Длина волны инфракрасных лучей равна. Инфракрасные волны

В различных сферах жизни человек использует инфракрасные лучи. Польза и вред излучения зависят от длины волны и времени воздействия.

В повседневной жизни человек постоянно находится под действием инфракрасного излучения (ИК-излучение). Естественным его источником является солнце. К искусственным относятся электронагревательные элементы и лампы накаливания, любые нагретые или раскаленные тела. Этот вид излучения используется в обогревателях, системах отопления, приборах ночного видения, пультах дистанционного управления. На ИК-излучении основан принцип действия медицинского оборудования для физиотерапии. Что же собой представляют инфракрасные лучи? В чем польза и вред этого вида излучения?

Что такое ИК-излучение

ИК-излучение - это электромагнитное излучение , форма энергии, которая нагревает предметы и примыкает к красному спектру видимого света. Глаз человека не видит в этом спектре, но мы чувствуем эту энергию как высокую температуру. Другими словами, люди кожей воспринимают инфракрасное излучение от нагретых предметов как ощущение тепла.

Инфракрасные лучи бывают коротковолновыми, средневолновыми и длинноволновыми. Длины волн, излучаемые нагретым предметом, зависят от температуры нагревания. Чем она выше, тем короче длина волны и интенсивнее излучение.

Впервые биологическое действие этого вида излучения было изучено на примере культур клеток, растений, животных. Обнаружено, что под влиянием ИК-лучей подавляется развитие микрофлоры, улучшаются обменные процессы вследствие активизации кровотока. Доказано, что это излучение улучшает циркуляцию крови и оказывает болеутоляющее и противовоспалительное действие. Отмечено, что под влиянием инфракрасного излучения пациенты после хирургического вмешательства легче переносят послеоперационные боли, а их раны быстрее заживают. Установлено, что ИК-излучение способствует повышению неспецифического иммунитета, что позволяет уменьшить действие ядохимикатов и гамма-излучения, а также ускоряет процесс выздоровления при гриппе. ИК-лучи стимулируют выведение из организма холестерина, шлаков, токсинов и других вредных веществ через пот и мочу.

Польза инфракрасных лучей

Благодаря этим свойствам ИК-излучение широко используется в медицине. Но применение ИК-излучений с широким спектром действия может привести к перегреву организма и покраснению кожи. Вместе с тем, длинноволновое излучение не оказывает негативного влияния, поэтому в быту и медицине более распространены длинноволновые приборы или излучатели с селективной длиной волны.

Воздействием длинноволновых ИК-лучей способствует следующим процессам в организме:

  • Нормализация артериального давления за счет стимуляции кровообращения
  • Улучшение мозгового кровообращения и памяти
  • Очищение организма от токсинов, солей тяжелых металлов
  • Нормализация гормонального фона
  • Прекращение распространения вредных микробов и грибков
  • Восстановление водно-солевого баланса
  • Обезболивание и противовоспалительный эффект
  • Укрепление иммунной системы.

Лечебное воздействие ИК-лучей может использоваться при следующих заболеваниях и состояниях:

  • бронхиальная астма и обострение хронического бронхита
  • очаговая пневмония в стадии разрешения
  • хронический гастродуоденит
  • гипермоторная дискинезия органов пищеварения
  • хронический бескаменный холецистит
  • остеохондроз позвоночника с неврологическими проявлениями
  • ревматоидный артрит в ремиссии
  • обострение деформирующего остеоартроза тазобедренного и коленного суставов
  • облитерирующий атеросклероз сосудов ног, невропатии периферических нервов ног
  • обострение хронического цистита
  • мочекаменная болезнь
  • обострение хронического простатита с нарушением потенции
  • инфекционные, алкогольные, диабетические полиневропатии ног
  • хронический аднексит и нарушения функции яичников
  • абстинентный синдром

Отопление с использованием ИК-излучения способствует укреплению иммунной системы, подавляет размножение бактерий в окружающей среде и в человеческом организме, улучшает состояние кожи за счет усиления циркуляции крови в ней. Ионизирование воздуха является профилактикой обострений аллергии.

