способы извлечения квадратных корней с целью их практического применения.

Поэтому цель работы направлена на сопоставление различных способов приближенного извлечения квадратных корней, при этом ставятся задачи: изучение материала, выявление наиболее эффективного способа в зависимости от поставленной задачи.

Решим графически уравнение. Для этого в одной системе координат построим параболу и прямую. Абсциссы точек A и B являются корнями уравнения. Решим уравнение. Ясно, что это уравнение имеет два корня и, причем эти числа, как и в двух предыдущих случаях, равны по абсолютной величине и противоположны по знаку (). По чертежу мы не можем указать точные значения корней. Интересующее нас число x1 расположено между числами 1 и 2, но между числами 1 и 2 находится бесконечное множество рациональных чисел, например и т.д. В работе доказано, что располагая только рациональными числами, уравнение мы решить не сможем.

Математики ввели в рассмотрение новый символ, который назвали квадратным корнем, и с помощью этого символа корни уравнения записали так: и. Читается: "арифметический квадратный корень из двух". Теперь для любого уравнения вида, где, можно найти корни - ими являются числа и.

Квадратным корнем из неотрицательного числа называют такое неотрицательное число, квадрат которого равен. Это число обозначают. Если, то уравнение не имеет корней.

Операцию нахождения квадратного корня из неотрицательного числа называют извлечением квадратного корня.

В ходе исследования методов вычисления квадратного корня были найдены несколько методов, такие как: арифметический способ; метод грубой оценки; столбиком; Вавилонский способ; метод Герона и метод Ньютона; геометрический метод. В данной работе рассмотрены лишь некоторые из них.

Арифметический способ

квадратный корень извлечение приближенное

Для квадратов натуральных чисел верны следующие равенства:

То есть, чтобы узнать целую часть квадратного корня числа, можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, посчитать количество выполненных действий.

Например, найдем квадратный корень числа 16 так:

Выполнено 4 действия, значит, квадратный корень числа 16 равен 4. Аналогично найдем квадратный корень числа 12:

Выполнено 3 действия, квадратный корень числа 12 равен 3 целым.

Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне пригоден для грубой оценки, для учащихся, решающих простейшие математические задачи, требующие извлечения квадратного корня.

Вавилонский способ или первый метод Герона

Если - положительное число и - приближённое значение для по избытку, то - приближенное значение для по недостатку.

Доказательство теоремы рассмотрено в работе. Поскольку и являются приближенными значениями для по избытку и по недостатку, и является средним геометрическим чисел и, то в качестве лучшего приближения для естественно выбрать среднее арифметическое этих чисел, т.е. число. А чтобы получить ещё более точное значение для, надо взять среднее арифметическое чисел и, т.е. число. Так вычисляются одно за другим все более точные приближенные значения для. Приближения ведут до тех пор, пока два полученных значения и не совпадут в пределах заданной точности. Тогда мы имеем формулу:

. (1)

Эту формулу можно вывести и из несколько иных рассуждений.

Пусть, например, нужно извлечь квадратный корень из числа 32. Выберем сначала какое-то приближенное значение этого корня, например, . Погрешность этого приближенного значения обозначим через, тогда. Чтобы найти значение, возведем обе части этого равенства в квадрат, получим:

,

. (2)

Таким образом, для получилось квадратное уравнение. Если его решить, то. Мы, получается, ходим по кругу: чтобы найти, нужно сосчитать, а чтобы найти, надо вычислить. На помощь приходит следующее соображение. Погрешность приближенного значения невелика, она меньше единицы, значит число еще меньше, поэтому в равенстве (2) его можно отбросить. При этом для получается приближенное уравнение, значит. Итак, приближенное значение поправки найдено.

Так как, то второе приближение для. Чтобы найти более точное приближение для повторим описанный процесс.

.

Возведем обе части в квадрат и отбросим малое слагаемое:

,

.

Тогда третье приближение для выражается формулой:

. Так как, то.

Точно так же, исходя из приближенного значения, можно найти следующее приближение. Тогда, если найдено приближенное значение, то следующее выражается формулой:

.

