Как определить где функция возрастает. Возрастание и убывание функции

"Возрастание и убывание функции"

Цели урока:

1. Научить находить промежутки монотонности.

2. Развитие мыслительных способностей, обеспечивающих анализ ситуации и разработку адекватных способов действия (анализ, синтез, сравнение).

3. Формирование интереса к предмету.

Ход урока

Сегодня мы продолжаем изучать приложение производной и рассмотрим вопрос о её применениик исследованию функций. Фронтальная работа

А теперь дадим некоторые определения свойствам функции “Мозговой штурм”

1. Что называют функцией?

2. Как называется переменная Х?

3. Как называется переменная Y?

4. Что называется областью определения функции?

5. Что называется множеством значения функции?

6. Какая функция называется чётной?

7. Какая функция называется нечётной?

8. Что можно сказать о графике чётной функции?

9. Что можно сказать о графике нечётной функции?

10. Какая функция называется возрастающей?

11. Какая функция называется убывающей?

12. Какая функция называется периодической?

Математика изучает математические модели. Одной из главнейших математических моделей является функция. Существуют разные способы описания функций. Какой самый наглядный?

– Графический.

– Как построить график?

– По точкам.

Этот способ подойдет, если заранее известно, как примерно выглядит график. Например, что является графиком квадратичной функции, линейной функции, обратной пропорциональности, функции y = sinx? (Демонстрируются соответствующие формулы, учащиеся называют кривые, являющиеся графиками.)

А что если требуется построить график функции или еще более сложной? Можно найти несколько точек, но как ведет себя функция между этими точками?

Поставить на доске две точки, попросить учеников показать, как может выглядеть график “между ними”:

Выяснить, как ведет себя функция, помогает ее производная.

Откройте тетради, запишите число, классная работа.

Цель урока: узнать, как связан график функции с графиком ее производной, и научиться решать задачи двух видов:

1. По графику производной находить промежутки возрастания и убывания самой функции, а также точки экстремума функции;

2. По схеме знаков производной на промежутках находить интервалы возрастания и убывания самой функции, а также точки экстремума функции.

Подобные задания отсутствуют в наших учебниках, но встречаются в тестах единого государственного экзамена (часть А и В).

Сегодня на уроке мы рассмотрим небольшой элемент работы второго этапа изучения процесса, исследование одного из свойств функции - определение промежутков монотонности

Для решения поставленной задачи, нам необходимо вспомнить некоторые вопросы, рассмотренные ранее.

Итак, запишем тему сегодняшнего урока: Признаки возрастания и убывания функции.

Признаки возрастания и убывания функции:

Если производная данной функции положительна для всех значений х в интервале (а; в), т.е.f"(x) > 0, то функция в этом интервале возрастает.
Если производная данной функции отрицательна для всех значений х в интервале(а; в), т.е.f"(x) < 0, то функция в этом интервале убывает

Порядок нахождения промежутков монотонности:

Найти область определения функции.

1. Найти первую производную функции.

2. решать самой на доске

Найти критические точки, исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции. Найти промежутки монотонности функций:

а) область определения,

б) найдем первую производную:,

в)найдем критические точки: ; , и

3. Исследуем знак производной в полученных промежутках, решение представим в виде таблицы.

указатьна точки экстремума

Рассмотрим несколько примеровисследования функции на возрастание и убывание.

Достаточное условие существования максимума состоит в смене знака производной при переходе через критическую точку с "+" на "-", а для минимума с "-" на "+". Если при переходе через критическую точку смены знака производной не происходит, то в данной точке экстремума нет

1. Найти Д(f).

2. Найти f"(x).

3. Найти стационарные точки, т.е. точки, где f"(x) = 0 или f"(x) не существует.
(Производная равна 0 в нулях числителя, производная не существует в нулях знаменателя)

4. Расположить Д(f) и эти точки на координатной прямой.

5. Определить знаки производной на каждом из интервалов

6. Применить признаки.

7. Записать ответ.

Закрепление нового материала.

Учащиеся работают в парах, решение записывают в тетрадях.

а) у = х³ - 6 х² + 9 х - 9;

б) у = 3 х² - 5х + 4.

Двое работают у доски.

а) у = 2 х³ – 3 х² – 36 х + 40

б) у = х4-2 х³

3.Итог урока

Домашнее задание: тест (дифференцированный)

Монотонность

Очень важным свойством функции является ее монотонность. Зная это свойство различных специальных функций, можно определить поведение различных физических, экономических, социальных и многих других процессов.

