Методы выявления нервной ткани. Нервная ткань

Установление научного факта о роли головного мозга как органа психической деятельности можно без сомнения считать важнейшим научным открытием человечества. Доказательства того, что психическая деятельность является проявлением функциональной активности мозга и, особенно, коры больших полушарий, базируются на различных анатомических знаниях, данных эмбриологии, физиологии, патологической анатомии и гистологии, а также многолетних клинических наблюдениях.

Мозг как орган психической деятельности в настоящее время стал сосредоточением научных интересов ряда дисциплин. Если раньше теории функционирования нервной системы основывались на чисто механистических представлениях, то в настоящее время головной мозг рассматривается как сложнейшее устройство интегрального типа, обеспечивающее взаимодействие различных структур нервной системы для обеспечения максимальной адаптации человека как единого целого к изменяющимся условиям внешней и внутренней среды.

Проблема изучения материального субстрата психической деятельности, в течение длительного времени находившаяся на острие многих научных и общефилософских течений, до сих пор продолжает вызывать огромный теоретический и практический интерес. Появление новых высокоинформативных методов изучения структуры и функции нервной системы, включая молекулярный уровень исследования, а также развитие психологических представлений о системной организации психической деятельности человека стратегически определили прогресс этого направления.

Использование новых методик изучения функционального предназначения различных нервных структур для максимально точной топической диагностики их поражений явилось мощным импульсом к пересмотру основных представлений о морфологических субстратах психологических процессов и объяснения особенностей психической деятельности человека.

Современные методы изучения структурно-функциональной организации нервной системы можно разделить па морфологические, клинические и экспериментальные, хотя данная классификация является достаточно условной.

I. Морфологические методы изучения нервной системы включают следующие.

  • 1. Нейрогистологические методы. С помощью специальных технологий изготавливают срезы тканей и производят их окраску различными красителями. Для изучения нервных структур используют микроскопическую световую и люминисцентную технику.
  • 2. Электронная микроскопия. Для этого изготавливают ультратонкие срезы, окрашивают по специальным методикам и рассматривают составные части нервных клеток и внутриклеточных структур при больших увеличениях.
  • 3. Конфокальная лазерная сканирующая микроскопия. Этот метод основан на регистрации флуоресценции в фокусе лазерного луча, что позволяет создать трехмерную реконструкцию некоторых структур, в том числе отдельных нейронов.
  • 4. Исследование культуры клеток. В искусственных средах культивируют одну или несколько популяций нервных клеток. Переживающие ткани и клеточные культуры мозга выращивают на специальных средах, изменяя соотношение тех или иных веществ, используя разнообразные тканевые гормоны. Это исследование позволяет изучить строение и механизмы активности отдельных нервных клеток и их отростков, значение их глиального и сосудистого окружения и т.д.
  • 5. Нейрогистохимические методы. Они основаны на использовании специальных маркеров, таких как пероксидаза хрена, люциферовый желтый и др. Например, пероксидаза хрена после искусственного введения активно поглощается отростками нейрона и транспортируется в тело клетки. Это позволяет установить межнейронные связи изучаемых структур.
  • 6. Радиоавтография. Используя радиоактивную метку, прижизненно наблюдают ее перемещение в структуре нейрона. Метка может быть связана с разнообразными веществами (глюкоза, аминокислоты, нуклеотиды, олигопептиды и т.д.). Тела нейронов поглощают радиоактивное вещество и транспортируют его по своим аксонам. Этим методом определяют не только локализацию нервных структур, но и их активность.
  • 7. Использование моноклональных антител. Данный метод позволяет выявлять строго определенные группы нейронов по образуемому ими медиатору. В результате развития реакции антиген – антитело возникает возможность зафиксировать состояние нервной ткани в момент гибели клетки и тем самым составить представление о прижизненной организации мозга.