При этом каждый следующий шаг приводит ко все более точным приближениям для. Полученная формула является частным случаем формулы (1), в которой некоторое действительное число.

По формуле (1) можно найти приближенное значение для, оно приблизительно равно 1,414213562.

Правило нахождения приближенного значения квадратного корня из любого натурального числа было известно ещё математикам древнего Вавилона более 4000 лет назад. Они составляли таблицы квадратов чисел и квадратных корней из чисел. При этом они умели находить приблизительное значение квадратного корня из любого целого числа.

Формула, с помощью которой вычислялись последовательные приближения по Вавилонскому способу, может быть записана следующим образом:

.

В данном случае в качестве функции берется, где - это число, корень которого нужно найти. В работе выясняется точность Вавилонского способа.

Этот метод был известен ещё в Древней Греции и приписывается Герону Александрийскому. Потом этот способ был заброшен, но сейчас его применяют для извлечения квадратных корней на калькуляторах и вычислительных машинах.

Работа над данным исследованием показала, что изучение квадратных корней - объективная необходимость: в реальной жизни случаются ситуации, математические модели которых содержат операцию извлечения квадратного корня. Но не всегда под рукой мы имеем калькулятор. Помимо того, бывают ситуации, когда использование калькулятора недопустимо, например, ЕГЭ.

Хотелось бы выбрать оптимально рациональный способ извлечения квадратных корней. Конечно же, арифметический способ и особенно способ грубой оценки, просты в использовании, но не точны, хотя вполне пригодны для первого приближения. К тому же при применении этих способов извлечения квадратных корней любая ошибка, допущенная в каком-то месте, полностью обесценивает дальнейшие вычисления. Иначе состоит дело при применении Вавилонского способа или способа последовательных приближений. Хоть он и трудоемкий, однако можно верно вычислить значение корня с заданной точностью.

Размещено на Allbest.ru

Подобные документы

    Понятие и математическая сущность квадратного корня, его назначение и методика вычисления. Теоремы, отображающие свойства квадратного коря, их обоснование и доказательство. Применение характеристик квадратных корней в решении геометрических задач.

    реферат , добавлен 05.01.2010

    Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.

    реферат , добавлен 18.12.2012

    Изучение способов приближенного решения уравнений с помощью графического изображения функций. Исследование метода определения действительных корней квадратного уравнения с помощью циркуля и линейки для приведенных семи уравнений, построение их графиков.

    творческая работа , добавлен 04.09.2010

    Метод Гаусса, LU-разложение. Прогонка для решения линейных систем с трехдиагональными матрицами коэффициентов. Метод квадратного корня для решения систем: краткая характеристика, теоретическая основа, реализация, тестирование и листинг программы.

    курсовая работа , добавлен 15.01.2013

    Система линейных алгебраических уравнений. Основные формулы Крамера. Точные, приближенные методы решения линейных систем. Алгоритм реализации метода квадратных корней на языке программирования в среде Matlab 6.5. Влияние мерности, обусловленности матрицы.

    контрольная работа , добавлен 27.04.2011

    Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.

    курсовая работа , добавлен 27.03.2011

    История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.

    контрольная работа , добавлен 27.11.2010

    Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.

    контрольная работа , добавлен 14.08.2010

    Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".

ГУ « Средняя общеобразовательная школа №5 им. Бауыржана Момышулы»

отдела образования акимата г. Костаная

ПЛАН-КОСПЕКТ УРОКА

ФИО (полностью) Пластун Сергей Владимирович

Предмет алгебра

Класс 8А-8б-1

Дата 23.09.17

Источники Алматы «Мектеп-2016»

Базовый учебник

Дополнительная литература

Нахождение приближенных значений квадратного корня.

1. Цель урока: познакомить учащихся с понятием « приближенное значение квадратного корня» и научить применять это понятие на практике.

Задачи:

Образовательные:

-научить находить приближенные значения квадратного корня;

-выработка умений рассуждать, четко формулировать правила, приводить примеры, применять свои знания и умения на практике.