Выделяют следующие виды монотонности функций:

1) функция возрастает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует большее значение функции;

2) функция убывает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что . Т.е. большему значению аргумента соответствует меньшее значение функции;

3) функция неубывает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что ;

4) функция невозрастает , если на некотором интервале, если для любых двух точек и этого интервала таких, что выполнено, что .

2. Для первых двух случаев еще применяют термин «строгая монотонность».

3. Два последних случая являются специфическими и задаются обычно в виде композиции из нескольких функций.

4. Отдельно отметим, что рассматривать возрастание и убывание графика функции следует именно слева-направо и никак иначе.

2. Четность/нечетность.

Функция называется нечетной , если при изменении знака аргумента, она меняет свое значение на противоположное. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция изменит свой знак. График такой функции симметричен относительно начала координат.

Примерами нечетных функций являются и др.

Например, график действительно обладает симметричностью относительно начала координат:

Функция называется четной , если при изменении знака аргумента, она не меняет свое значение. Формульная запись этого выглядит так . Это значит, что после подстановки в функцию на место всех иксов значений «минус икс», функция в результате не изменится. График такой функции симметричен относительно оси .

Примерами четных функций являются и др.

К примеру, покажем симметричность графика относительно оси :

Если функция не относится ни к одному из указанных видов, то ее называют ни четной ни нечетной или функцией общего вида . У таких функций нет симметрии.

Такой функцией, например, является недавно рассмотренная нами линейная функция с графиком:

3. Особым свойством функций является периодичность.

Дело в том, что периодичными функциями, которые рассматриваются в стандартной школьной программе, являются только тригонометрические функции. Мы уже подробно о них говорили при изучении соответствующей темы.

Периодичная функция – это функция, которая не меняет свои значения при добавлении к аргументу определенного постоянного ненулевого числа.

Такое минимальное число называют периодом функции и обозначают буквой .

Формульная запись этого выглядит следующим образом: .

Посмотрим на это свойство на примере графика синуса:

Вспомним, что периодом функций и является , а периодом и – .

Как мы уже знаем, для тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

У них период равен . И о функциях:

У них период равен .

Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

Ограниченность.

Функцию y=f(x)называют ограниченной снизу на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.

Функцию y=f(x)называют ограниченной сверху на множестве Х⊂D(f), если существует такое число а, что для любых хϵХ выполняется неравенство f(x) < a.

Если промежуток Х не указывается, то считают, что функция ограничена на всей области определения. Функция ограниченная и сверху, и снизу называется ограниченной.

Ограниченность функции легко читается по графику. Можно провести некоторую прямую у=а, и если функция выше этой прямой, то ограниченность снизу.

Если ниже, то соответственно сверху. Ниже представлен график ограниченной снизу функции. График ограниченной функции, ребята, попробуйте нарисовать сами.

Тема: Свойства функций: промежутки возрастания и убывания; наибольшее и наименьшее значения; точки экстремума (локального максимума и минимума), выпуклость функции.

Промежутки возрастания и убывания.

На основании достаточных условий (признаков) возрастания и убывания функции находятся промежутки возрастания и убывания функции.

Вот формулировки признаков возрастания и убывания функции на интервале:

· если производная функции y=f(x) положительна для любого x из интервала X , то функция возрастает на X ;

· если производная функции y=f(x) отрицательна для любого x из интервала X , то функция убывает на X .

Таким образом, чтобы определить промежутки возрастания и убывания функции необходимо:

· найти область определения функции;

· найти производную функции;

· решить неравенства и на области определения;

1. Найти область определения функции

2.Найти производную функции

3. Приравнять производную к нулю и найти критические точки функции

4. Отметить критические точки на области определения

5. Вычислить знак производной в каждом из полученных интервалов

6. Выяснить поведение функции в каждом интервале.

Пример: Найдите промежутки возрастания и убывания функции f (x ) = и число нулей данной функции на промежутке .

Решение:

1. D(f ) = R

2. f "(x ) =

D(f ") = D(f ) = R

3. Найдём критические точки функции, решив уравнение f "(x ) = 0.

x (x – 10) = 0

критические точки функции x = 0 и x = 10.

4. Определим знак производной.

f "(x ) + – +


f (x ) 0 10 x

в промежутках (-∞; 0) и (10; +∞) производная функции положительна и в точках x = 0 и x = 10 функция f (x ) непрерывна, следовательно, данная функция возрастает на промежутках: (-∞; 0]; .

Определим знак значений функции на концах отрезка.

f (0) = 3, f (0) > 0

f (10) = , f (10) < 0.