II. Клинические методы изучения нервной системы включают следующие.

  • 1. Компьютерная и магнитно-резонансная томография мозга. Данные методы позволяют выяснить особенности анатомической организации спинного и головного мозга, оценить локальные участки их повреждения.
  • 2. Позитронно-эмиссионная томография. Метод основан на введении в мозговой кровоток позитронизлучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге обрабатываются в виде трехмерной реконструкции мозга и в зависимости от распределения кровотока позволяют судить об интенсивности обмена веществ и функциональной активности областей мозга, а также дают возможность прижизненного картирования активных структур мозга.
  • 3. Электроэнцефалография (ЭЭГ). Метод основан на записи суммарной активности клеток коры головного мозга, которая осуществляется с помощью электродов, размещенных на поверхности кожи головы.
  • 4. Электрокортикография и электросубкортикография. С помощью данных методов регистрируют электрические явления подкорковых и корковых структур – микроэлектроды вводят в определенные зоны коры полушарий большого мозга и в подкорковые ядра. Эти методы, в отличие от ЭЭГ, позволяют оценить функциональное состояние отдельных клеток, а не степень активности целой группы нейронов, уточнить локализацию и специализацию той или иной нервной клетки. Они могут использоваться во время проведения оперативных вмешательств на головном мозге.
  • 5. Реоэнцефалография (РЭГ). Это метод исследования степени кровенаполнения сосудов головного мозга, позволяющий косвенно судить о функциональной активности его различных отделов.

III. Экспериментальные методы изучения нервной системы включают следующие.

  • 1. Метод разрушения нервной ткани. Данный метод используется для установления функций исследуемых структур. Он осуществляется с помощью нейрохирургических пересечений нервных структур на необходимом уровне или разрушения необходимых структур с помощью электродов и микроэлектродов при пропускании через них электрического тока.
  • 2. Метод экстирпации. У животного хирургическим путем удаляют определенные участки нервной ткани, отмечая происходящие преобразования после их удаления скальпелем или химического воздействия веществами, способными вызывать избирательную гибель нервных клеток. К этой же группе методов можно отнести клинические наблюдения при различных повреждениях нервных структур в результате травм (военных и бытовых).
  • 3. Метод нейронной активности. Он основан на записи с помощью внутриклеточного электрода электрической активности изучаемой нервной клетки.
  • 4. Метод раздражения. Он основан на раздражении электрическим током или химическими веществами различных структур нервной системы, в связи с чем различают:
    • а) раздражение рецепторов и определение структур центральной нервной системы, в которых возникает возбуждение;
    • б) раздражение зон центральной нервной системы и наблюдение за ответной реакцией (опыт Сеченова).
    • в) стереотаксическую электростимуляцию – раздражение определенных ядер центральной нервной системы с использованием микроэлектродов и регистрацией происходящих изменений. Этим методом была выявлена соматотония коры и составлена карта двигательной зоны коры больших полушарий.

Необходимо понимать, что ни один из указанных методов не может в полной мере объяснить всех особенностей строения и функционирования различных структур нервной системы. Только интеграция результатов самых разнообразных исследований, рассматривающая нервные структуры от уровня целостной системы до данных молекулярно-биохимических и биофизических исследований, способна разрешить встающие перед исследователем вопросы.

Применение специальных форм анализа психических процессов при нарушениях различных структур мозга позволило вплотную подойти к пониманию внутренней психофизиологической сущности восприятия, эмоций, мышления, памяти, речи и т.д.

Тесная связь функциональной анатомии с такими областями медицинских и психологических знаний, как неврология, логопедия, специальная психология и др., позволяет решать насущные проблемы теоретической, клинической медицины и психологии.