корень, приводить и находить значения арифметического квадратного корня.

Развивающие:

-развивать у учащихся навык решения заданий на данную тему;

-развивать мыслительную деятельность учащихся.

Воспитательные:

- воспитывать внимательность, активность, ответственность.

2. Тип урока: комбинированный .

3. Формы работы с учащимися: фронтальная, индивидуальная.

4. Необходимое техническое оборудование.

5. Наглядные пособия, дидактические материалы, используемые на уроке.

6. Структура и ход урока.

СТРУКТУРА И ХОД УРОКА

Ход урока

1. Организационный момент .

Проверка готовности класса к уроку. Приветствие.

2. Проверка домашнего задания.

3. Повторение ранее изученного материала.

Начнем с повторения. Устная работа

Давайте вспомним, что такое квадратный корень (Квадратным корнем из неотрицательного числа а называется число, квадрат которого равен а).

(Арифметический квадратный корень) Арифметическим квадратным корнем из неотрицательного числа а называется такое неотрицательное число b , квадрат которого равен а.

Арифметический квадратный корень из числа а обозначается так:. Знак называется знаком арифметического квадратного корня, или радикалом, а –подкоренным выражением. Выражение читается так: «Арифметический квадратный корень из числа а».

По определению арифметического корня равенство
выполняется при условии, когда
.

4. Изучение нового материала.

1. Вычислите: 25 , 16, 9, 81,

Найдите значение выражения √2

- Что вам необходимо было сделать?

Что у вас получилось? (Учащиеся показывают свои варианты:)

В чём возникло затруднение?

Извлекается √2 нацело?

Как будем находить?

Какие знаем способы нахождения корней?

Ребята, видите, не всегда мы имеем дело с числами, легко представимыми в виде квадрата числа, которые извлекаются из- под корня нацело

1 МЕТОД вычислить √2 с точностью до двух знаков после запятой Будем рассуждать следующим образом.

Число √2 больше 1, так как 1 2 < 2. В тоже время, число √2 < 2, так как 2 2 больше 2. Следовательно, десятичная запись числа будет начинаться следующим образом: 1,… То есть корень из двух, это единица с чем-то.

1< √2 < 2.

Теперь попытаемся отыскать цифру десятых.

Для этого будем дроби от единицы до двойки возводить в квадрат, пока не получим число большее двух.

Шаг деления возьмем 0,1, так как мы ищем число десятых.

Другими словами будем возводить в квадрат числа: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

1,1 2 =1,21; 1,2 2 =1,44; 1,3 2 =1,69; 1,4 2 =1,96; 1,5 2 =2,25.

Получили число превышающее двойку, остальные числа уже не надо возводить в квадрат. Число 1,4 2 меньше 2, а 1,5 2 уже больше двух, то число √2 должно принадлежать промежутку от 1,4 до 1,5 . Следовательно, десятичная запись числа √2 в разряде десятых должна содержать 4. √2=1,4… .

1,41 2 =1,9881, 1,42 2 =2,0164.

Уже при 1.42 получаем, что его квадрат больше двух, далее возводить в квадрат числа не имеет смысла.

Из этого получаем, что число √2 будет принадлежать промежутку от 1,41 до 1,42 (1,41< √2<1,42)

Так как нам необходимо записать √2 с точностью до двух знаков после запятой, то мы уже можем остановиться и не продолжать вычисления.

√2 ≈ 1,41. Это и будет ответом. Если бы необходимо было вычислить еще более точное значение, нужно было бы продолжать вычисления, повторяя снова и снова цепочку рассуждений.

Задание

Вычислите с точностью до двух знаков после запятой

√3 = , √5 = , √6 = , √7 =, √8 =

Вывод Данный прием позволяет извлекать корень с любой заданной наперед точностью.

2 МЕТОД Чтобы узнать целую часть квадратного корня числа, можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, посчитать количество выполненных действий.

Например, найдем √16 так:

Выполнено 4 действия, значит, √16 = 4

Задание. Вычислите

√1 √6

Задача. Комната квадратной формы имеет площадь, равную 20 кв. м. Найти её длину и ширину.