Когда ИК-излучение может навредить

Прежде всего, нужно учесть существующие противопоказания, прежде чем в лечебных целях использовать инфракрасные лучи. Вред от их применения может быть в следующих случаях:

  • Острые гнойные заболевания
  • Кровотечения
  • Острые воспалительные заболевания, приведшие к декомпенсации органов и систем
  • Системные заболевания крови
  • Злокачественные новообразования

Кроме того, чрезмерное облучение широким спектром ИК-лучей приводит к сильному покраснению кожи и может вызвать ожог. Известно о случаях появления опухоли на лице у рабочих-металлургов в результате длительного воздействия этого вида излучения. Также отмечены случаи появления дерматита, возникновения теплового удара.

Инфракрасные лучи, особенно в интервале 0,76 - 1,5 мкм (коротковолновая область) представляют опасность для глаз. Продолжительное и длительное воздействие излучения чревато развитием катаракты, светобоязни и других нарушений зрения. По этой причине нежелательно длительно находиться под воздействием коротковолновых обогревателей. Чем ближе к такому обогревателю находится человек, тем меньше должно быть время, которое он проводит возле этого прибора. Нужно отметить, что этот тип обогревателей предназначен для уличного или локального обогрева. Для отопления жилых и производственных помещений, предназначенных для длительного пребывания людей, используются длинноволновые ИК-обогреватели.

Инфракрасное излучение - это электромагнитное излучение, находящееся на границе с красным спектром видимого света. Человеческий глаз не способен видеть этот спектр, однако мы его ощущаем кожей, как тепло. При воздействии инфракрасных лучей предметы нагреваются. Чем короче длина волны инфракрасного излучения, тем сильнее будет тепловой эффект.

Согласно международной организации стандартизации (ISO), инфракрасное излучение делится на три диапазона: ближний, средний и дальний. В медицине, в импульсной инфракрасной светодиодной терапии (LEDT) применяется только ближний инфракрасный диапазон, поскольку он не рассеивается на поверхности кожи и проникает на подкожные структуры.



Спектр ближнего инфракрасного излучения ограничен от 740 до 1400 нм, но с увеличением длины волны, снижается способность лучей проникать в ткани, за счет поглощения фотонов водой. В аппаратах “РИКТА” используются инфракрасные диоды с длиной волны в диапазоне 860-960 нм и средней мощностью 60 мВт (+/- 30).

Излучение инфракрасных лучей не такое глубокое, как лазерное, однако у него более широкий спектр воздействия. Было доказано, что фототерапия ускоряет заживление ран, уменьшает воспаление и снимает болевой синдром, воздействуя на подкожные ткани и способствуя пролиферации и адгезии клеток в тканях .

LEDT интенсивно способствует прогреванию ткани поверхностных структур, улучшает микроциркуляцию, стимулирует регенерацию клеток, способствует уменьшению воспалительного процесса и восстановлению эпителия .

ЭФФЕКТИВНОСТЬ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ В ЛЕЧЕНИИ ЧЕЛОВЕКА

LEDT используется, как дополнение к низкоинтенсивной лазерной терапии аппаратов “РИКТА” и обладает лечебным и профилактическим эффектами.

Воздействие аппарата инфракрасного излучения способствует ускорению метаболических процессов в клетках, активирует регенеративные механизмы и улучшает кровоснабжение . Действие инфракрасного излучения комплексное и оказывает следующие эффекты на организм:

    увеличение диаметра сосудов и улучшение кровообращения;

    активация клеточного иммунитета;

    снятие отечности тканей и воспаления;

    купирование болевых синдромов;

    улучшение метаболизма;

    снятие эмоционального напряжения;

    восстановление водно-солевого баланса;

    нормализация гормонального фона.