Краткий исторический экскурс. Первые попытки решения вопросов соотношения между структурной организацией человеческого организма и пониманием особенностей протекания психических процессов проводились в рамках существующих философских и религиозных воззрений и сводились к поиску органа, которому можно было бы приписать роль "вместилища" психики. Многочисленные ошибочные гипотезы локализации психических функций выдвигались учеными Древней Греции. Наиболее ранние представления сводились к тому, что ответственным за реализацию психических функций является все тело. Позднее стали считать, что главным фактором телесной и психической жизни служит система кровообращения. В древнегреческом учении особое значение отводилось "пневме" как особому тончайшему веществу, циркулирующему по кровеносным сосудам и выполняющему функцию основного субстрата психики.

Следует отметить, что наряду с гуморальной гипотезой психических функций (от греч. humor – жидкость) существовали и другие. Так, указания на то, что мозг есть орган ощущения и мысли, принадлежат древнегреческому врачу Алкмеону Кротонскому (VI в. до н.э.), который пришел к подобному выводу в результате хирургических операций и наблюдений за поведением больных. В частности, он утверждал, что ощущение возникает благодаря особому строению периферических чувствующих аппаратов, которые имеют прямую связь с мозгом.

Следует назвать основных ученых, пытавшихся понять тайны психической деятельности человека.

Пифагор (570–490 гг. до н.э.) – философ и основатель учения о бессмертии души и ее переселении из тела в тело в конце физической жизни. Он соотносил функцию разума с мозгом, а вместилищем души считал сердце.

Гиппократ (около 460 года до н.э. – около 370 г. до н.э.) считал, что мозг является большой губчатой железой и органом, участвующим в обеспечении психических функций. Позднее он создал учение о четырех жидкостях (крови, слизи, черной и желтой желчи), сочетание которых определяет здоровье и психические особенности человека. Чувства и страсти он связывал с сердцем.

Аристотель (384–322 гг. до н.э.) сформулировал учение об "общем чувствилище". Его суть состояла в том, что для восприятия образов существуют органы чувств и центральный орган – мозг, который одновременно выполняет и роль органа осязания. Органом души у Аристотеля являлось сердце, а мозг рассматривался как железа, выделяющая слизь для охлаждения "теплоты сердца" и крови.

Герофил (335–280 гг. до н.э.) и Эразистрат (304–250 гг. до н.э.) на основании вскрытий стали дифференцировать нервы, ранее не отличаемые от связок и сухожилий, а также обнаружили различия между чувствительными и двигательными нервами. Кроме того, они обратили внимание на различия рельефа коры головного мозга и ошибочно считали, что по количеству извилин люди отличаются по умственным способностям.

Клавдий Гален (129–210 гг. н.э.) считал, что мыслительные процессы связаны с жидкостью желудочков мозга, а также с сердцем и печенью. Он представлял нервную систему в виде ветвистого ствола, каждая из ветвей которого живет самостоятельной жизнью.

Андреас Везалий (1514–1564) – реформатор анатомии, достаточно подробно изучил строение головного мозга и пришел к выводу, что материальным субстратом психических процессов является вещество мозга, а не желудочковая система.

Р. Декарт (1596–1650), занимавшийся математическими и физиологическими исследованиями, разработал понятие о рефлексе. По его представлениям, взаимодействие организма с окружающим миром опосредуется нервной системой, состоящей из мозга (как центра) и "нервных трубок", расходящихся от него. По его представлениям душа локализовалась в шишковидной железе, которая улавливала малейшие движения живых духов и под воздействием впечатлений направляла их к мышцам. Следовательно, действия внешних стимулов признавались приоритетными в качестве причины двигательных актов.

В XVII–XVTTI вв. стали широко практиковаться экспериментальные методы исследования функционального предназначения структур мозга, основанные на удалении отдельных его участков. Они значительно продвинули представления о связи психических процессов с их возможным материальным носителем. Так, английский анатом Т. Уиллис (1621–1675) первым указал на роль "серой материи" (коры головного мозга) как носителя животного "духа". "Белая материя" мозга (белое вещество), по его мнению, обеспечивает доставку "духа" к другим частям тела, снабжая их ощущениями и движением. Ему принадлежит одно из первых мнений относительно объединительной роли мозолистого тела в работе двух полушарий.

