Четырехугольный прямоугольник. Четырехугольники все правила

Выпуклый четырехугольник — это фигура, состоящая из четырех сторон, соединенных между собой в вершинах, образующих вместе со сторонами четыре угла, при этом сам четырехугольник всегда находится в одной плоскости относительно прямой, на которой лежит одна из его сторон. Другими словами, вся фигура находится по одну сторону от любой из ее сторон.

Вконтакте

Как видно, определение довольно легко запоминающееся.

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

  1. параллелограмм;
  2. квадрат;
  3. прямоугольник;
  4. трапеция;
  5. ромб.

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

На рисунке изображена выпуклая трапеция . Тут видно, что трапеция находится на одной плоскости или по одну сторону от отрезка . Если провести аналогичные действия, можно выяснить, что и в случае со всеми остальными сторонами трапеция является выпуклой.

Является ли параллелограмм выпуклым четырехугольником?

Выше показано изображение параллелограмма. Как видно из рисунка, параллелограмм также является выпуклым . Если посмотреть на фигуру относительно прямых, на которых лежат отрезки AB, BC, CD и AD, то становится понятно, что она всегда находится на одной плоскости от этих прямых. Основными же признаками параллелограмма является то, что его стороны попарно параллельны и равны так же, как и противоположные углы равны между собой.

Теперь, представьте себе квадрат или прямоугольник. По своим основным свойствам они являются еще и параллелограммами, то есть все их стороны расположены попарно параллельно. Только в случае с прямоугольником длина сторон может быть разной, а углы прямые (равные 90 градусам), квадрат — это прямоугольник, у которого все стороны равны и углы также прямые, а у параллелограмма длины сторон и углы могут быть разными.

В итоге, сумма всех четырех углов четырехугольника должна быть равна 360 градусам . Легче всего это определить по прямоугольнику: все четыре угла прямоугольника прямые, то есть равны 90 градусам. Сумма этих 90-градусных углов дает 360 градусов, другими словами, если сложить 90 градусов 4 раза, получится необходимый результат.

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются . Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Другие свойства и признаки выпуклости четырехугольника

Конкретно по этому термину очень сложно назвать какие-то определенные свойства и признаки. Легче обособить по различным видам четырехугольников такого типа. Начать можно с параллелограмма. Мы уже знаем, что это четырехугольная фигура, стороны которой попарно параллельны и равны. При этом, сюда же включается свойство диагоналей параллелограмма пересекаться между собой, а также сам по себе признак выпуклости фигуры: параллелограмм находится всегда в одной плоскости и по одну сторону относительно любой из своих сторон.

Итак, известны основные признаки и свойства:

  1. сумма углов четырехугольника равна 360 градусам;
  2. диагонали фигур пересекаются в одной точке.

Прямоугольник . Эта фигура имеет все те же свойства и признаки, что и параллелограмм, но при этом все углы его равны 90 градусам. Отсюда и название — прямоугольник.

Квадрат, тот же параллелограмм , но углы его прямые как у прямоугольника. Из-за этого квадрат в редких случаях называют прямоугольником. Но главным отличительным признаком квадрата помимо уже перечисленных выше, является то, что все четыре его стороны равны.

Трапеция — очень интересная фигура . Это тоже четырехугольник и тоже выпуклый. В этой статье трапеция уже рассматривалась на примере рисунка. Понятно, что она тоже выпуклая. Главным отличием, а соответственно признаком трапеции является то, что ее стороны могут быть абсолютно не равны друг другу по длине, а также ее углы по значению. При этом фигура всегда остается на одной плоскости относительно любой из прямых, которая соединяет любые две ее вершины по образующим фигуру отрезкам.

Ромб — не менее интересная фигура . Отчасти ромбом можно считать квадрат. Признаком ромба является тот факт, что его диагонали не только пересекаются, но и делят углы ромба пополам, а сами диагонали пересекаются под прямым углом, то есть, они перпендикулярны. В случае, если длины сторон ромба равны, то диагонали тоже делятся пополам при пересечении.

Дельтоиды или выпуклые ромбоиды (ромбы) могут иметь разную длину сторон. Но при этом все равно сохраняются как основные свойства и признаки самого ромба, так и признаки и свойства выпуклости. То есть, мы можем наблюдать, что диагонали делят углы пополам и пересекаются под прямым углом.

Сегодняшней задачей было рассмотреть и понять, что такое выпуклые четырехугольники, какие они бывают и их основные признаки и свойства. Внимание! Стоит напомнить еще раз, что сумма углов выпуклого четырехугольника равна 360 градусам. Периметр фигур, например, равен сумме длин всех образующих фигуру отрезков. Формулы расчета периметра и площади четырехугольников будут рассмотрены в следующих статьях.