Воздействуя на кожу, инфракрасные лучи раздражают рецепторы, передавая сигнал в мозг. Центральная нервная система рефлекторно отвечает, стимулируя общий метаболизм и повышая общий иммунитет.

Гормональный ответ способствует расширению просвета сосудов микроциркуляторного роста, улучшая кровоток. Это приводит к нормализации артериального давления, лучшему транспорту кислорода в органы и ткани .

БЕЗОПАСНОСТЬ

Несмотря на пользу, оказываемую импульсной инфракрасной светодиодной терапией, воздействие инфракрасным излучением должно быть дозированным. Бесконтрольное облучение может привести к ожогам, покраснениям кожи, перегреву тканей.

Количество и длительность процедур, частоту и область инфракрасного излучения, а также другие особенности лечения должен назначать специалист.

ПРИМЕНЕНИЕ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

LEDT-терапия показала высокую эффективность при лечении разных заболеваний: пневмонии, гриппа, ангины, бронхиальной астмы, васкулита, пролежней, варикозного расширения вен, заболеваний сердца, обморожений и ожогов, некоторых форм дерматитов, заболеваний периферической нервной системы и злокачественных новообразований кожи .

Инфракрасное излучение, наряду с электромагнитным и лазерным, оказывает общеукрепляющее действие и помогает при лечении и профилактики многих заболеваний. Аппарат “Рикта” сочетает в себе излучение многокомпонентного типа и позволяет добиться максимального эффекта в короткий срок. Прибор инфракрасного излучения купить можно в .

Инфракрасное излучение – один из типов электромагнитного излучения, что граничит с красной частью спектра видимого света с одной стороны и микроволнами – с другой. Длина волны – от 0.74 до 1000-2000 микрометров. Инфракрасные волны называют еще «тепловыми». Исходя из длины волны, их классифицируют на три группы:

коротковолновые (0.74-2.5 микрометров);

средневолновые (длиннее 2.5, короче 50 микрометров);

длинноволновые (больше 50 микрометров).

Источники инфракрасного излучения

На нашей планете инфракрасное излучение отнюдь не редкость. Практически любое тепло – эффект воздействия инфракрасных лучей. Неважно что это: солнечный свет, тепло наших тел или нагрев, исходящий от отопительных приборов.

Инфракрасная часть электромагнитного излучения греет не пространство, а непосредственно сам объект. Именно на этом принципе построена работа инфракрасных ламп. Да и Солнце обогревает Землю аналогичным образом.

Влияние на живые организмы

На данный момент, науке неизвестны подтвержденные факты негативного влияния инфракрасных лучей на организм человека. Разве что из-за чересчур интенсивного излучения может повредиться слизистая оболочка глаз.

А вот о пользе можно говорить очень долго. Еще в 1996 году, ученые из США, Японии и Голландии подтвердили ряд позитивных медицинских фактов. Тепловое излучение:

уничтожает некоторые из видов вируса гепатита;

подавляет и замедляет рост раковых клеток;

обладает способностью нейтрализации вредных электромагнитных полей и излучения. В том числе и радиоактивного;

помогает вырабатывать инсулин диабетиками;

может помочь при дистрофии;

улучшение состояния организма при псориазе.

Под улучшается самочувствие, внутренние органы начинают работать эффективнее. Увеличивается питание мускулов, изрядно повышается сила иммунной системы. Известный факт, что при отсутствии инфракрасного излучения, организм ощутимо быстрее стареет.

Инфракрасные лучи еще называют «лучами жизни». Именно под их воздействием зародилась жизнь.