К числу наиболее известных относятся исследования крупнейшего анатома начала XIX в. Ф. Галля (1758–1828). Он впервые описал различия между серым и белым веществом, высказал предположение, что умственные и психические способности человека связаны с отдельными, ограниченными участками мозга, которые, разрастаясь, образуют внешний рельеф черепа, позволяющий определять индивидуальные различия способностей личности. Ошибочные френологические карты Ф. Галля, представляющие собой необоснованную попытку проекции на череп различных функциональных зон коры большого мозга, скоро были преданы забвению, но они послужили толчком для продолжения работ по изучению роли отдельных извилин.

Труды М. Дакса (1771-1837) и Ж. Б. Буйо (1796-1881), выполненные на основании медицинских наблюдений, были посвящены предположениям о потере речи в результате локальных поражений мозга. Однако только в 1861 г. французский анатом и хирург П. Брока (1824–1880) выступил по этому вопросу на заседании Парижского антропологического общества. Он представил материалы изучения двух больных с потерей речи, обратив внимание на то, что это связано с поражением нижней лобной извилины левого полушария. Тем самым П. Брока заложил основы учения о динамической локализации функций в коре больших полушарий головного мозга.

Наблюдения П. Брока стимулировали целую серию исследований, связанных с раздражением отдельных участков мозга электрическим током. В 1874 г. немецкий ученый К. Вернике (1848–1905) описал клинические случаи у больных с нарушениями понимания обращенной речи, у которых выявлялся очаг поражения в задних отделах верхней височной извилины.

Э. Гитциг (1807–1875), раздражая мозг пациентов с ранениями черепа слабым электрическим током, установил, что эти воздействия на область задней части мозга заставляли двигаться глаза. Он открыл зрительные зоны коры полушарий большого мозга.

Конец XIX в. ознаменовался крупнейшими успехами ученых-локализационистов, полагавших, что ограниченный участок мозга может являться "мозговым центром" какой-либо психической функции. Было установлено, что поражения затылочных долей мозга вызывают нарушения зрительного восприятия, а поражения теменной области – потерю способности правильно выполнять целенаправленное действие. Позднее в коре головного мозга были выделены "центр письма", "центр счета" и др. Одновременно в качестве контраргумента появляются исследования, указывающие на неполноту выпадения тех или иных функций при локальных поражениях мозга, на их связь со степенью общей потери вещества мозга.

Так, английский невролог Д. X. Джексон (1835–1911) на основе динамического подхода обосновал теорию трехуровневой организации деятельности центральной нервной системы. По его представлениям, функция является результатом деятельности сложной "вертикальной" организации: низший уровень представлен стволовыми отделами мозга, средний уровень – чувствительными и двигательными участками коры, а высший – его лобными отделами. Он также высказал предположение, что патологические процессы в мозге проявляются не только выпадением каких-то функций, но и компенсаторной активацией других функций. Таким образом, оценивать расстройство следовало нс только по симптомам выпадения функций, но и по симптомам высвобождения и реципрокной (антагонистичной) активации.

Известный патолог XIX в. Р. Вирхов (1821 – 1902) обосновал целлюлярную теорию патологии, которая послужила стимулом для изучения роли отдельных нервных клеток. В свете целлюлярной теории австрийский ученый Т. Мейнерт (1833–1892) произвел описание отдельных клеток коры головного мозга, приписывая им функцию носителя психических процессов. Киевский анатом В. А. Бец (1834– 1894) в коре передней центральной извилины обнаружил гигантские пирамидные клетки и связал их с выполнением двигательных функций. Испанский гистолог и нейроанатом С. Рамон-и-Кахаль (1852–1934) обосновал нейронную теорию строения нервной системы и показал высокую степень ее сложности и упорядоченности.