Виды выпуклых четырехугольников




Тема урока

  • Определение четырехугольника.

Цели урока

  • Образовательные – повторение, обобщение и проверка знаний по теме: “Четырехугольника”; выработка основных навыков.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Формировать навыки в построении четырехугольника с помощью масштабной линейки и чертежного треугольника.
  • Проверить умение учащихся решать задачи.

План урока

  1. Историческая справка. Неевклидова геометрия.
  2. Четырёхугольник.
  3. Виды четырёхугольников.

Неевклидова геометрия

Неевклидова геометрия, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути ктеории относительности.

Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить . Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.

Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (см. рис.), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.

Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.

Четырёхугольник

Предмети > Математика > Математика 8 класс

С четырьмя углами и четырьмя сторонами. Четырёхугольник образуется замкнутой ломаной линией, состоящей из четырёх звеньев, и той частью плоскости, которая находится внутри ломаной.

Обозначение четырёхугольника составляют из букв, стоящих при его вершинах, называя их по порядку. Например, говорят или пишут: четырёхугольник ABCD :

В четырёхугольнике ABCD точки A , B , C и D - это вершины четырёхугольника , отрезки AB , BC , CD и DA - стороны .

Вершины, принадлежащие одной стороне, называются соседними , вершины, не являющиеся соседними, называются противолежащими :

В четырёхугольнике ABCD вершины A и B , B и C , C и D , D и A - соседние, а вершины A и C , B и D - противолежащие. Углы, лежащие при соседних вершинах, также называются соседними, а при противолежащих вершинах - противолежащими.

Стороны четырёхугольника также можно попарно разделить на соседние и противолежащие: стороны, имеющие общую вершину, называются соседними (или смежными ), стороны, не имеющие общих вершин - противолежащими :

Стороны AB и BC , BC и CD , CD и DA , DA и AB - смежные, а стороны AB и DC , AD и BC - противолежащие.

Если противолежащие вершины соединить отрезком, то такой отрезок будет называться диагональю четырёхугольника . Учитывая, что в четырёхугольнике есть всего две пары противолежащих вершин, то и диагоналей может быть всего две:

Отрезки AC и BD - диагонали.

Рассмотрим основные виды выпуклых четырёхугольников:

  • Трапеция - четырёхугольник, у которого одна пара противоположных сторон, параллельны друг другу, а другая пара не параллельны.
    • Равнобедренная трапеция - трапеция, у которой боковые стороны равны.
    • Прямоугольная трапеция - трапеция, у которой один из углов прямой.
  • Параллелограмм - четырёхугольник, у которого обе пары противоположных сторон параллельны друг другу.
    • Прямоугольник - параллелограмм, у которого все углы равны.
    • Ромб - параллелограмм, у которого все стороны равны.
    • Квадрат - параллелограмм, у которого равны и стороны и углы. И прямоугольник и ромб могут быть квадратом.

Свойства углов выпуклых четырёхугольников

У всех выпуклых четырёхугольников углы обладают следующими двумя свойствами:

  1. Любой внутренний угол меньше 180°.
  2. Сумма внутренних углов равна 360°.

1 . Сумма диагоналей выпуклого четырёхугольника больше суммы его двух противоположных сторон.

2 . Если отрезки, соединяющие середины противоположных сторон четырёхугольника

а) равны, то диагонали четырёхугольника перпендикулярны;

б) перпендикулярны, то диагонали четырёхугольника равны.

3 . Биссектрисы углов при боковой стороне трапеции пересекаются на её средней линии.

4 . Стороны параллелограмма равны и . Тогда четырёхугольник, образованный пересечениями биссектрис углов паралле­лограмма, является прямоугольником, диагонали которого равны .

5 . Если сумма углов при одном из оснований трапеции равна 90°, то отрезок, соединяющий середины оснований трапеции, равен их полуразности.

6 . На сторонах АВ и AD параллелограмма ABCD взяты точки М и N так, что прямые МС и NC делят параллелограмм на три равновеликие части. Найдите MN, если BD=d.

7 . Отрезок прямой, параллельной основаниям трапеции, заключённый внутри трапеции, разбивается ее диагоналями на три части. Тогда отрезки, прилегающие к боковым сторонам, равны между собой.

8 . Через точку пересечения диагоналей трапеции с основаниями и проведена прямая, параллельная основаниям. Отрезок этой прямой, заключенный между боковыми сторонами трапеции, равен .