Использование инфракрасных лучей в быту человека

Инфракрасный свет используют не менее широко, чем он распространен. Пожалуй, будет очень сложно найти хоть одну область народного хозяйства, где не нашла себе применения инфракрасная часть электромагнитных волн. Перечислим самые известные сферы применения:

военное дело. Самонаведение боеголовок ракет или приборы ночного видения – это все результат использования инфракрасного излучения;

термография широко используется в науке для определения перегретых или переохлажденных частей исследуемого объекта. Инфракрасные снимки также широко используются в астрономии, наряду с другими типами электромагнитных волн;

бытовые обогреватели. В отличие от конвекторов, такие устройства с помощью лучистой энергии нагревают все объекты помещения. А уже дальше, предметы интерьера отдают тепло окружающему воздуху;

передача данных и дистанционное управление. Да, все пульты от телевизоров, магнитофонов и кондиционеров используют инфракрасные лучи;

дезинфекция в пищевой промышленности

медицина. Лечение и профилактика многих разнотипных заболеваний.

Инфракрасные лучи – относительно небольшая часть электромагнитного излучения. Являясь естественным способом передачи тепла, без него не обходится ни один жизненный процесс на нашей планете.

ИНФРАКРАСНОЕ ИЗЛУЧЕНИЕ (ИК-излучение, ИК-лучи), электромагнитное излучение с длинами волн λ от около 0,74 мкм до около 1-2 мм, то есть излучение, занимающее спектральную область между красным концом видимого излучения и коротковолновым (субмиллиметровым) радиоизлучением. Инфракрасное излучение относится к оптическому излучению, однако в отличие от видимого излучения оно не воспринимается человеческим глазом. Взаимодействуя с поверхностью тел, оно нагревает их, поэтому часто его называют тепловым излучением. Условно область инфракрасного излучения разделяют на ближнюю (λ = 0,74-2,5 мкм), среднюю (2,5-50 мкм) и далёкую (50-2000 мкм). Инфракрасное излучение открыто У. Гершелем (1800) и независимо У. Волластоном (1802).

Спектры инфракрасного излучения могут быть линейчатыми (атомные спектры), непрерывными (спектры конденсированных сред) или полосатыми (молекулярные спектры). Оптические свойства (коэффициенты пропускания, отражения, преломления и т.п.) веществ в инфракрасном излучении, как правило, значительно отличаются от соответствующих свойств в видимом или ультрафиолетовом излучении. Многие вещества, прозрачные для видимого света, непрозрачны для инфракрасного излучения определённых длин волн, и наоборот. Так, слой воды толщиной в несколько сантиметров непрозрачен для инфракрасного излучения с λ > 1 мкм, поэтому вода часто используется в качестве теплозащитного фильтра. Пластинки из Ge и Si, непрозрачные для видимого излучения, прозрачны для инфракрасного излучения определённых длин волн, чёрная бумага прозрачна в далёкой ИК-области (такие вещества используют в качестве светофильтров при выделении инфракрасного излучения).

Отражательная способность большинства металлов в инфракрасном излучении значительно выше, чем в видимом излучении, и возрастает с увеличением длины волны (смотри Металлооптика). Так, отражение поверхностей Al, Au, Ag, Cu инфракрасного излучения с λ = 10 мкм достигает 98%. Жидкие и твёрдые неметаллические вещества обладают селективным (зависящим от длины волны) отражением инфракрасного излучения, положение максимумов которого зависит от их химического состава.

Проходя через земную атмосферу, инфракрасное излучение ослабляется вследствие рассеяния и поглощения атомами и молекулами воздуха. Азот и кислород не поглощают инфракрасное излучение и ослабляют его лишь в результате рассеяния, которое для инфракрасного излучения значительно меньше, чем для видимого света. Молекулы Н 2 О, О 2 , О 3 и др., присутствующие в атмосфере, селективно (избирательно) поглощают инфракрасное излучение, причём особенно сильно поглощают инфракрасное излучение пары воды. Полосы поглощения Н 2 О наблюдаются во всей ИК-области спектра, а полосы СО 2 - в её средней части. В приземных слоях атмосферы имеется лишь небольшое число «окон прозрачности» для инфракрасного излучения. Наличие в атмосфере частиц дыма, пыли, мелких капель воды приводит к дополнительному ослаблению инфракрасного излучения в результате его рассеяния на этих частицах. При малых размерах частиц инфракрасное излучение рассеивается меньше, чем видимое излучение, что используют в ИК-фотографии.