Так как комната квадратная, то её длина х равна её ширине. По условию задачи мы должны иметь:

и нам требуется найти арифметический корень из числа 20.

Очевидно, что х не может быть целым числом, так как , а между двумя соседними целыми числами 4 и 5 не содержится ни одного целого числа.

Наша задача имеет вполне определённый практический смысл, и её можно решить приближённо с требуемой точностью.

Покажем, как это можно сделать.

Мы указали два соседних целых числа 4 и 5 такие, что 42 меньше, а 52 больше, чем 20.

Число 4 называется приближённым квадратным корнем из 20 с точностью до 1 с недостатком, число 5 - приближённым корнем из 20 с точностью до 1 с избытком.

Рассмотрим теперь десятичные дроби, заключающиеся между 4 и 5 и имеющие целое число десятых долей:

Будем последовательно возводить эти дроби в квадрат, пока не получим числа, большего 20.

Итак, мы получили:

Числа 4,4 и 4,5 называются приближёнными значениями квадратного корня из 20 с точностью до 0,1 с недостатком и с избытком (соответственно).

Если нам недостаточна полученная точность, то поступим так: будем выписывать десятичные дроби, заключённые между 4,4 и 4,5 и содержащие целое число сотых долей, а затем будем последовательно возводить эти дроби в квадрат, пока не получим числа, большего 20.

Числа 4,47 и 4,48 называются приближёнными значениями квадратного корня из 20 с точностью до 0,01 с недостатком и с избытком.

Точно так же (если это нужно) можно получить приближённые значения с точностью до 0,001; это будут числа 4,472 и 4,473, так как , значит,

Итак, наша задача получила решение с точностью до трёх значащих цифр; такая точность вполне достаточна во многих практических измерениях. Можно считать, что

Дадим теперь общее определение приближённого корня.

Приближёнными значениями квадратного корня из данного числа с точностью до единицы называются два последовательных натуральных числа, из которых квадрат первого меньше, а квадрат второго больше данного числа.

Первое из этих чисел называется приближённым значением корня с недостатком, второе - приближённым значением корня с избытком.

Записывают приближённые значения корня так:

Вместо слов «приближённое значение квадратного корня» часто говорят просто «приближённый квадратный корень».

Чтобы найти приближённый корень с точностью до 1 с недостатком, надо найти наибольшее натуральное число, квадрат которого меньше подкоренного числа. Это можно сделать или путём испытаний, или пользуясь таблицами квадратов натуральных чисел.

Прибавив 1 к приближённому корню с недостатком, получим приближённый корень с избытком.

Определение. Приближёнными квадратными корнями с недостатком и с избытком из числа с точностью до 0,1 называются такие два числа, отличающиеся друг от друга на 0,1, из которых квадрат одного меньше, а квадрат другого больше данного числа.

Приближенное вычисление квадратных корней

Тема приближенного вычисления корней актуальна всегда, так как задания с квадратными корнями есть в каждом курсе предметов естественнонаучного цикла. В ходе решения многих математических задач, а так же задач по геометрии, по физике, по химии и т.д. приходится сталкиваться с квадратными корнями. Для извлечения квадратного корня существуют таблицы квадратов для двухзначных чисел, но ее бывает недостаточно. Извлечение корня разложением на множители тоже непростая задача, которая не всегда приводит к желаемому результату, и я решила изучить различные способы извлечения квадратных корней с целью их практического применения.

Поэтому цель работы направлена на сопоставление различных способов приближенного извлечения квадратных корней, при этом ставятся задачи: изучение материала, выявление наиболее эффективного способа в зависимости от поставленной задачи.

Решим графически уравнение. Для этого в одной системе координат построим параболу и прямую. Абсциссы точек A и B являются корнями уравнения. Решим уравнение. Ясно, что это уравнение имеет два корня и, причем эти числа, как и в двух предыдущих случаях, равны по абсолютной величине и противоположны по знаку (). По чертежу мы не можем указать точные значения корней. Интересующее нас число x1 расположено между числами 1 и 2, но между числами 1 и 2 находится бесконечное множество рациональных чисел, например и т.д. В работе доказано, что располагая только рациональными числами, уравнение мы решить не сможем.

