Деятельность нервной системы осуществляется по рефлекторному. Деятельности нервной системы

Основным и специфическим проявлением деятельности нервной си­стемы является рефлекторный принцип. Это способность организма реагировать на внешние или внутренние раздражения двигательной, или секреторной реакцией. Основы учения о рефлекторной деятельности орга­низма были заложены французским ученым Рене Декартом (1596-1650). Наибольшее значение имели его представления о рефлекторном механизме взаимоотношений организма с окружающей средой. Сам термин «рефлекс» был введен значительно позднее - в основном после выхода работ выдающе­гося чешского анатома и физиолога Г. Прохаски (1749-1820).

Рефлекс - это закономерная реакция организма в ответ на раздраже­ние рецепторов, которая осуществляется рефлекторной дугой при участии центральной нервной системы. Это приспособительная реакция организма в ответ на изменение внутренней или окружающей среды. Рефлекторные реакции обеспечивают целостность организма и постоянство его внутрен­ней среды, рефлекторная дуга является основной единицей интегративной рефлекторной активности.

Значительный вклад в развитие рефлекторной теории внес И.М. Сеченов (1829-1905). Он первым использовал рефлекторный принцип для изучения физиологических механизмов психических процессов. В работе «Рефлексы головного мозга» (1863) И.М. Сеченов аргументировано доказал, что пси­хическая деятельность человека и животных осуществляется по механизму рефлекторных реакций, которые происходят в головном мозге, включая са­мые сложные из них - формирование поведения и мышление. На основании проведенных исследований он сделал вывод, что все акты сознательной и бессознательной жизни являются рефлекторными. Рефлекторная теория И.М. Сеченова послужила основой, на которой возникло учение И.П. Пав­лова (1849-1936) о высшей нервной деятельности. Разработанный им ме­тод условных рефлексов расширил научное понимание роли коры большого мозга как материального субстрата психики. И.П. Павлов сформулировал рефлекторную теорию работы головного мозга, которая основывается на трех принципах: причинности, структурности, единстве анализа и синтеза. П. К. Анохин (1898-1974) доказал значение обратной связи в рефлекторной деятельности организма. Суть ее состоит в том, что во время осуществления любого рефлекторного акта процесс не ограничивается лишь эффектором, а сопровождается возбуждением рецепторов рабочего органа, от которых информация о последствиях действия поступает афферентными путями к центральной нервной системе. Появились представления о «рефлекторном кольце», «обратной связи».

Рефлекторные механизмы играют существенную роль в поведении жи­вых организмов, обеспечивая адекватное их реагирование на сигналы окру­жающей среды. Для животных действительность сигнализируется почти исключительно раздражениями. Это первая сигнальная система действи­тельности, общая для человека и животных. И.П. Павлов доказал, что для человека, в отличие от животных, объектом отображения является не только окружающая среда, но и общественные факторы. Поэтому для него решаю­щее значение приобретает вторая сигнальная система - слово как сигнал первых сигналов.

Условный рефлекс лежит в основе высшей нервной деятельности че­ловека и животных. Он всегда включается как существенный компонент в самых сложных проявлениях поведения. Однако не все формы поведения живого организма можно объяснить с точки зрения рефлекторной теории, которая раскрывает лишь механизмы действия. Рефлекторный принцип не дает ответа на вопрос о целесообразности поведения человека и животных, не учитывает результата действия.

Поэтому на протяжении последних десятилетий на основании рефлек­торных представлений сформировалось понятие относительно ведущей роли потребностей как движущей силы поведения человека и животных. Наличие потребностей является необходимой предпосылкой любой дея­тельности. Деятельность организма приобретает определенную направлен­ность лишь при наличии цели, которая отвечает данной потребности. Каж­дому поведенческому акту предшествуют потребности, которые возникли в процессе филогенетического развития под влиянием условий окружающей среды. Именно поэтому поведение живого организма определяется не столь­ко реакцией на внешние воздействия, сколько необходимостью реализации намеченной программы, плана, направленных на удовлетворение той или иной потребности человека или животного.

