Формула нахождения суммы чисел арифметической прогрессии. Пример использования формул

Арифметической прогрессией называют последовательность чисел (членов прогрессии)

В которой каждый последующий член отличается от предыдущего на сталое слагаемое, которое еще называют шагом или разницей прогрессии .

Таким образом, задавая шаг прогрессии и ее первый член можно найти любой ее элемент по формуле

Свойства арифметической прогрессии

1) Каждый член арифметической прогрессии, начиная со второго номера является средним арифметическим от предыдущего и следующего члена прогрессии

Обратное утверждение также верно. Если среднее арифметическое соседних нечетных (четных) членов прогрессии равно члену, который стоит между ними, то данная последовательность чисел является арифметической прогрессией. По этим утверждением очень просто проверить любую последовательность.

Также по свойству арифметической прогрессии, приведенную выше формулу можно обобщить до следующей

В этом легко убедиться, если расписать слагаемые справа от знака равенства

Ее часто применяют на практике для упрощения вычислений в задачах.

2) Сумма n первых членов арифметической прогрессии вычисляется по формуле

Запомните хорошо формулу суммы арифметической прогрессии, она незаменима при вычислениях и довольно часто встречается в простых жизненных ситуациях.

3) Если нужно найти не всю сумму, а часть последовательности начиная с k -го ее члена, то в Вам пригодится следующая формула суммы

4) Практический интерес представляет отыскание суммы n членов арифметической прогрессии начиная с k -го номера. Для этого используйте формулу

На этом теоретический материал заканчивается и переходим к решению распространенных на практике задач.

Пример 1. Найти сороковой член арифметической прогрессии 4;7;...

Решение:

Согласно условию имеем

Определим шаг прогрессии

По известной формуле находим сороковой член прогрессии

Пример2. Арифметическая прогрессия задана третьим и седьмым ее членом . Найти первый член прогрессии и сумму десяти.

Решение:

Распишем заданные элементы прогрессии по формулам

От второго уравнения вычтем первое, в результате найдем шаг прогрессии

Найденное значение подставляем в любое из уравнений для отыскания первого члена арифметической прогрессии

Вычисляем сумму первых десяти членов прогрессии

Не применяя сложных вычислений ми нашли все искомые величины.

Пример 3. Арифметическую прогрессию задано знаменателем и одним из ее членов . Найти первый член прогрессии, сумму 50 ее членов начиная с 50 и сумму 100 первых.

Решение:

Запишем формулу сотого элемента прогрессии

и найдем первый

На основе первого находим 50 член прогрессии

Находим сумму части прогрессии

и сумму первых 100

Сумма прогрессии равна 250.

Пример 4.

Найти число членов арифметической прогрессии, если:

а3-а1=8, а2+а4=14, Sn=111.

Решение:

Запишем уравнения через первый член и шаг прогрессии и определим их

Полученные значения подставляем в формулу суммы для определения количества членов в сумме

Выполняем упрощения

и решаем квадратное уравнение

Из найденных двух значений условии задачи подходит только число 8 . Таким образом сумма первых восьми членов прогрессии составляет 111.

Пример 5.

Решить уравнение

1+3+5+...+х=307.

Решение: Данное уравнение является суммой арифметической прогрессии. Выпишем первый ее член и найдем разницу прогрессии

Прежде чем мы начнем решать задачи на арифметическую прогрессию , рассмотрим, что такое числовая последовательность, поскольку арифметическая прогрессия - это частный случай числовой последовательности.

Числовая последовательность - это числовое множество, каждый элемент которого имеет свой порядковый номер . Элементы этого множества называются членами последовательности. Порядковый номер элемента последовательности обозначается индексом:

Первый элемент последовательности;

Пятый элемент последовательности;

- "энный" элемент последовательности, т.е. элемент, "стоящий в очереди" под номером n.

Между значением элемента последовательности и его порядковым номером существует зависимость. Следовательно, мы можем рассматривать последовательность как функцию, аргументом которой является порядковый номер элемента последовательности. Другими словами можно сказать, что последовательность - это функция от натурального аргумента:

Последовательность можно задать тремя способами:

1 . Последовательность можно задать с помощью таблицы. В этом случае мы просто задаем значение каждого члена последовательности.