Источники инфракрасного излучения. Мощный естественный источник инфракрасного излучения - Солнце, около 50% его излучения лежит в ИК-области. На инфракрасное излучение приходится от 70 до 80% энергии излучения ламп накаливания; его испускают электрическая дуга и различные газоразрядные лампы, все типы электрических обогревателей помещений. В научных исследованиях источниками инфракрасного излучения служат ленточные вольфрамовые лампы, штифт Нернста, глобар, ртутные лампы высокого давления и др. Излучение некоторых типов лазеров также лежит в ИК-области спектра (например, длина волны излучения лазеров на неодимовом стекле составляет 1,06 мкм, гелий-неоновых лазеров - 1,15 и 3,39 мкм, СО 2 -лазеров - 10,6 мкм).

Приёмники инфракрасного излучения основаны на преобразовании энергии излучения в другие виды энергии, доступные для измерения. В тепловых приёмниках поглощённое инфракрасное излучение вызывает повышение температуры термочувствительного элемента, которое и регистрируется. В фотоэлектрических приёмниках поглощение инфракрасного излучения приводит к появлению или изменению силы электрического тока или напряжения. Фотоэлектрические приёмники (в отличие от тепловых) селективны, то есть чувствительны лишь к излучению определённой области спектра. Фоторегистрация инфракрасного излучения осуществляется с помощью специальных фотоэмульсий, однако они чувствительны к нему только для длин волн до 1,2 мкм.

Применение инфракрасного излучения. ИК-излучение широко применяют в научных исследованиях и для решения различных практических задач. Спектры испускания и поглощения молекул и твёрдых тел лежат в ИК-области, их изучают в инфракрасной спектроскопии, в структурных задачах, а также используют в качественном и количественном спектральном анализе. В далёкой ИК-области лежит излучение, возникающее при переходах между зеемановскими подуровнями атомов, ИК-спектры атомов позволяют изучать структуру их электронных оболочек. Фотографии одного и того же объекта, полученные в видимом и инфракрасном диапазонах, вследствие различия коэффициентов отражения, пропускания и рассеяния могут значительно различаться; на ИК-фотографии можно увидеть детали, невидимые на обычной фотографии.

В промышленности инфракрасное излучение используют для сушки и нагрева материалов и изделий, в быту - для обогрева помещений. На основе фотокатодов, чувствительных к инфракрасному излучению, созданы электронно-оптические преобразователи, в которых не видимое глазом ИК-изображение объекта преобразуется в видимое. На основе таких преобразователей построены различные ночного видения приборы (бинокли, прицелы и т.п.), позволяющие в полной темноте обнаруживать объекты, вести наблюдение и прицеливание, облучая их инфракрасным излучением от специальных источников. При помощи высокочувствительных приёмников инфракрасного излучения осуществляют теплопеленгацию объектов по их собственному инфракрасному излучению и создают системы самонаведения на цель снарядов и ракет. ИК-локаторы и ИК-дальномеры позволяют обнаруживать в темноте предметы, температура которых выше температуры окружающей среды, и измерять расстояния до них. Мощное излучение ИК-лазеров используют в научных исследованиях, а также для осуществления наземной и космической связи, для лазерного зондирования атмосферы и т. д. Инфракрасное излучения используется для воспроизведения эталона метра.

Лит.: Шрайбер Г. Инфракрасные лучи в электронике. М., 2003; Тарасов В. В., Якушенков Ю. Г. Инфракрасные системы «смотрящего» типа. М., 2004.

В невидимой области электромагнитного спектра, которая начинается за видимым красным светом и заканчивается перед микроволновым излучением между частотами 10 12 и 5∙10 14 Гц (или находится в диапазоне длин волн 1-750 нм). Название происходит от латинского слова infra и означает «ниже красного».