П.К. Анохин (1955) разработал теорию функциональных систем, которая предусматривает системный подход к изучению механизмов работы голов­ного мозга, в частности, разработки проблем структурно-функциональной основы поведения, физиологии мотиваций и эмоций. Суть концепции - мозг может не только адекватно реагировать на внешние раздражения, но и пред­усматривать будущее, активно строить планы своего поведения и реализовывать их. Теория функциональных систем не исключает метода условных рефлексов из сферы высшей нервной деятельности и не заменяет его чем-то другим. Она дает возможность глубже вникать в физиологическую сущность рефлекса. Вместо физиологии отдельных органов или структур мозга си­стемный подход рассматривает деятельность организма в целом. Для любого поведенческого акта человека или животного нужна такая организация всех мозговых структур, которая обеспечит нужный конечный результат. Итак, в теории функциональных систем центральное место занимает полезный ре­зультат действия. Собственно факторы, которые находятся в основе дости­жения цели, формируются по типу разносторонних рефлекторных процессов.

Одним из важных механизмов деятельности центральной нервной си­стемы является принцип интеграции. Благодаря интегрированию сомати­ческих и вегетативных функций, которое осуществляется корой большого мозга через структуры лимбико-ретикулярного комплекса, реализуются разнообразные приспособительные реакции и поведенческие акты. Высшим уровнем интеграции функций у человека являются лобные отделы коры.

Важную роль в психической деятельности человека и животных играет принцип доминанты, разработанный О. О. Ухтомским (1875-1942). Доми­нанта (от лат. dominari господствовать) это превосходящее в централь­ной нервной системе возбуждение, которое формируется под влиянием стимулов окружающей или внутренней среды и в определенный момент подчиняет себе деятельность других центров.

Головной мозг с его высшим отделом - корой большого мозга - это слож­ная саморегулировочная система, построенная на взаимодействии возбуди­тельных и тормозных процессов. Принцип саморегуляции осуществляется на разных уровнях анализаторных систем - от корковых отделов до уровня рецепторов с постоянным подчинением низших отделов нервной системы высшим.

Изучая принципы функционирования нервной системы, не без основа­ния головной мозг сравнивают с электронной вычислительной машиной. Как известно, основой работы кибернетического оснащения являются прием, передача, переработка и сохранение информации (память) с дальнейшим ее воспроизведением. Для передачи информация должна быть закодирована, а для воспроизведения - раскодирована. Пользуясь кибернетическими поня­тиями, можно считать, что анализатор принимает, передает, перерабатывает и, возможно, сохраняет информацию. В корковых отделах осуществляется ее раскодирование. Это, наверное, достаточно, чтобы сделать возможной попытку сравнить мозг с компьютером. Вместе с тем нельзя отождествлять работу головного мозга с вычислительной машиной: «...мозг - наиболее капризная машина в мире. Будем же скромными и осторожными с выво­дами» (И.М. Сеченов, 1863). Компьютер - это машина и ничего больше. Все кибернетические устройства работают по принципу электрического или электронного взаимодействия, а в головном мозге, который создан путем эволюционного развития, кроме того, происходят сложные биохимические и биоэлектрические процессы. Они могут осуществляться только в живой ткани. Головной мозг, в отличие от электронных систем, функционирует не по принципу «все или ничего», а учитывает великое множество градаций между этими двумя крайностями. Эти градации обусловлены не электрон­ными, а биохимическими процессами. В этом существенное отличие физи­ческого от биологического. Головной мозг имеет качества, которые выходят за пределы тех, которые имеет вычислительная машина. Следует добавить, что поведенческие реакции организма в значительной мере определяются межклеточным взаимодействием в центральной нервной системе. К одному нейрону, как правило, подходят отростки от сотен или тысяч других нейро­нов, и он, в свою очередь, ответвляется в сотни или тысячи других нейро­нов. Никто не может сказать, сколько в мозге синапсов, но число 10 14 (сто триллионов) не кажется невероятным (Д. Хьюбел, 1982). Компьютер вме­щает значительно меньше элементов. Функционирование головного мозга и жизнедеятельность организма осуществляются в конкретных условиях окружающей среды. Поэтому удовлетворение тех или иных потребностей может быть достигнуто при условии адекватности этой деятельности суще­ствующим внешнесредовым условиям.

Для удобства изучения основных закономерностей функционирования головной мозг разделяют на три основные блока, каждый из которых вы­полняет свои определенные функции.

Первый блок - это филогенетически древнейшие структуры лимбико-ретикулярного комплекса, которые расположены в стволовых и глубинных отделах головного мозга. В их состав входят поясная извилина, морской ко­нек (гиппокамп), сосочкоподобное тело, передние ядра таламуса, гипотала­мус, сетчатая формация. Они обеспечивают регуляцию жизненно необходи­мых функций - дыхания, кровообращения, обмена веществ, а также общего тонуса. Относительно поведенческих актов, то эти образования принимают участие в регуляции функций, направленных на обеспечение пищевого и сексуального поведения, процессов сохранения вида, в регуляции систем, которые обеспечивают сон и бодрствование, эмоциональную деятельность, процессы памяти.