9 . Трапеция разделена прямой, параллельной её основаниям, равным и , на две равновеликие трапеции. Тогда отрезок этой прямой, заключённый между боковыми сторонами, равен .

10 . Если выполняется одно из следующих условий, то четыре точки А, В, С и D лежат на одной окружности.

а) CAD=CBD = 90°.

б) точки А и В лежат по одну сторону от прямой CD и угол CAD равен углу CBD.

в) прямые АС и BD пересекаются в точке О и О А ОС=ОВ OD.

11 . Прямая, соединяющая точку Р пересечения диагоналей четырехугольника ABCD с точкой Q пересечения прямых АВ и CD, делит сторону AD пополам. Тогда она делит пополам и сторону ВС.

12 . Каждая сторона выпуклого четырёхугольника поделена на три равные части. Соответствующие точки деления на противоположных сторонах соединены отрезками. Тогда эти отрезки делят друг друга на три равные части.

13 . Две прямые делят каждую из двух противоположных сторон выпуклого четырёхугольника на три равные части. Тогда между этими прямыми заключена треть площади четырёхугольника.

14 . Если в четырёхугольник можно вписать окружность, то отрезок, соединяющий точки, в которых вписанная окружность касается противоположных сторон четырёхугольника, проходит через точку пересечения диагоналей.

15 . Если суммы противоположных сторон четырёхугольника равны, то в такой четырёхугольник можно вписать окружность.

16. Свойства вписанного четырёхугольника со взаимно перпендикулярными диагоналями. Четырёхугольник ABCD вписан в окружность радиуса R. Его диагонали АС и BD взаимно перпендикулярны и пересекаются в точке Р. Тогда

а) медиана треугольника АРВ перпендикулярна стороне CD;

б) ломаная АОС делит четырёхугольник ABCD на две равновеликие фигуры;

в) АВ 2 +CD 2 =4R 2 ;

г) АР 2 +ВР 2 +СР 2 +DP 2 = 4R 2 и АВ 2 +ВС 2 +CD 2 +AD 2 =8R 2 ;

д) расстояние от центра окружности до стороны четырёхугольника вдвое меньше противоположной стороны.

е) если перпендикуляры, опущенные на сторону AD из вершин В и С, пересекают диагонали АС и BD в точках Е и F, то BCFE - ромб;

ж) четырёхугольник, вершины которого - проекции точки Р на стороны четырёхугольника ABCD, - и вписанный, и описанный;

з) четырёхугольник, образованный касательными к описанной окружности четырёхугольника ABCD, проведёнными в его вершинах, можно вписать в окружность.

17 . Если a, b, c, d - последовательные стороны четырёхугольника, S - его площадь, то , причем равенство имеет место только для вписанного четырёхугольника, диагонали которого взаимно перпендикулярны.

18 . Формула Брахмагупты. Если стороны вписанного четырехугольника равны a, b, с и d, то его площадь S может быть вычислена по формуле ,

где - полупериметр четырехугольника.

19 . Если четырёхугольник со сторонами а , b, с, d можно вписать и около него можно описать окружность, то его площадь равна .

20 . Точка Р расположена внутри квадрата ABCD, причем угол PAB равен углу РВА и равен 15°. Тогда треугольник DPC - равносторонний.

21 . Если для вписанного четырёхугольника ABCD выполнено равенство CD=AD+ВС, то биссектрисы его углов А и В пересекаются на стороне CD.

22 . Продолжения противоположных сторон АВ и CD вписанного четырёхугольника ABCD пересекаются в точке М, а сторон AD и ВС - в точке N. Тогда

а) биссектрисы углов AMD и DNC взаимно перпендикулярны;

б) прямые МQ и NQ пересекают стороны четырёхугольника в вер­шинах ромба;

в) точка пересечения Q этих биссектрис лежит на отрезке, соеди­няющем середины диагоналей четырёхугольника ABCD.

23 . Теорема Птолемея. Сумма произведений двух пар противопо­ложных сторон вписанного четырёхугольника равна произведению его диагоналей.

24 . Теорема Ньютона. Во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.

25 . Теорема Монжа. Прямые, проведённые через середины сторон вписанного четырёхугольника перпендикулярно противоположным сторонам, пересекаются в одной точке.

27 . Четыре круга, построенных на сторонах выпуклого четырёхугольника как на диаметрах, покрывают весь четырёхугольник.

29 . Два противоположных угла выпуклого четырёхугольника - тупые. Тогда диагональ, соединяющая вершины этих углов, меньше другой диагонали.

30. Центры квадратов, построенных на сторонах параллелограмма вне его, сами образуют квадрат.