Применение инфракрасных лучей разнообразно. Они используются для визуализации объектов в темноте или в дыму, отопления саун и подогрева крыльев воздушных судов для защиты от обледенения, в ближней связи и при проведении спектроскопического анализа органических соединений.

Открытие

Инфракрасные лучи были обнаружены в 1800 г. британским музыкантом и астрономом-любителем немецкого происхождения Уильямом Гершелем. Он с помощью призмы разделил солнечный свет на составляющие его компоненты и за красной частью спектра с помощью термометра зарегистрировал увеличение температуры.

ИК-излучение и тепло

Инфракрасное излучение часто называют тепловым. Следует, однако, отметить, что оно является лишь его следствием. Тепло - это мера поступательной энергии (энергии движения) атомов и молекул вещества. «Температурные» датчики фактически измеряют не тепло, а только различия в ИК-излучении различных объектов.

Многие учителя физики инфракрасным лучам традиционно приписывают всю тепловую радиацию Солнца. Но это не совсем так. С видимым солнечным светом поступает 50% всего тепла, и электромагнитные волны любой частоты при достаточной интенсивности могут вызвать нагрев. Однако справедливо будет сказать, что при комнатной температуре объекты выделяют тепло в основном в полосе среднего инфракрасного диапазона.

ИК-излучение поглощается и испускается вращениями и вибрациями химически связанных атомов или их групп и, следовательно, многими видами материалов. Например, прозрачное для видимого света оконное стекло ИК-радиацию поглощает. Инфракрасные лучи в значительной степени абсорбируются водой и атмосферой. Хотя они и невидимы для глаз, их можно ощутить кожей.

Земля как источник инфракрасного излучения

Поверхность нашей планеты и облака поглощают солнечную энергию, большую часть которой в виде ИК-радиации отдают в атмосферу. Определенные вещества в ней, в основном пар и капли воды, а также метан, углекислый газ, оксид азота, хлорфторуглероды и гексафторид серы, поглощают в инфракрасной области спектра и переизлучают во всех направлениях, в том числе на Землю. Поэтому из-за парникового эффекта земная атмосфера и поверхность намного теплее, чем если бы вещества, поглощающие ИК-лучи, в воздухе отсутствовали.

Это излучение играет важную роль в теплопередаче и является неотъемлемой частью так называемого парникового эффекта. В глобальном масштабе влияние инфракрасных лучей распространяется на радиационный баланс Земли и затрагивает почти всю биосферную активность. Практически каждый объект на поверхности нашей планеты испускает электромагнитное излучение в основном в этой части спектра.

Области ИК-диапазона

ИК-диапазон часто разделяется на более узкие участки спектра. Немецкий институт стандартов DIN определил такие области длин волн инфракрасных лучей:

  • ближний (0,75-1,4 мкм), обычно используемый в волоконно-оптической связи;
  • коротковолновой (1,4-3 мкм), начиная с которого значительно возрастает поглощение ИК-излучения водой;
  • средневолновой, также называемый промежуточным (3-8 мкм);
  • длинноволновый (8-15 мкм);
  • дальний (15-1000 мкм).

Однако эта схема классификации не используется повсеместно. Например, в некоторых исследованиях указываются следующие диапазоны: ближний (0,75-5 мкм), средний (5-30 мкм) и длинный (30-1000 мкм). Длины волн, используемые в телекоммуникации, подразделяются на отдельные полосы из-за ограничений детекторов, усилителей и источников.

Общая система обозначений оправдана реакциями человека на инфракрасные лучи. Ближняя ИК-область наиболее близка к длине волны, видимой человеческим глазом. Среднее и дальнее ИК-излучение постепенно удаляются от видимой части спектра. Другие определения следуют различным физическим механизмам (таким как пики эмиссии и поглощение воды), а самые новые основаны на чувствительности используемых детекторов. Например, обычные кремниевые сенсоры чувствительны в области около 1050 нм, а арсенид индий-галлия - в диапазоне от 950 нм до 1700 и 2200 нм.