Второй блок - это совокупность образований, размещенных позади цен­тральной борозды: соматосенсорные, зрительные и слуховые зоны коры большого мозга. Основные их функции: прием, переработка и сохранение информации.

Нейроны системы, которые размещены преимущественно кпереди от центральной борозды и связаны с эффекторными функциями, реализацией двигательных программ, составляют третий блок.

Тем не менее следует признать, что нельзя провести четкой границы между сенсорными и моторными структурами мозга. Постцентральная извилина, которая является чувствительной проекционной зоной, тесно взаимосвязана с прецентральной двигательной зоной, образовывая единое сенсомоторное поле. Поэтому необходимо четко понимать, что та или дру­гая деятельность человека требует одновременного участия всех отделов нервной системы. Причем система в целом выполняет функции, которые выходят за пределы функций, присущих каждому из указанных блоков.

Вся деятельность нервной системы имеет рефлекторный характер, т.е. складывается из огромного количества разнообразных рефлексов разного уровня сложности. Рефлекс - это ответная реакция организма на любое внешнее или внутреннее воздействие с участием нервной системы. Авторами рефлекторной теории являются И.П. Павлов и И.М. Сеченов.

Каждый рефлекс имеет:

  • время рефлекса - время от нанесения раздражения до ответа на него
  • рецептивное поле - определенный рефлекс возникает только при раздражении определенной рецепторной зоны
  • нервный центр - определенная локализация каждого рефлекса в центральной нервной системе.

Безусловные рефлексы являются видовыми, постоянными, наследственными, сохраняются в течение всей жизни. В процессе эмбрионального развития формируются рефлекторные дуги всех безусловных рефлексов. Совокупность сложных врожденных рефлексов - это инстинкты. Условные рефлексы являются индивидуальными, приобретаются в течение жизни человека, не наследуются. У человека сложное социальное поведение, мышление, сознание, индивидуальный опыт (высшая нервная деятельность) - это совокупность огромного количества разнообразных условных рефлексов. Материальной основой условных рефлексов является кора больших полушарий. Согласование всех рефлекторных реакций осуществляется в центральной нервной системе благодаря процессам возбуждения и торможения деятельности нейронов.

Для осуществления любого рефлекса необходимо особое анатомическое образование - рефлекторная дуга. Рефлекторная дуга - это цепь нейронов, по которым проходит нервный импульс от рецептора (воспринимающей части) до органа, отвечающего на раздражение.

Простейшая рефлекторная дуга у человека образована двумя нейронами - сенсорным и двигательным(мотонейрон). Примером простейшего рефлекса может служить коленный рефлекс. В других случаях в рефлекторную дугу включены три(и более)нейрона - сенсорный, вставочный и двигательный. В упрощенном виде такой рефлекс, возникающий при уколе пальца булавкой. Это спинальный рефлекс, его дуга проходит не через головной, а через спинной мозг. Отростки сенсорных нейронов входят в спинной мозг в составе заднего корешка, а отростки двигательных нейронов выходят из спинного мозга в составе переднего. Тела сенсорных нейронов находятся в спинномозговом узле заднего корешка (в дорсальном ганглии), а вставочных и двигательных - в сером веществе спинного мозга.

Вопрос № 3

Углеводный обмен

В организм человека углеводы поступают в составе пищи в виде моносахаридов (глюкоза, фруктоза, галактоза), дисахаридов (сахароза, мальтоза, лактоза) и полисахаридов (крахмал, гликоген). До 60% энергообмена человека зависит от превращений углеводов. Окисление углеводов происходит гораздо быстрее и легче по сравнению с окислением жиров и белков. В организме человека углеводы выполняют ряд важных функций:

  • энергетическая ( при полном окислении одного грамма глюкозы освобождается 17,6 кДж энергии);
  • рецепторная (образуют углеводные рецепторы
  • защитная (входят в состав слизей);
  • запасающая ( в мышцах и печени откладываются в запас в виде гликогена);

В пищеварительном тракте человека полисахариды и дисахариды расщепляются до глюкозы и других моносахаров. В организме избыток углеводов из крови под действием гормона инсулина откладывается в запас в виде полисахарида гликогена в печени и в мышцах. При недостатке инсулина развивается тяжелое заболевание – сахарный диабет.

Суточная потребность человека в углеводах 400 - 600 граммов. Богата углеводами растительная пища. При недостатке углеводов в пище они могут синтезироваться из жиров и белков. Избыток углеводов в пище превращается в процессе метаболизма в жиры.