Например, Некто решил заняться личным тайм-менеджментом, и для начала посчитать в течение недели, сколько времени он проводит ВКонтакте. Записывая время в таблицу, он получит последовательность, состоящую из семи элементов:

В первой строке таблицы указан номер дня недели, во второй - время в минутах. Мы видим, что , то есть в понедельник Некто провел ВКонтакте 125 минут, , то есть в четверг - 248 минут, а , то есть в пятницу всего 15.

2 . Последовательность можно задать с помощью формулы n-го члена.

В этом случае зависимость значения элемента последовательности от его номера выражается напрямую в виде формулы.

Например, если , то

Чтобы найти значение элемента последовательности с заданным номером, мы номер элемента подставляем в формулу n-го члена.

То же самое мы делаем, если нужно найти значение функции, если известно значение аргумента. Мы значение аргумента подставляем вместо в уравнение функции:

Если, например, , то

Ещё раз замечу, что в последовательности, в отличие от произвольной числовой функции, аргументом может быть только натуральное число.

3 . Последовательность можно задать с помощью формулы, выражающей зависимость значения члена последовательности с номером n от значения предыдущих членов. В этом случае нам недостаточно знать только номер члена последовательности, чтобы найти его значение. Нам нужно задать первый член или несколько первых членов последовательности.

Например, рассмотрим последовательность ,

Мы можем находить значения членов последовательности один за другим , начиная с третьего:

То есть каждый раз, чтобы найти значение n-го члена последовательности, мы возвращаемся к двум предыдущим. Такой способ задания последовательности называется рекуррентным , от латинского слова recurro - возвращаться.

Теперь мы можем дать определение арифметической прогрессии. Арифметическая прогрессия - это простой частный случай числовой последовательности.

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.


Число называется разностью арифметической прогрессии . Разность арифметической прогрессии может быть положительной, отрицательной, или равной нулю.

Если title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является возрастающей .

Например, 2; 5; 8; 11;...

Если , то каждый член арифметической прогрессии меньше предыдущего, и прогрессия является убывающей .

Например, 2; -1; -4; -7;...

Если , то все члены прогрессии равны одному и тому же числу, и прогрессия является стационарной .

Например, 2;2;2;2;...

Основное свойство арифметической прогрессии:

Посмотрим на рисунок.

Мы видим, что

, и в то же время

Сложив эти два равенства, получим:

.

Разделим обе части равенства на 2:

Итак, каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

Больше того, так как

, и в то же время

, то

, и, следовательно,

Каждый член арифметической прогрессии, начиная с title="k>l">, равен среднему арифметическому двух равноотстоящих.

Формула го члена.

Мы видим, что для членов арифметической прогрессии выполняются соотношения:

и, наконец,

Мы получили формулу n-го члена.

ВАЖНО! Любой член арифметической прогрессии можно выразить через и . Зная первый член и разность арифметической прогрессии можно найти любой её член.

Сумма n членов арифметической прогрессии.

В произвольной арифметический прогрессии суммы членов, равноотстоящих от крайних равны между собой:

Рассмотрим арифметическую прогрессию, в которой n членов. Пусть сумма n членов этой прогрессии равна .

Расположим члены прогрессии сначала в порядке возрастания номеров, а затем в порядке убывания:

Сложим попарно:

Сумма в каждой скобке равна , число пар равно n.

Получаем:

Итак, сумму n членов арифметической прогрессии можно найти по формулам:

Рассмотрим решение задач на арифметическую прогрессию .

1 . Последовательность задана формулой n-го члена: . Докажите, что эта последовательность является арифметической прогрессией.

Докажем, что разность между двумя соседними членами последовательности равна одному и тому же числу.

Мы получили, что разность двух соседних членов последовательности не зависит от их номера и является константой. Следовательно, по определению, эта последовательность является арифметической прогрессией.

2 . Дана арифметическая прогрессия -31; -27;...

а) Найдите 31 член прогрессии.

б) Определите, входит ли в данную прогрессию число 41.

а) Мы видим, что ;

Запишем формулу n-го члена для нашей прогрессии.

В общем случае

В нашем случае , поэтому

Получаем:

б) Предположим, что число 41 является членом последовательности. Найдем его номер. Для этого решим уравнение:

Мы получили натуральное значение n, следовательно, да, число 41 является членом прогрессии. Если бы найденное значение n не было бы натуральным числом, то мы бы ответили, что число 41 НЕ является членом прогрессии.