Так как на отрезке функция убывает и знак значений функции изменяется, то на этом отрезке один нуль функции.

Ответ: функция f(x) возрастает на промежутках: (-∞; 0]; ;

на промежутке функция имеет один нуль функции.

2. Точки экстремума функции: точки максимума и точки минимума. Необходимое и достаточное условия существования экстремума функции. Правило исследования функции на экстремум .

Определение 1: Точки, в которых производная равна нулю, называются критическими или стационарными.

Определение 2 . Точка называется точкой минимума (максимума) функции , если значение функции в этой точке меньше (больше) ближайших значений функии.

Следует иметь в виду, что максимум и минимум в данном случае являются локальными.

На рис. 1. изображены локальные максимумы и минимумы.

Максимум и минимум функции объединены общим названием: экстремум функции.

Теорема 1. (необходимый признак существования экстремума функции). Если дифференцируемая в точке функция имеет в этой точке максимум или минимум, то ее производная при обращается в нуль, .

Теорема 2. (достаточный признак существования экстремума функции). Если непрерывная функция имеет производную во всех точках некоторого интервала, содержащего критическую точку (за исключением может быть самой этой точки), и если производная при переходе аргумента слева направо через критическую точку меняет знак с плюса на минус, то функция в этой точке имеет максимум, а при переходе знака с минуса на плюс – минимум.

Экстремумы функции

Определение 2

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\le f(x_0)$.

Определение 3

Точка $x_0$ называется точкой максимума функции $f(x)$, если существует такая окрестность данной точки, что для всех $x$ из этой окрестность выполняется неравенство $f(x)\ge f(x_0)$.

Понятие экстремума функции тесно связано с понятием критической точки функции. Введем её определение.

Определение 4

$x_0$ называется критической точкой функции $f(x)$, если:

1) $x_0$ - внутренняя точка области определения;

2) $f"\left(x_0\right)=0$ или не существует.

Для понятия экстремума можно сформулировать теоремы о достаточных и необходимых условиях его существования.

Теорема 2

Достаточное условие экстремума

Пусть точка $x_0$ является критической для функции $y=f(x)$ и лежит в интервале $(a,b)$. Пусть на каждом интервале $\left(a,x_0\right)\ и\ (x_0,b)$ производная $f"(x)$ существует и сохраняет постоянный знак. Тогда:

1) Если на интервале $(a,x_0)$ производная $f"\left(x\right)>0$, а на интервале $(x_0,b)$ производная $f"\left(x\right)

2) Если на интервале $(a,x_0)$ производная $f"\left(x\right)0$, то точка $x_0$ - точка минимума для данной функции.

3) Если и на интервале $(a,x_0)$, и на интервале $(x_0,b)$ производная $f"\left(x\right) >0$ или производная $f"\left(x\right)

Данная теорема проиллюстрирована на рисунке 1.

Рисунок 1. Достаточное условие существования экстремумов

Примеры экстремумов (Рис. 2).

Рисунок 2. Примеры точек экстремумов

Правило исследования функции на экстремум

2) Найти производную $f"(x)$;

7) Сделать выводы о наличии максимумов и минимумов на каждом промежутке, используя теорему 2.

Возрастание и убывание функции

Введем, для начала, определения возрастающей и убывающей функций.

Определение 5

Функция $y=f(x)$, определенная на промежутке $X$, называется возрастающей, если для любых точек $x_1,x_2\in X$ при $x_1

Определение 6

Функция $y=f(x)$, определенная на промежутке $X$, называется убывающей, если для любых точек $x_1,x_2\in X$ при $x_1f(x_2)$.

Исследование функции на возрастание и убывание

Исследовать функции на возрастание и убывание можно с помощью производной.

Для того чтобы исследовать функцию на промежутки возрастания и убывания, необходимо сделать следующее:

1) Найти область определения функции $f(x)$;

2) Найти производную $f"(x)$;

3) Найти точки, в которых выполняется равенство $f"\left(x\right)=0$;

4) Найти точки, в которых $f"(x)$ не существует;

5) Отметить на координатной прямой все найденные точки и область определения данной функции;

6) Определить знак производной $f"(x)$ на каждом получившемся промежутке;

7) Сделать вывод: на промежутках, где $f"\left(x\right)0$ функция возрастает.

Примеры задач на исследования функций на возрастание, убывание и наличие точек экстремумов

Пример 1

Исследовать функцию на возрастание и убывание, и наличие точек максимумов и минимумов: $f(x)={2x}^3-15x^2+36x+1$

Так как первые 6 пунктов совпадают, проведем для начала их.