Водный и солевой обмен

Организм человека содержит около 65% воды. Особенно большое количество воды содержат клетки нервной ткани (нейроны), клетки селезенки и печени – до 85%. Суточная потеря воды составляет 2,5 литров. Восполнение потерь воды осуществляется за счет пищи потребления жидкости. Около 300г воды ежесуточно образуется внутри организма за счет окисления белков, жиров и углеводов. Вода как химическое вещество обладает рядом уникальных физико-химических свойств, на чем основаны функции, которые она выполняет в организме:

Основной формой деятельности нервной системы является осуществление рефлексов. Рефлексы – это реакции организма, которые возникают в ответ на раздражение рецепторов и осуществляются при обязательном участии нервной системы. Благодаря рефлекторным реакциям происходит постоянное взаимодействие организма с окружающей средой, объединение и регуляция деятельности всех его органов и тканей.

Путь, по которому проходит нервный импульс при осуществлении рефлекса, называют рефлекторной дугой . В самые простые рефлекторные дуги входят только по два нейрона, в более сложные – по три, а в большинстве рефлекторных дуг насчитывается еще больше нейронов. Примером двухнейронной рефлекторной дуги является дуга сухожильного коленного рефлекса, который проявляется в разгибании в коленном суставе при легком постукивании по сухожилию ниже коленной чашечки (рис. 66, А).

В состав трехнейронной рефлекторной дуги (рис. 66, Б) входят: 1) рецептор; 2) афферентный нейрон; 3) вставочный нейрон; 4) эфферентный нейрон; 5) рабочий орган (клетки мышцы или железы). Связь между нейронами в рефлекторной дуге, между эфферентным нейроном и клетками рабочего органа осуществляется с помощью синапсов.

Рецепторами называют окончания дендритов афферентных нейронов, а также специализированные образования (например, палочки и колбочки сетчатки глаза), которые воспринимают раздражение и в ответ на него генерируют нервные импульсы. Нервные импульсы от рецептора поступают по афферентному нервному пути, состоящему из дендрита, тела и аксона афферентного нейрона, в нервный центр.

Нервным центром называют совокупность нейронов, необходимых для осуществления рефлекса или регуляции той или иной функции. Большинство нервных центров находится в ЦНС, но они также есть и в нервных узлах периферической нервной системы. В один нервный центр могут функционально объединяться нейроны, тела которых лежат в разных отделах нервной системы.

В нервном центре расположен вставочный нейрон, на тело или дендриты которого передаётся возбуждение с аксона афферентного нейрона. По аксону вставочного нейрона импульс поступает к эфферентному нейрону, тело которого тоже находится в нервном центре. В большинстве рефлекторных дуг между аксоном афферентного нейрона и телом эфферентного нейрона включается не один, а целая цепь вставочных нейронов. Такие рефлекторные дуги называют полинейронными, или полисинаптическими.

По аксону эфферентного нейрона нервные импульсы поступают к клеткам рабочего органа (мышцы, железы). В результате наблюдается рефлекторная реакция (движение, выделение секрета) на раздражение рецепторов. Время от начала раздражения рецепторов до начала ответной реакции называют временем реакции , или латентным временем рефлекса . Больше всего время рефлекса зависит от скорости проведения возбуждения через нервные центры. Ухудшение функционального состояния нервного центра приводит к увеличению времени рефлекса.


Выполнение ответной реакции еще не является окончанием рефлекторного акта. В осуществляющем ответную реакцию рабочем органе раздражаются рецепторы, импульсы от которых поступают по афферентным нервным волокнам в ЦНС и информируют нервные центры о протекании рефлекторной реакции и состоянии рабочего органа. Такую информацию называют обратной связью . Различают положительные и отрицательные обратные связи. Положительные обратные связи вызывают продолжение и усиление ответной рефлекторной реакции, а отрицательные обратные связи – ее ослабление и прекращение.

Таким образом, возбуждение при рефлекторной реакции не только передается по рефлекторной дуге от первоначально раздражаемого рецептора к рабочему органу, но и затем снова поступает в ЦНС от рецепторов рабочего органа, которые возбудились в результате его ответной рефлекторной реакции. Такая взаимосвязь между нервными центрами и иннервируемыми органами, которая наблюдается при осуществлении рефлекса, называется рефлекторным кольцом . Благодаря обратным связям, осуществляющимся по рефлекторному кольцу, ЦНС получает информацию о результатах рефлекторных реакций, вносит поправки в их осуществление, обеспечивает координированную деятельность организма.