Четкая граница между инфракрасным и видимым светом не определена. Глаз человека значительно менее чувствителен к красному свету, превышающему длину волны 700 нм, однако интенсивное свечение (лазера) можно видеть примерно до 780 нм. Начало ИК-диапазона определяется в разных стандартах по-разному - где-то между этими значениями. Обычно это 750 нм. Поэтому видимые инфракрасные лучи возможны в диапазоне 750-780 нм.

Обозначения в системах связи

Оптическая связь в ближней ИК-области технически подразделяется на ряд полос частот. Это связано с различными поглощающими и передающими материалами (волокнами) и детекторами. К ним относятся:

  • О-диапазон 1,260-1,360 нм.
  • Е-диапазон 1,360-1,460 нм.
  • S-диапазон 1,460-1,530 нм.
  • C-диапазон 1,530-1,565 нм.
  • L-диапазон 1,565-1,625 нм.
  • U-диапазон 1,625-1,675 нм.

Термография

Термография, или тепловидение - это тип инфракрасного изображения объектов. Поскольку все тела излучают в ИК-диапазоне, а интенсивность радиации увеличивается с температурой, для ее обнаружения и получения снимков можно использовать специализированные камеры с ИК-датчиками. В случае очень горячих объектов в ближней инфракрасной или видимой области, этот метод называется пирометрией.

Термография не зависит от освещения видимым светом. Следовательно, можно «видеть» окружающую среду даже в темноте. В частности, теплые предметы, в том числе люди и теплокровные животные, хорошо выделяются на более холодном фоне. Инфракрасная фотография ландшафта улучшает отображение объектов в зависимости от их теплоотдачи: голубое небо и вода кажутся почти черными, а зеленая листва и кожа ярко проявляются.

Исторически термография широко использовалась военными и службами безопасности. Кроме того, она находит множество других применений. Например, пожарные используют ее, чтобы видеть сквозь дым, находить людей и локализовать горячие точки во время пожара. Термография может выявить патологический рост тканей и дефекты в электронных системах и схемах из-за их повышенного выделения тепла. Электрики, обслуживающие линии электропередач, могут обнаружить перегревающиеся соединения и детали, что сигнализирует о нарушении их работы, и устранить потенциальную опасность. При нарушении теплоизоляции специалисты-строители могут увидеть утечки тепла и повысить эффективность систем охлаждения или обогрева. В некоторых автомобилях высокого класса тепловизоры устанавливаются для помощи водителю. С помощью термографических изображений можно контролировать некоторые физиологические реакции у людей и теплокровных животных.

Внешний вид и способ работы современной термографической камеры не отличаются от таковых у обычной видеокамеры. Возможность видеть в инфракрасном спектре является настолько полезной функцией, что возможность записи изображений часто является опциональной, и модуль записи не всегда доступен.

Другие изображения

В ИК-фотографии ближний инфракрасный диапазон захватывается с помощью специальных фильтров. Цифровые фотоаппараты, как правило, блокируют ИК-излучение. Однако дешевые камеры, у которых нет соответствующих фильтров, способны «видеть» в ближнем ИК-диапазоне. При этом обычно невидимый свет выглядит ярко-белым. Особенно это заметно во время съемки вблизи освещенных инфракрасных объектов (например, лампы), где возникающие помехи делают снимок блеклым.

Также стоит упомянуть Т-лучевую визуализацию, которая представляет собой получение изображения в дальнем терагерцовом диапазоне. Отсутствие ярких источников делает такие снимки технически более сложными, чем большинство других методов ИК-визуализации.