3 . а) Между числами 2 и 8 вставьте 4 числа так, чтобы они вместе с данными числами составляли арифметическую прогрессию.

б) Найдите сумму членов полученной прогрессии.

а) Вставим между числами 2 и 8 четыре числа:

Мы получили арифметическую прогрессию, в которой 6 членов.

Найдем разность этой прогрессии. Для этого воспользуемся формулой n-го члена:

Теперь легко найти значения чисел:

3,2; 4,4; 5,6; 6,8

б)

Ответ: а) да; б) 30

4. Гру­зо­вик пе­ре­во­зит пар­тию щебня мас­сой 240 тонн, еже­днев­но уве­ли­чи­вая норму пе­ре­воз­ки на одно и то же число тонн. Из­вест­но, что за пер­вый день было пе­ре­ве­зе­но 2 тонны щебня. Опре­де­ли­те, сколь­ко тонн щебня было пе­ре­ве­зе­но на две­на­дца­тый день, если вся ра­бо­та была вы­пол­не­на за 15 дней.

По условию задачи количество щебня, которое перевозит грузовик, каждый день увеличивается на одно и то же число. Следовательно, мы имеем дело с арифметической прогрессией.

Сформулируем эту задачу в терминах арифметической прогрессии.

За пер­вый день было пе­ре­ве­зе­но 2 тонны щебня: a_1=2.

Вся ра­бо­та была вы­пол­не­на за 15 дней: .

Гру­зо­вик пе­ре­во­зит пар­тию щебня мас­сой 240 тонн:

Нам нужно найти .

Сначала найдем разность прогрессии. Воспользуемся формулой суммы n членов прогрессии.

В нашем случае:

Или арифметическая - это вид упорядоченной числовой последовательности, свойства которой изучают в школьном курсе алгебры. В данной статье подробно рассмотрен вопрос, как найти сумму арифметической прогрессии.

Что это за прогрессия?

Прежде чем переходить к рассмотрению вопроса (как найти сумму арифметической прогрессии), стоит понять, о чем пойдет речь.

Любая последовательность действительных чисел, которая получается путем добавления (вычитания) некоторого значения из каждого предыдущего числа, называется алгебраической (арифметической) прогрессией. Это определение в переводе на язык математики принимает форму:

Здесь i - порядковый номер элемента ряда a i . Таким образом, зная всего одно начальное число, можно с легкостью восстановить весь ряд. Параметр d в формуле называется разностью прогрессии.

Можно легко показать, что для рассматриваемого ряда чисел выполняется следующее равенство:

a n = a 1 + d * (n - 1).

То есть для нахождения значения n-го по порядку элемента следует n-1 раз добавить разность d к первому элементу a 1 .

Чему равна сумма арифметической прогрессии: формула

Прежде чем приводить формулу для указанной суммы, стоит рассмотреть простой частный случай. Дана прогрессия натуральных чисел от 1 до 10, необходимо найти их сумму. Поскольку членов в прогрессии немного (10), то можно решить задачу в лоб, то есть просуммировать все элементы по порядку.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Стоит учесть одну интересную вещь: поскольку каждый член отличается от последующего на одно и то же значение d = 1, то попарное суммирование первого с десятым, второго с девятым и так далее даст одинаковый результат. Действительно:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Как видно, этих сумм всего 5, то есть ровно в два раза меньше, чем число элементов ряда. Тогда умножая число сумм (5) на результат каждой суммы (11), вы придете к полученному в первом примере результату.

Если обобщить эти рассуждения, то можно записать следующее выражение:

S n = n * (a 1 + a n) / 2.

Это выражение показывает, что совсем не обязательно суммировать подряд все элементы, достаточно знать значение первого a 1 и последнего a n , а также общего числа слагаемых n.

Считается, что впервые до этого равенства додумался Гаусс, когда искал решение на заданную его школьным учителем задачу: просуммировать 100 первых целых чисел.

Сумма элементов от m до n: формула

Формула, приведенная в предыдущем пункте, дает ответ на вопрос, как найти сумму арифметической прогрессии (первых элементов), но часто в задачах необходимо просуммировать ряд чисел, стоящих в середине прогрессии. Как это сделать?