Основным специфическим проявлением деятельности ЦНС является рефлекс.

Рефлекс – это закономерная реакция организма на изменение внешней или внутренней среды, которая осуществляется с участием ЦНС. Значение рефлекса и его механизмы изучали Сеченов и Павлов.

Классификация рефлексов:

I. По биологическому признаку

1. Пищевые

2. Оборонительные

3. Половые

4. Ориентировочные

5. Двигательные

6. Родительские и т.д.

II. По месту расположения рецепторов рефлексы делятся на:

1. Экстеро (от поверхности кожи)

2. Висцеро (от внутренних органов)

3. Проприо (от мышц)

4. Интеро (от сосудов), т.е. от них начинаются рефлекторные цепи.

III. По участию отдела ЦНС

1. Спинальные

2. Бульбарные

3. Мезоэнцефальные

4. Кортикальные и т.д.

IV. По характеру ответа

1. Моторные

2. Секреторные

3. Сосудодвигательные

V. Безусловные и условные рефлексы

Безусловные рефлексы – это врожденные (видовые) на реакции нервной системы осуществляемые по относительно постоянным нервным путям в ответ на адекватные раздражители (инстинкты). В формировании БР участвуют нижние отделы ЦНС (без участия коры).

Условные рефлексы приобретаются в течение индивидуального развития. Реакция осуществляется по временному рефлекторному пути в ответ на любой раздражитель. Они формируются на базе БР. в процессе эволюции первыми появились условные рефлексы.

Путь, по которому идут импульсы от рецептора к исполнительному органу через ЦНС – рефлекторная дуга. Но правильнее сказать – рефлекторное кольцо (пример с одергиванием руки, обратная импульсация).

Совокупность нейронов, необходимых для регулирования функций или осуществления определенного рефлекса называется нервным центром.

Нервные центры обладают рядом свойств. в основном они зависят от особенностей синапсов и структуры нейронных цепей.

1. Суммация возбуждения – сочетание двух или нескольких подпороговых раздражителей вызывает ответ отдельного раздражения не достаточно для вызова ответа. Различают 2 вида суммации:

2. а) Последовательную или временную суммацию (имеет место при взаимодействии подпороговых раздражителей приходящих за короткий промежуток времени друг за другом. В основе лежит то, что на один стимул выделяется мало медиатора в синапсе для передачи возбуждения, а при суммации выделяется достаточное количество медиатора для передачи возбуждения.

б) Пространственная суммация – если два или более раздражителей действуют одновременно на разные рецепторы одного рефлексогенного поля (происходит выделение достаточного количество медиатора и возникает ответная реакция).

2. Трансформация ритмов возбуждения. Частота импульсов от ЦНС к рабочему органу относительно независимо от частоты раздражения, т.е. в ответ на одиночный стимул НЦ посылает ряд импульсов к рабочему органу с определенным ритмом. Это объясняется тем, что ВПСП оказывается очень длительным или зависит от колебания следовых потенциалов мембраны. Если следовой отрицательный потенциал велик, то по достижению критического уровня он способен вызывать новый ПД.

3. Посттетаническая потенциация. В результате предшествующего возбуждения внутри пресинапса накапливаются ионы Са, что повышает эффективность работы синапса. При частом ритме возбуждения каждый последующий потенциал вызывает выделение большего количество квантов медиатора, что способствует увеличению амплитуды постсинаптических потенциалов. Увеличение числа квантов медиатора высвобождаемых нервным импульсом после ритмического раздражения называется посттетанической потенциацией. Длительность ее от нескольких минут до часов (гипокамп).

4. Утомляемость НЦ. Связана с нарушением передачи возбуждения в межнейронных синапсах. Снижается чувствительность постсинаптической мембраны к медиатору. Утомление связано и с тем, что нейроны чувствительны к нехватке кислорода. Мозг потребляет в минуту 40-50 мл кислорода (1/6 от всего кислорода потребляемого в покое). При остановке кровоснабжения мозга клетки коры погибают через 5-6 минут, а клетки ствола мозга – после 15-20 минут, еще менее чувствительны к гипоксии клетки спинного мозга (20-30 мин). Гипотермия увеличивает время нахождения мозга в условиях гипоксии.

5. Нейроны и синапсы избирательно чувствительны к некоторым ядам. Стрехнин блокирует функции тормозных синапсов, т.е. увеличивает возбуждение НЦ. Некоторые вещества избирательно действуют на нервные центры. Так, апоморфин действует только на рвотный центр, лобилин – угнетает дыхательный центр, кардиозол – моторная зона коры, мескалин - на зрительную зону (вызывает галлюцинации).