Математики ввели в рассмотрение новый символ, который назвали квадратным корнем, и с помощью этого символа корни уравнения записали так: и. Читается: "арифметический квадратный корень из двух". Теперь для любого уравнения вида, где, можно найти корни - ими являются числа и.

Квадратным корнем из неотрицательного числа называют такое неотрицательное число, квадрат которого равен. Это число обозначают. Если, то уравнение не имеет корней.

Операцию нахождения квадратного корня из неотрицательного числа называют извлечением квадратного корня.

В ходе исследования методов вычисления квадратного корня были найдены несколько методов, такие как: арифметический способ; метод грубой оценки; столбиком; Вавилонский способ; метод Герона и метод Ньютона; геометрический метод. В данной работе рассмотрены лишь некоторые из них.

Арифметический способ

квадратный корень извлечение приближенное

Для квадратов натуральных чисел верны следующие равенства:

То есть, чтобы узнать целую часть квадратного корня числа, можно, вычитая из него все нечётные числа по порядку, пока остаток не станет меньше следующего вычитаемого числа или равен нулю, посчитать количество выполненных действий.

Например, найдем квадратный корень числа 16 так:

Выполнено 4 действия, значит, квадратный корень числа 16 равен 4. Аналогично найдем квадратный корень числа 12:

Выполнено 3 действия, квадратный корень числа 12 равен 3 целым.

Недостатком такого способа является то, что если извлекаемый корень не является целым числом, то можно узнать только его целую часть, но не точнее. В то же время такой способ вполне пригоден для грубой оценки, для учащихся, решающих простейшие математические задачи, требующие извлечения квадратного корня.

Вавилонский способ или первый метод Герона

Если - положительное число и - приближённое значение для по избытку, то - приближенное значение для по недостатку.

Доказательство теоремы рассмотрено в работе. Поскольку и являются приближенными значениями для по избытку и по недостатку, и является средним геометрическим чисел и, то в качестве лучшего приближения для естественно выбрать среднее арифметическое этих чисел, т.е. число. А чтобы получить ещё более точное значение для, надо взять среднее арифметическое чисел и, т.е. число. Так вычисляются одно за другим все более точные приближенные значения для. Приближения ведут до тех пор, пока два полученных значения и не совпадут в пределах заданной точности. Тогда мы имеем формулу:

Эту формулу можно вывести и из несколько иных рассуждений.

Пусть, например, нужно извлечь квадратный корень из числа 32. Выберем сначала какое-то приближенное значение этого корня, например, . Погрешность этого приближенного значения обозначим через, тогда. Чтобы найти значение, возведем обе части этого равенства в квадрат, получим:

Таким образом, для получилось квадратное уравнение. Если его решить, то. Мы, получается, ходим по кругу: чтобы найти, нужно сосчитать, а чтобы найти, надо вычислить. На помощь приходит следующее соображение. Погрешность приближенного значения невелика, она меньше единицы, значит число еще меньше, поэтому в равенстве (2) его можно отбросить. При этом для получается приближенное уравнение, значит. Итак, приближенное значение поправки найдено.

Так как, то второе приближение для. Чтобы найти более точное приближение для повторим описанный процесс.

Возведем обе части в квадрат и отбросим малое слагаемое:

Тогда третье приближение для выражается формулой:

Так как, то.

Точно так же, исходя из приближенного значения, можно найти следующее приближение. Тогда, если найдено приближенное значение, то следующее выражается формулой:

При этом каждый следующий шаг приводит ко все более точным приближениям для. Полученная формула является частным случаем формулы (1), в которой некоторое действительное число.

По формуле (1) можно найти приближенное значение для, оно приблизительно равно 1,414213562.