Ответить на этот вопрос проще всего, рассматривая следующий пример: пусть необходимо найти сумму членов от m-го до n-го. Для решения задачи следует представить заданный отрезок от m до n прогрессии в виде нового числового ряда. В таком представлении m-й член a m будет первым, а a n станет под номер n-(m-1). В этом случае, применяя стандартную формулу для суммы, получится следующее выражение:

S m n = (n - m + 1) * (a m + a n) / 2.

Пример использования формул

Зная, как найти сумму арифметической прогрессии, стоит рассмотреть простой пример использования приведенных формул.

Ниже дана числовая последовательность, следует найти сумму ее членов, начиная с 5-го и заканчивая 12-м:

Приведенные числа свидетельствуют, что разность d равна 3. Используя выражение для n-го элемента, можно найти значения 5-го и 12-го членов прогрессии. Получается:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Зная значения чисел, стоящих на концах рассматриваемой алгебраической прогрессии, а также зная, какие номера в ряду они занимают, можно воспользоваться формулой для суммы, полученной в предыдущем пункте. Получится:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Стоит отметить, что это значение можно было получить иначе: сначала найти сумму первых 12 элементов по стандартной формуле, затем вычислить сумму первых 4 элементов по той же формуле, после этого вычесть из первой суммы вторую.

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .


Например, последовательность \(2\); \(5\); \(8\); \(11\); \(14\)… является арифметической прогрессией, потому что каждый следующий элемент отличается от предыдущего на три (может быть получен из предыдущего прибавлением тройки):

В этой прогрессии разность \(d\) положительна (равна \(3\)), и поэтому каждый следующий член больше предыдущего. Такие прогрессии называются возрастающими .

Однако \(d\) может быть и отрицательным числом. Например , в арифметической прогрессии \(16\); \(10\); \(4\); \(-2\); \(-8\)… разность прогрессии \(d\) равна минус шести.

И в этом случае каждый следующий элемент будет меньше, чем предыдущий. Эти прогрессии называются убывающими .

Обозначение арифметической прогрессии

Прогрессию обозначают маленькой латинской буквой.

Числа, образующие прогрессию, называют ее членами (или элементами).

Их обозначают той же буквой что и арифметическую прогрессию, но с числовым индексом, равным номеру элемента по порядку.

Например, арифметическая прогрессия \(a_n = \left\{ 2; 5; 8; 11; 14…\right\}\) состоит из элементов \(a_1=2\); \(a_2=5\); \(a_3=8\) и так далее.

Иными словами, для прогрессии \(a_n = \left\{2; 5; 8; 11; 14…\right\}\)

Решение задач на арифметическую прогрессию

В принципе, изложенной выше информации уже достаточно, чтобы решать практически любую задачу на арифметическую прогрессию (в том числе из тех, что предлагают на ОГЭ).

Пример (ОГЭ). Арифметическая прогрессия задана условиями \(b_1=7; d=4\). Найдите \(b_5\).
Решение:

Ответ: \(b_5=23\)

Пример (ОГЭ). Даны первые три члена арифметической прогрессии: \(62; 49; 36…\) Найдите значение первого отрицательного члена этой прогрессии..
Решение:

Нам даны первые элементы последовательности и известно, что она – арифметическая прогрессия. То есть, каждый элемент отличается от соседнего на одно и то же число. Узнаем на какое, вычтя из следующего элемента предыдущий: \(d=49-62=-13\).

Теперь мы можем восстановить нашу прогрессию до нужного нам (первого отрицательного) элемента.

Готово. Можно писать ответ.

Ответ: \(-3\)

Пример (ОГЭ). Даны несколько идущих подряд элементов арифметической прогрессии: \(…5; x; 10; 12,5...\) Найдите значение элемента, обозначенного буквой \(x\).
Решение:


Чтоб найти \(x\), нам нужно знать на сколько следующий элемент отличается от предыдущего, иначе говоря – разность прогрессии. Найдем ее из двух известных соседних элементов: \(d=12,5-10=2,5\).

А сейчас без проблем находим искомое: \(x=5+2,5=7,5\).


Готово. Можно писать ответ.

Ответ: \(7,5\).