1) Область определения - все действительные числа;

2) $f"\left(x\right)=6x^2-30x+36$;

3) $f"\left(x\right)=0$;

\ \ \

4) $f"(x)$ существует во всех точках области определения;

5) Координатная прямая:

Рисунок 3.

6) Определить знак производной $f"(x)$ на каждом промежутке:

\ \, т.е. синус функция - ограниченная. Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат. Функция периодическая 2π : sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R. sin x = 0 при x = π·k , k ∈ Z. sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z. sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z.

Функция косинус

Область определения функции- множество Rвсех действительных чисел. Множество значений функции - отрезок [-1; 1], т.е. косинус функция - ограниченная. Функция четная: cos(−x)=cos x для всех х ∈ R. Функция периодическая с наименьшим положительным периодом 2π : cos(x+2π· k ) = cos x, где k ∈ Z для всех х ∈ R.
cos x = 0при
cos x > 0 для всех
cos x < 0для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1в точках:
Наименьшее значение функции sin x = −1в точках:

Функция тангенс

Множество значений функции - вся числовая прямая, т.е. тангенс - функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции - вся числовая прямая, т.е. котангенс - функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

20)Общий вид функции Преобразования
y = f (x - b ) Параллельный перенос графика вдоль оси абсцисс на | b | единиц
  • вправо, если b > 0;
  • влево, если b < 0.
y = f (x + b )
  • влево, если b > 0;
  • вправо, если b < 0.
y = f (x ) + m Параллельный перенос графика вдоль оси ординат на | m | единиц
  • вверх, если m > 0,
  • вниз, если m < 0.
Отражение графика
y = f (- x ) ординат.
y = - f (x ) Симметричное отражение графика относительно оси абсцисс.
Сжатие и растяжение графика
y = f (kx )
  • При k > 1 - сжатие графика к оси ординат в k раз,
  • при 0 < k < 1 - растяжение графика от оси ординат в k раз.
y = kf (x )
  • При k > 1 - растяжение графика от оси абсцисс в k раз,
  • при 0 < k < 1 - cжатие графика к оси абсцисс в k раз.
Преобразования графика с модулем
y = | f (x ) |
  • При f (x ) > 0 - график остаётся без изменений,
  • при f (x ) < 0 - график симметрично отражается относительно оси абсцисс.
y = f (| x |)

21)) Совокупность чисел, каждое из которых снабжено своим номером п (п = 1, 2, 3, ...), называется числовой последовательностью.

Отдельные числа последовательности называются ее членами и обозначаются обычно так: первый член a 1 , второй a 2 , .... п -й член a n и т. д. Вся числовая последовательность обозначается

a 1 , a 2 , a 3 , ... , a n , ... или {a n }.

22)Арифметическая прогрессия. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с постоянным для этой последовательности числом d ,называется арифметической прогрессией . Число d называется разностью прогрессии . Любой член арифметической прогрессии вычисляется по формуле:

a n = a 1 + d (n – 1) .

Сумма n первых членов арифметической прогрессии вычисляется как:

Геометрическая прогрессия. Числовая последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на постоянное для этой последовательности число q , называется геометрической

прогрессией . Число q называется знаменателем прогрессии . Любой член геометрической прогрессии вычисляется по формуле:

b n = b 1 q n - 1 .

Сумма n первых членов геометрической прогрессии вычисляется как:

Бесконечно убывающей геометрической прогрессией называется бесконечная геометрическая прогрессия, знаменатель которой удовлетворяет условию .

При неограниченном возрастании сумма первых членов бесконечно убывающей геометрической прогрессии стремится к числу , которое называетсясуммой бесконечно убывающей геометрической прогрессии .

) Производная функции f(x), f′(x) , сама является функцией. Значит, можно найти eё производную.Назовём f′(x) производной функции f(x)первого порядка.Производная от производной функции f(x) называется производной второго порядка (или второй производной).

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f (x ) в этой точке.

Уравнение касательной к графику функции: y = f(a) + f "(a)(x – a) y = f(a) + f "(a)(x – a)

Физический смысл производной. Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

24)) Производная суммы (разности) функций

Производная алгебраической суммы функций выражается следующей теоремой.

Производная суммы (разности) двух дифференцируемых функций равна сумме (разности) производных этих функций:

Производная конечной алгебраической суммы дифференцируемых функций равна такой же алгебраической сумме производных слагаемых. Например,