Светодиоды и лазеры

Искусственные источники инфракрасного излучения включают, помимо горячих объектов, светодиоды и лазеры. Первые представляют собой небольшие недорогие оптоэлектронные устройства, изготовленные из таких полупроводниковых материалов, как арсенид галлия. Они используются в качестве оптоизоляторов и в качестве источников света в некоторых системах связи на основе волоконной оптики. Мощные ИК-лазеры с оптической накачкой работают на основе двуокиси и окиси углерода. Они используются для инициации и изменения химических реакций и разделения изотопов. Кроме того, они применяются в лидарных системах определения дистанции до объекта. Также источники инфракрасного излучения используются в дальномерах автоматических самофокусирующих камер, охранной сигнализации и оптических приборах ночного видения.

ИК-приемники

К приборам обнаружения ИК-излучения относятся термочувствительные устройства, такие как термопарные детекторы, болометры (некоторые из них охлаждаются до температур, близких к абсолютному нулю, чтобы снизить помехи от самого детектора), фотогальванические элементы и фотопроводники. Последние изготавливаются из полупроводниковых материалов (например, кремния и сульфида свинца), электрическая проводимость которых увеличивается при воздействии инфракрасных лучей.

Обогрев

Инфракрасное излучение используется для нагрева - например, для отопления саун и удаления льда с крыльев самолетов. Кроме того, оно все чаще применяется для плавления асфальта во время укладки новых дорог или ремонта поврежденных участков. ИК-излучение может использоваться при приготовлении и подогреве пищи.

Связь

ИК-длины волн применяются для передачи данных на небольшие расстояния, например, между компьютерной периферией и персональными цифровыми помощниками. Эти устройства обычно соответствуют стандартам IrDA.

ИК-связь обычно используется внутри помещений в районах с высокой плотностью населения. Это наиболее распространенный способ дистанционного управления устройствами. Свойства инфракрасных лучей не позволяют им проникать сквозь стены, и поэтому они не взаимодействуют с техникой в соседних помещениях. Кроме того, ИК-лазеры используются в качестве источников света в оптоволоконных системах связи.

Спектроскопия

Инфракрасная радиационная спектроскопия - это технология, используемая для определения структур и составов (главным образом) органических соединений путем изучения пропускания ИК-излучения через образцы. Она основана на свойствах веществ поглощать определенные его частоты, которые зависят от растяжения и изгиба внутри молекул образца.

Характеристики инфракрасного поглощения и излучения молекул и материалов дают важную информацию о размере, форме и химической связи молекул, атомов и ионов в твердых телах. Энергии вращения и вибрации квантуются во всех системах. ИК-излучение энергии hν, испускаемое или поглощаемое данной молекулой или веществом, является мерой разности некоторых внутренних энергетических состояний. Они, в свою очередь, определяются атомным весом и молекулярными связями. По этой причине инфракрасная спектроскопия является мощным инструментом определения внутренней структуры молекул и веществ или, когда такая информация уже известна и табулирована, их количества. ИК-методы спектроскопии часто используются для определения состава и, следовательно, происхождения и возраста археологических образцов, а также для обнаружения подделок произведений искусства и других предметов, которые при осмотре под видимым светом напоминают оригиналы.

Польза и вред инфракрасных лучей

Длинноволновое ИК-излучение применяется в медицине с целью:

  • нормализации артериального давления путем стимуляции кровообращения;
  • очищения организма от солей тяжелых металлов и токсинов;
  • улучшения кровообращения мозга и памяти;
  • нормализации гормонального фона;
  • поддержания водно-солевого баланса;
  • ограничения распространения грибков и микробов;
  • обезболивания;
  • снятия воспаления;
  • укрепления иммунитета.

Вместе с тем ИК-излучение может нанести вред при острых гнойных заболеваниях, кровотечениях, острых воспалениях, болезнях крови, злокачественных опухолях. Неконтролируемое продолжительное воздействие ведет к покраснению кожи, ожогам, дерматиту, тепловому удару. Коротковолновые ИК-лучи опасны для глаз - возможно развитие светобоязни, катаракты, нарушений зрения. Поэтому для отопления должны применяться исключительно источники длинноволнового излучения.