Пример (ОГЭ). Арифметическая прогрессия задана следующими условиями: \(a_1=-11\); \(a_{n+1}=a_n+5\) Найдите сумму первых шести членов этой прогрессии.
Решение:

Нам нужно найти сумму первых шести членов прогрессии. Но мы не знаем их значений, нам дан только первый элемент. Поэтому сначала вычисляем значения по очереди, используя данное нам :

\(n=1\); \(a_{1+1}=a_1+5=-11+5=-6\)
\(n=2\); \(a_{2+1}=a_2+5=-6+5=-1\)
\(n=3\); \(a_{3+1}=a_3+5=-1+5=4\)
А вычислив нужные нам шесть элементов - находим их сумму.

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

Искомая сумма найдена.

Ответ: \(S_6=9\).

Пример (ОГЭ). В арифметической прогрессии \(a_{12}=23\); \(a_{16}=51\). Найдите разность этой прогрессии.
Решение:

Ответ: \(d=7\).

Важные формулы арифметической прогрессии

Как видите, многие задачи по арифметической прогрессии можно решать, просто поняв главное – то, что арифметическая прогрессия есть цепочка чисел, и каждый следующий элемент в этой цепочке получается прибавлением к предыдущему одного и того же числа (разности прогрессии).

Однако порой встречаются ситуации, когда решать «в лоб» весьма неудобно. Например, представьте, что в самом первом примере нам нужно найти не пятый элемент \(b_5\), а триста восемьдесят шестой \(b_{386}\). Это что же, нам \(385\) раз прибавлять четверку? Или представьте, что в предпоследнем примере надо найти сумму первых семидесяти трех элементов. Считать замучаешься…

Поэтому в таких случаях «в лоб» не решают, а используют специальные формулы, выведенные для арифметической прогрессии. И главные из них это формула энного члена прогрессии и формула суммы \(n\) первых членов.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\), где \(a_1\) – первый член прогрессии;
\(n\) – номер искомого элемента;
\(a_n\) – член прогрессии с номером \(n\).


Эта формула позволяет нам быстро найти хоть трехсотый, хоть миллионный элемент, зная только первый и разность прогрессии.

Пример. Арифметическая прогрессия задана условиями: \(b_1=-159\); \(d=8,2\). Найдите \(b_{246}\).
Решение:

Ответ: \(b_{246}=1850\).

Формула суммы n первых членов: \(S_n=\frac{a_1+a_n}{2} \cdot n\), где



\(a_n\) – последний суммируемый член;


Пример (ОГЭ). Арифметическая прогрессия задана условиями \(a_n=3,4n-0,6\). Найдите сумму первых \(25\) членов этой прогрессии.
Решение:

\(S_{25}=\)\(\frac{a_1+a_{25}}{2 }\) \(\cdot 25\)

Чтобы вычислить сумму первых двадцати пяти элементов, нам нужно знать значение первого и двадцать пятого члена.
Наша прогрессия задана формулой энного члена в зависимости от его номера (подробнее смотри ). Давайте вычислим первый элемент, подставив вместо \(n\) единицу.

\(n=1;\) \(a_1=3,4·1-0,6=2,8\)

Теперь найдем двадцать пятый член, подставив вместо \(n\) двадцать пять.

\(n=25;\) \(a_{25}=3,4·25-0,6=84,4\)

Ну, а сейчас без проблем вычисляем искомую сумму.

\(S_{25}=\)\(\frac{a_1+a_{25}}{2}\) \(\cdot 25=\)
\(=\) \(\frac{2,8+84,4}{2}\) \(\cdot 25 =\)\(1090\)

Ответ готов.

Ответ: \(S_{25}=1090\).

Для суммы \(n\) первых членов можно получить еще одну формулу: нужно просто в \(S_{25}=\)\(\frac{a_1+a_{25}}{2}\) \(\cdot 25\) вместо \(a_n\) подставить формулу для него \(a_n=a_1+(n-1)d\). Получим:

Формула суммы n первых членов: \(S_n=\)\(\frac{2a_1+(n-1)d}{2}\) \(\cdot n\), где

\(S_n\) – искомая сумма \(n\) первых элементов;
\(a_1\) – первый суммируемый член;
\(d\) – разность прогрессии;
\(n\) – количество элементов в сумме.

Пример. Найдите сумму первых \(33\)-ех членов арифметической прогрессии: \(17\); \(15,5\); \(14\)…
Решение:

Ответ: \(S_{33}=-231\).