Физиология центральной нервной системы (ЦНС).

ЦНС – система, осуществляющая регуляцию практически всех функций в организме. ЦНС осуществляет связь в единое целое всех клеток и органов нашего организма. С ее помощью происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности. Кроме того, ЦНС осуществляет связь организма с внешней средой, путем анализа и синтеза поступающей к ней информации от рецепторов и формирует ответную реакцию, направленную на поддержание гомеостаза.

Строение ЦНС.

Структурной и функциональной единицей нервной системы является нервная клетка (нейрон). Нейрон - специализированная клетка, способная принимать, кодировать, передавать и хранить информацию, организовывать ответные реакции организма на раздражения, устанавливать контакты с другими нейронами.

Нейрон состоит из тела (сомы) и отростков - многочисленных дендритов и одного аксона (рис1).

Рис.1. Строение нейрона.

Дендриты обычно сильно ветвятся и образуют множество синапсов с другими нервными клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, функцией которого является генерация нервного импульса, который по аксону проводится к другим клеткам. Длина аксона может достигать одного метра и более. Аксон сильно ветвится, образуя множество коллатералей (паралелльных путей) и терминалей. Терминаль – окончание аксона, с помощью которого образуется синапс с другой клеткой. В ЦНС терминали формируют нейро-нейрональные синапсы, на периферии (за пределами ЦНС) аксоны образуют либо нейро-мышечные, либо нейросекреторные синапсы. Окончание аксона чаще называют не терминалью, а синаптической бляжкой (или синаптической пуговкой). Синаптическая бляшка – это концевое (терминальное) утолщение аксона, служащее для депонирования медиатора (смотрите лекции по синапсу). Мембрана окончаний содержит большое число потенциалозависимых кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении.

В большинстве центральных нейронов (т.е. нейронов ЦНС) ПД первично возникает в области мембраны аксонного холмика, и отсюда возбуждение распространяется по аксону к синаптической бляшке. Таким образом, уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов.

Каждый нейрон выполняет 2 основные функции: проводит импульсацию и обрабатывает импульсацию (смотрите далее «трансформация ритма возбуждения»). Любой участок нейрона обладает проводимостью. Проведение импульсации (информации) от одной клетки к другой нейрон осуществляет благодаря своим отросткам: аксону и дендритам. Каждый нейрон имеет один аксон и множество дендритов.

Обработка импульсации (обработка информации, трансформация импульсации) - это наиболее значимая функция нейрона, которая осуществляется на аксонном холмике.

Помимо нейронов в ЦНС имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны (периферические – значит находящиеся за пределами ЦНС) также окружены оболочкой из глиальных клеток. Они способны к делению в течение всей жизни. Размеры 3-4 раза меньше, чем нейроны. С возрастом их число увеличивается.

Функции клеток глии многообразны:

1) они являются для нейронов опорным, защитным и трофическим аппаратом;

2) поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве;

3) активно поглощают нейромедиаторы, ограничивая, таким образом, время их действия.

Классификация нейронов

Зависимости от отделов ЦНС: вегетативные и соматические

По виду медиатора, которая выделяется окончаниями нейрона: адренэргические(НА) и т.д

По влиянию бывают возбуждающие и тормозящие

По специфичности воспринимающей сенсорной информации нейроны высших отделов ЦНС бывают моно и полимодальные

По активности нейронов бывают:фоноактивные, молчащие- которые возбуждаются только в ответ на раздражение.

По источнику или направении передачи информации: афферентные, вставочные, эфферентные

Рефлекторный принцип деятельности ЦНС.

Основным механизмом деятельности ЦНС является рефлекс. Рефлекс - это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС. Например, отдергивание руки при уколе, смыкание век при раздражении роговицы – это тоже рефлекс. Отделение желудочного сока при попадании пищи в желудок, дефекация при наполнении прямой кишки, покраснения кожи при тепловом воздействии, коленный, локтевой, Бабинского, Розенталя – это все примеры рефлексов. Количество рефлексов безгранично. Общим для них всех является обязательное участие в их реализации ЦНС.

Другим определением рефлекса, также подчеркивающим роль ЦНС, является следующее: рефлекс –это центробежный ответ на центростремительное раздражение. (В приведенных примерах самостоятельно определите, что является центробежным ответом, а что раздражением. Раздражение всегда центростремительное, т.е. действующий на рецепторы раздражитель вызывает импульсацию, которая поступает в ЦНС).