Правило нахождения приближенного значения квадратного корня из любого натурального числа было известно ещё математикам древнего Вавилона более 4000 лет назад. Они составляли таблицы квадратов чисел и квадратных корней из чисел. При этом они умели находить приблизительное значение квадратного корня из любого целого числа.

Формула, с помощью которой вычислялись последовательные приближения по Вавилонскому способу, может быть записана следующим образом:

В данном случае в качестве функции берется, где - это число, корень которого нужно найти. В работе выясняется точность Вавилонского способа.

Этот метод был известен ещё в Древней Греции и приписывается Герону Александрийскому. Потом этот способ был заброшен, но сейчас его применяют для извлечения квадратных корней на калькуляторах и вычислительных машинах.

Работа над данным исследованием показала, что изучение квадратных корней - объективная необходимость: в реальной жизни случаются ситуации, математические модели которых содержат операцию извлечения квадратного корня. Но не всегда под рукой мы имеем калькулятор. Помимо того, бывают ситуации, когда использование калькулятора недопустимо, например, ЕГЭ.

Хотелось бы выбрать оптимально рациональный способ извлечения квадратных корней. Конечно же, арифметический способ и особенно способ грубой оценки, просты в использовании, но не точны, хотя вполне пригодны для первого приближения. К тому же при применении этих способов извлечения квадратных корней любая ошибка, допущенная в каком-то месте, полностью обесценивает дальнейшие вычисления. Иначе состоит дело при применении Вавилонского способа или способа последовательных приближений. Хоть он и трудоемкий, однако можно верно вычислить значение корня с заданной точностью.

8 класс

Дата:

Урок № 9.

Тема: Приближенные вычисления квадратного корня.

Цели: 1. Научить учащихся находить приближенные значения квадратных корней.

2. Развивать наблюдательность, умение анализировать, сравнивать, делать выводы.

    Воспитывать позитивное отношение к учебному труду

Тип урока: комбинированный.

Формы организации урока: индивидуальная, коллективная

Оборудование: проектная доска, карточки для рефлексии настроений, микрокалькулятор

Три пути ведут к знанию: путь размышления

Это путь самый благородный,

путь подражания – это путь самый легкий

и путь опыта – это путь самый горький.

Конфуций

Ход урока.

    Организационный момент

    Этап проверки домашнего задания

№ 60 – у доски выполняет 1 учащийся, на месте проверяет правильность выполнения задания другой ученик

    Устная работа: проектируется на доску

а) Найди значение корня:

б) Имеет ли смысл выражение:

в) Найди число, арифметический квадратный корень которого равен 0; 1; 3; 10; 0,6

    Этап объяснения нового материала

Для того, чтобы вычислить приближенное значение квадратного корня, необходимо использовать микрокалькулятор. Для этого нужно ввести в калькулятор подкоренное выражение и нажать на клавишу со знаком радикала. Но не всегда под рукой имеется калькулятор, поэтому находить приближенное значение квадратного корня можно следующим образом:

Пусть надо найти значение .

Так как , то . Теперь среди чисел, расположенных на отрезке от 1 до 2 возьмем соседние числа 1,4 и 1,5, получим: , далее возьмем числа 1,41 и 1,42,эти числа удовлетворяют неравенству . Если продолжить данный процесс возведения в квадрат соседних чисел, то получим следующую систему неравенств:

Проецируется на доску.

Из этой системы, сравнивая цифры после запятой, получаем:

Приближенные значения квадратных корней можно брать по избытку и по недостатку, т.е. по недостатку с точностью до 0,0001 и по избытку.

    Закрепление изученного материала.

Уровень «А»

0,2664 0,2 – по недостатку

№93 (используется калькулятор)

5. Валеологическая пауза: упражнения для глаз.

Уровень «В»

6. Историческая справка о необходимости нахождения значения квадратных корней

(Заранее предлагается желающему ученику подготовить сообщение на эту тему, используя интернет)

Предлагается формула для нахождения приближенного значения квадратного корня из иррационального числа:

Уровень «С» № 105

7. Рефлексия.

    Итог урока.

    Домашнее задание: № 102,