Более сложные задачи на арифметическую прогрессию

Теперь у вас есть вся необходимая информация для решения практически любой задачи на арифметическую прогрессию. Завершим тему рассмотрением задач, в которых надо не просто применять формулы, но и немного думать (в математике это бывает полезно ☺)

Пример (ОГЭ). Найдите сумму всех отрицательных членов прогрессии: \(-19,3\); \(-19\); \(-18,7\)…
Решение:

\(S_n=\)\(\frac{2a_1+(n-1)d}{2}\) \(\cdot n\)

Задача очень похожа на предыдущую. Начинаем решать также: сначала найдем \(d\).

\(d=a_2-a_1=-19-(-19,3)=0,3\)

Теперь бы подставить \(d\) в формулу для суммы… и вот тут всплывает маленький нюанс – мы не знаем \(n\). Иначе говоря, не знаем сколько членов нужно будет сложить. Как это выяснить? Давайте думать. Мы прекратим складывать элементы тогда, когда дойдем до первого положительного элемента. То есть, нужно узнать номер этого элемента. Как? Запишем формулу вычисления любого элемента арифметической прогрессии: \(a_n=a_1+(n-1)d\) для нашего случая.

\(a_n=a_1+(n-1)d\)

\(a_n=-19,3+(n-1)·0,3\)

Нам нужно, чтоб \(a_n\) стал больше нуля. Выясним, при каком \(n\) это произойдет.

\(-19,3+(n-1)·0,3>0\)

\((n-1)·0,3>19,3\) \(|:0,3\)

Делим обе части неравенства на \(0,3\).

\(n-1>\)\(\frac{19,3}{0,3}\)

Переносим минус единицу, не забывая менять знаки

\(n>\)\(\frac{19,3}{0,3}\) \(+1\)

Вычисляем…

\(n>65,333…\)

…и выясняется, что первый положительный элемент будет иметь номер \(66\). Соответственно, последний отрицательный имеет \(n=65\). На всякий случай, проверим это.

\(n=65;\) \(a_{65}=-19,3+(65-1)·0,3=-0,1\)
\(n=66;\) \(a_{66}=-19,3+(66-1)·0,3=0,2\)

Таким образом, нам нужно сложить первые \(65\) элементов.

\(S_{65}=\)\(\frac{2 \cdot (-19,3)+(65-1)0,3}{2}\) \(\cdot 65\)
\(S_{65}=\)\({-38,6+19,2}{2}\)\(\cdot 65=-630,5\)

Ответ готов.

Ответ: \(S_{65}=-630,5\).

Пример (ОГЭ). Арифметическая прогрессия задана условиями: \(a_1=-33\); \(a_{n+1}=a_n+4\). Найдите сумму от \(26\)-го до \(42\) элемента включительно.
Решение:

\(a_1=-33;\) \(a_{n+1}=a_n+4\)

В этой задаче также нужно найти сумму элементов, но начиная не с первого, а с \(26\)-го. Для такого случая у нас формулы нет. Как решать?
Легко - чтобы получить сумму с \(26\)-го до \(42\)-ой, надо сначала найти сумму с \(1\)-ого по \(42\)-ой, а потом вычесть из нее сумму с первого до \(25\)-ого (см картинку).


Для нашей прогрессии \(a_1=-33\), а разность \(d=4\) (ведь именно четверку мы добавляем к предыдущему элементу, чтоб найти следующий). Зная это, найдем сумму первых \(42\)-ух элементов.

\(S_{42}=\)\(\frac{2 \cdot (-33)+(42-1)4}{2}\) \(\cdot 42=\)
\(=\)\(\frac{-66+164}{2}\) \(\cdot 42=2058\)

Теперь сумму первых \(25\)-ти элементов.

\(S_{25}=\)\(\frac{2 \cdot (-33)+(25-1)4}{2}\) \(\cdot 25=\)
\(=\)\(\frac{-66+96}{2}\) \(\cdot 25=375\)

Ну и наконец, вычисляем ответ.

\(S=S_{42}-S_{25}=2058-375=1683\)

Ответ: \(S=1683\).

Для арифметической прогрессии существует еще несколько формул, которые мы не рассматривали в данной статье ввиду их малой практической полезности. Однако вы без труда можете найти их .