Структурной основой рефлекса, его материальным субстратом является рефлекторная дуга (рис.2).

Рис. 2.Рефлекторная дуга

Рефлекторная дуга состоит из 5 звеньев :

1) рецептора;

2) афферентного (чувствительного, центростремительного) звена;

3) вставочного звена (центрального);

4) эфферентного (двигательного, центробежного) звена;

5) эффектора (рабочего органа).

Участок тела, содержащий рецепторы, при раздражении которых возникает определенный рефлекс, называется рецептивным полем рефлекса.

Рефлекс может осуществляться только тогда, когда сохранена целостность всех звеньев рефлекторной дуги.

Нервный центр.

Нервный центр (центр ЦНС или ядро) – это совокупность нейронов, принимающих участие в осуществлении конкретного рефлекса. Т.е. каждый рефлекс имеет свой центр: существует центр коленного рефлекса, свой центр у локтевого рефлекса, свой - у мигательного, есть сердечно-сосудистый, дыхательный, пищевой центры, центры сна и бодрствования, голода и жажды и т.д. В целом организме при формировании сложных адаптивных процессов происходит функциональное объединение нейронов, расположенных на различных уровнях ЦНС, т.е. сложное объединение большого количества центров.

Объединение нервных центров (ядер) между собой осуществляется проводящими путями ЦНС с помощью нейро-нейрональных (межнейронных) синапсов. Существует 3 типа соединения нейронов: последовательное, дивергентное и конвергентное.

Нервные центры обладают рядом характерных функциональных свойств, которые во многом обусловлены этими тремя типами нейронных сетей, а также свойствами межнейронных синапсов.

Основные свойства нервных центров:

1. Конвергенция (схождение) (рис.3). В ЦНС к одному нейрону могут сходиться возбуждения от различных источников. Эта способность возбуждений сходиться к одним и тем же промежуточным и конечным нейронам получила название конвергенции возбуждений

Рис.3. Конвергенция возбуждения.

2. Дивергенция (расхождение ) - расхождение импульсаций от одного нейрона сразу на многие нейроны. На основе дивергенции происходит иррадиация возбуждения и становится возможным быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Рис.4. Дивергенция возбуждения.

3. Возбуждение в нервных центрах распространяется односторонне - от рецептора к эффектору, что обусловливается свойством химических синапсов односторонне проводить возбуждение от пресинаптической мембраны к постсинаптической.

4. Возбуждение в нервных центрах проводится медленнее , чем по нервному волокну. Это обусловлено замедленным проведением возбуждения через синапсы (синаптическая задержка), которых в ядре много.

5. В нервных центрах осуществляется суммация возбуждений . Суммация – сложение допороговых импульсов. Различают два вида суммации.

Временная или последовательная , если импульсы возбуждения приходят к нейрону по одному и тему же пути через один синапс с интервалом меньше, чем время полной реполяризации постсинаптической мембраны. В этих условиях локальные токи на постсинаптической мембране воспринимающего нейрона суммируются и доводят ее деполяризацию до уровня Е к, достаточного для генерации нейроном потенциала действия. Временной данная суммация называется, потому что на нейрон в течение некоторого промежутка времени приходит серия импульсов (раздражений). Последовательной она называется, потому что реализуется в последовательном соединении нейронов.

Пространственная или одновременная - наблюдается в том случае, когда импульсы возбуждения поступают к нейрону одновременно через разные синапсы. Пространственной данная суммация называется, потому что раздражитель действует на некоторое пространство рецептивного поля, т.е. несколько (минимум 2) рецепторов разных участков рецептивного поля. (Тогда как временная суммация может реализоваться при действии серии раздражителей на один и тот же рецептор). Одновременной она называется, потому что информация к нейрону приходят одновременно по нескольким (минимум 2) каналам связи, т.е. одновременная суммация, реализуется конвергентным соединением нейронов.

6.Трансформация ритма возбуждения - изменение количества импульсов возбуждения, выходящих из нервного центра, по сравнению с числом импульсов, приходящих к нему. Различают два вида трансформации:

1) понижающая трансформация , в основе которой, лежит явление суммации возбуждений, когда в ответ на несколько пришедших допороговых возбуждений к нервной клетке, в нейроне возникает только одно пороговое возбуждение;

2) повышающая трансформация , в ее основе лежат механизмы умножения (мультипликации), способные резко увеличить количество импульсов возбуждения на выходе.

