Линейно зависимые. Линейная зависимость и независимость векторов

Задача 1. Выяснить, является ли система векторов линейно независимой. Систему векторов будем задавать матрицей системы, столбцы которой состоят из координат векторов.

.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

.

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 2. Выяснить, является ли линейно независимой система векторов.

.

Решение. Векторы линейно независимы (см. задачу 1). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

.

Эта система, как треугольная, имеет единственное решение.

Следовательно, система векторов линейно зависима.

Замечание . Матрицы, такого вида, как в задаче 1, называются треугольными , а в задаче 2 – ступенчато-треугольными . Вопрос о линейной зависимости системы векторов легко решается, если матрица, составленная из координат этих векторов, является ступенчато треугольной. Если матрица не имеет специального вида, то с помощью элементарных преобразований строк , сохраняющих линейные соотношения между столбцами, её можно привести к ступенчато-треугольному виду.

Элементарными преобразованиями строк матрицы(ЭПС) называются следующие операции над матрицей:

1) перестановка строк;

2) умножение строки на отличное от нуля число;

3) прибавление к строке другой строки, умноженной на произвольное число.

Задача 3. Найти максимальную линейно независимую подсистему и вычислить ранг системы векторов

.

Решение. Приведем матрицу системы с помощью ЭПС к ступенчато-треугольному виду. Чтобы объяснить порядок действий, строчку с номером преобразуемой матрицы обозначим символом . В столбце после стрелки указаны действия над строками преобразуемой матрицы, которые надо выполнить для получения строк новой матрицы.


.

Очевидно, что первые два столбца полученной матрицы линейно независимы, третий столбец является их линейной комбинацией, а четвертый не зависит от двух первых. Векторы называются базисными. Они образуют максимальную линейно независимую подсистему системы , а ранг системы равен трем.



Базис, координаты

Задача 4. Найти базис и координаты векторов в этом базисе на множестве геометрических векторов, координаты которых удовлетворяют условию .

Решение . Множество является плоскостью, проходящей через начало координат. Произвольный базис на плоскости состоит из двух неколлинеарных векторов. Координаты векторов в выбранном базисе определяются решением соответствующей системы линейных уравнений.

Существует и другой способ решения этой задачи, когда найти базис можно по координатам.

Координаты пространства не являются координатами на плоскости , так как они связаны соотношением , то есть не являются независимыми. Независимые переменные и (они называются свободными) однозначно определяют вектор на плоскости и, следовательно, они могут быть выбраны координатами в . Тогда базис состоит из векторов, лежащих в и соответствующих наборам свободных переменных и , то есть .

Задача 5. Найти базис и координаты векторов в этом базисе на множестве всех векторов пространства , у которых нечетные координаты равны между собой.

Решение . Выберем, как и в предыдущей задаче, координаты в пространстве .

Так как , то свободные переменные однозначно определяют вектор из и, следовательно, являются координатами. Соответствующий базис состоит из векторов .

Задача 6. Найти базис и координаты векторов в этом базисе на множестве всех матриц вида , где – произвольные числа.

Решение . Каждая матрица из однозначно представима в виде:

Это соотношение является разложением вектора из по базису
с координатами .

Задача 7. Найти размерность и базис линейной оболочки системы векторов

.

Решение. Преобразуем с помощью ЭПС матрицу из координат векторов системы к ступенчато-треугольному виду.




.

Столбцы последней матрицы линейно независимы, а столбцы линейно выражаются через них. Следовательно, векторы образуют базис , и .

Замечание . Базис в выбирается неоднозначно. Например, векторы также образуют базис .

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.

Пусть L - произвольное линейное пространство, a i Î L, - его элементы (векторы).

Определение 3.3.1. Выражение , где , - произвольные вещественные числа, называется линейной комбинацией векторов a 1 , a 2 ,…, a n .

Если вектор р = , то говорят, что р разложен по векторам a 1 , a 2 ,…, a n .

Определение 3.3.2. Линейная комбинация векторов называется нетривиальной , если среди чисел есть хотя бы одно отличное от нуля. В противном случае, линейная комбинация называется тривиальной .

Определение 3 .3.3 . Векторы a 1 , a 2 ,…, a n называются линейно зависимыми, если существуют их нетривиальная линейная комбинация, такая что

= 0 .

Определение 3 .3.4. Векторы a 1 ,a 2 ,…, a n называются линейно независимыми, если равенство = 0 возможно лишь в случае, когда все числа l 1, l 2,…, l n одновременно равны нулю.

Отметим, что всякий ненулевой элемент a 1 можно рассматривать как линейно независимую систему, ибо равенство l a 1 = 0 возможно лишь при условии l = 0.

Теорема 3.3.1. Необходимым и достаточным условием линейной зависимости a 1 , a 2 ,…, a n является возможность разложения, по крайней мере, одного из этих элементов по остальным.

Доказательство. Необходимость. Пусть элементы a 1 , a 2 ,…, a n линейно зависимы. Это означает, что = 0 , причем хотя бы одно из чисел l 1, l 2,…, l n отлично от нуля. Пусть для определенности l 1 ¹ 0. Тогда

т. е. элемент a 1 разложен по элементам a 2 , a 3 , …, a n .

Достаточность. Пусть элемент a 1 разложен по элементам a 2 , a 3 , …, a n , т. е. a 1 = . Тогда = 0 , следовательно, существует нетривиальная линейная комбинация векторов a 1 , a 2 ,…, a n , равная 0 , поэтому они являются линейно зависимыми.

Теорема 3.3.2 . Если хотя бы один из элементов a 1 , a 2 ,…, a n нулевой, то эти векторы линейно зависимы.

Доказательство. Пусть a n = 0 , тогда = 0 , что и означает линейную зависимость указанных элементов.

Теорема 3.3.3 . Если среди n векторов какие-либо p (p < n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Доказательство. Пусть для определенности элементы a 1 , a 2 ,…, a p линейно зависимы. Это означает, что существует такая нетривиальная линейная комбинация, что = 0 . Указанное равенство сохранится, если добавить к обеим его частям элемент . Тогда + = 0 , при этом хотя бы одно из чисел l 1, l 2,…, lp отлично от нуля. Следовательно, векторы a 1 , a 2 ,…, a n являются линейно зависимыми.

Следствие 3.3.1. Если n элементов линейно независимы, то любые k из них линейно независимы (k < n).

Теорема 3.3.4 . Если векторы a 1 , a 2 ,…, a n - 1 линейно независимы, а элементы a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то вектор a n можно разложить по векторам a 1 , a 2 ,…, a n - 1 .



Доказательство. Так как по условию a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то существует их нетривиальная линейная комбинация = 0 , причем (в противном случае, окажутся линейно зависимыми векторы a 1 , a 2 ,…, a n - 1). Но тогда вектор

,

что и требовалось доказать.