7. Рефлекторное последействие - заключается в том, что рефлекторная реакция заканчивается позже прекращения действия раздражителя. Это явление обусловлено двумя причинами:

1) длительной следовой деполяризацией мембраны нейрона, на фоне прихода мощной афферентации (сильной чувствительной импульсации), вызывающей выделение большого количества (квантов) медиатора, что обеспечивает возникновение нескольких потенциалов действия на постсинаптической мембране и, соответственно, кратковременное рефлекторное последействие;

2) пролонгированием выхода возбуждения к эффектору в результате циркуляции (реверберации) возбуждения в нейронной сети типа "нейронной ловушки". Возбуждение, попадая в такую сеть, может длительное время циркулировать в ней, обеспечивая длительное рефлекторное последействие. Возбуждение в такой цепочке может циркулировать до тех пор, пока какое-либо внешнее воздействие затормозит этот процесс или в ней наступит утомление. Примером последействия может служить хорошо всем известная жизненная ситуация, когда даже после прекращения действия сильного эмоционального раздражителя (после прекращения ссоры) еще какое-то более или менее продолжительное время продолжается общее возбуждение, артериальное давление остается повышенным, сохраняется гиперемия лица, тремор кистей.

8. Нервные центры обладают высокой чувствительностью к недостатку кислорода. Нервные клетки отличаются интенсивным потреблением О 2 . Мозг человека поглощает около 40-70 мл О 2 в минуту, что составляет 1/4-1/8 часть всего количества О 2 , потребляемого организмом. Потребляя большое количество О 2 , нервные клетки высокочувствительны к его недостатку. Частичное прекращение кровообращения центра ведет к тяжелым расстройствам деятельности его нейронов, а полное прекращение - к гибели в течение 5-6 мин.

9. Нервные центры, как и синапсы, обладают высокой чувствительностью к действию различных химических вещест в, особенно ядов. На одном нейроне могут располагаться синапсы, обладающие различной чувствительностью к различным химическим веществам. Поэтому можно подобрать такие химические вещества, которые избирательно будут блокировать одни синапсы, оставляя другие в рабочем состоянии. Это делает возможным корректировать состояния и реакции как здорового, так и больного организма.

10. Нервные центры, как и синапсы, обладают быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми. Это обусловлено резким уменьшением запасов медиатора, уменьшением чувствительности к медиатору постсинаптической мембраны, уменьшением ее энергетических запасов, что наблюдается при длительной работе и является основной причиной развития утомления.

11. Нервные центры, как и синапсы, обладают низкой лабильностью, основной причиной которой является синаптическая задержка. Суммарная синаптическая задержка, наблюдающаяся во всех нейро-нейрональных синапсах при проведении импульсации по ЦНС, или в нервном центре называется центральной задержкой.

12. Нервные центры обладают тонусом , который выражается в том, что даже при отсутствии специальных раздражений, они постоянно посылают импульсы к рабочим органам.

13. Нервные центры обладают пластичностью - способностью изменять собственное функциональное назначение и расширять свои функциональные возможности. Так же пластичность можно определить, как способность одних нейронов брать на себя функцию пораженных нейронов того же центра. Именно, с явлением пластичности связана способность восстанавливать двигательную активность конечностей, например, ног, утраченную в результате травм спинного мозга. Однако это возможно только при поражении части нейронов данного центра или при сохранении целостными части проводящих путей ЦНС. При полном разрыве спинного мозга восстановление двигательной активности оказывается невозможным. Кроме того, нейроны одного центра, например, сгибателей не могут брать на себя функцию нейронов другого центра - разгибателей. Т.е. явление пластичности центров ЦНС ограничено.

14. Окклюзия (запирание ) (рис.5) - это сложение пороговой импульсации. Окклюзия осуществляется (так же как и пространственная суммация) в конвергирующей системе соединения нейронов. Одновременной активации нескольких (минимум двух) рецепторов сильным или сверхсильным раздражителями к одному нейрону будут конвергировать несколько пороговых или сверхпороговых импульса. На этом нейроне будет происходить окклюзия, т.е. эти два раздражителя он ответит с той же максимальной силой, что и на каждый из них отдельности. Феномен окклюзии состоит в том, что количество возбужденных нейронов при одновременном раздражении афферентных входов обоих нервных центров оказывается меньше, чем арифметическая сумма возбужденных нейронов при отдельном раздражении каждого афферентного входа в отдельности.

Рис.6. Явление окклюзии в ЦНС.

Явление окклюзии приводит к снижению силы ответной реакции. Окклюзия имеет охранительное значение, предотвращая перенапряжение нейронов при действии сверхсильных раздражителей.


Похожая информация.