Оценка локализации психических функций в ограниченных участках мозга сопровождалась получением обширного материала, на основании которого в 1934 г. немецкий психиатр К. Клейст (1879–1960), изучавший нарушения высших психических функций вследствие военных травм головного мозга, составил локализационную карту мозга. В ней он соотнес отдельные, в том числе и социально обусловленные, функции с деятельностью определенных участков коры.

Большую известность получили научные труды К. Бродмана (1868–1918) о цитоархитектонической карте коры головного мозга, основанные на гистологических исследованиях. Он выделил более 50 участков головного мозга, имеющих различное клеточное строение. Таким образом, в конце XIX в. система научных взглядов на работу мозга сводилась к представлению о нем как о собрании "центров", в которых локализуются различные способности, имеющие самостоятельный характер.

Физиологическое направление в изучении локализации высших психических функций начало зарождаться с середины XIX в. и наибольшее развитие получило в России. Первым критиком теории строгого анатомического локализационизма выступил И. М. Сеченов (1829–1905). Свои взгляды он изложил в книге "Рефлексы головного мозга".

П. Ф. Лесгафт (1837–1909) впервые обосновал возможность направленного воздействия физического воспитания па организм человека для изменения определенных характеристик в сто строении. Благодаря трудам Π. Ф. Лесгафта, основанным на идее единства организма и среды, формы и функции, заложен фундамент функционального направления в анатомии. Π. Ф. Лесгафт был не только выдающимся врачом и анатомом, но и педагогом и психологом. В 1884 г. вышло первое издание его книги "Школьные типы", которое было итогом 20-летнего изучения личности детей и подростков. Им были выделены шесть основных типов школьников и описаны их характерные признаки. В предложенных "школьных типах" Π. Ф. Лесгафт рассматривал личностные характерологические особенности как продукт совокупности внешних социально-психологических факторов среды и индивидуальной предрасположенности. В ряде работ автором были предприняты попытки прогнозирования поведения детей в различные возрастные периоды. С этой книги в России началось развитие такого направления в психологии, как педагогическая психология.

В. М. Бехтерев (1857–1927) – выдающийся отечественный невропатолог и психиатр, внесший значительный вклад в изучение функциональной анатомии головного и спинного мозга. Он существенно расширил учение о локализации функций в коре мозга, углубил рефлекторную теорию. В ходе подготовки научного труда "Проводящие пути головного и спинного мозга" (1894) им был открыт ряд центров головного мозга, в дальнейшем получивших его имя.

Существенный вклад в изучение вопросов нервной деятельности был внесен И. П. Павловым (1849–1936). Он разработал учения о динамической локализации функций, о мозговой изменчивости в пространственной ориентации возбудительных и тормозных процессов. В его работах были сформулированы и обоснованы представления о первой и второй сигнальных системах, разработано понятие о трехуровневой организации анализаторов.

В первой половине XX в. английский физиолог Ч. Шеррингтон (1857–1952) обосновал учение о нейронных контактах – синапсах. Им были проведены опыты по установлению связей между раздражаемыми слабым электротоком зонами моторной коры и реакциями строго определенных мышц противоположной стороны тела. Позднее развитие подобных методических принципов было использовано канадским нейрохирургом В. Пенфилдом (1891–1976), обосновавшим теорию локализации (проекции) на сенсорные и моторные участки коры полушарий различных участков тела человека.

Первые нейропсихологические исследования в нашей стране начали проводиться Л. С. Выготским (1896–1934). Он проанализировал изменения, возникающие в высших психических функциях при локальных поражениях мозга, описал принципы динамической локализации функций, отличающие работу мозга человека от работы мозга животных.

В стройную систему теоретических воззрений этот раздел нейроморфологии и физиологии превратили А. Р. Лурия (1902–1977) и его ученики. Ими накоплен и систематизирован огромный фактический материал о роли лобных долей и других мозговых структур в организации психических процессов, обобщены многочисленные предшествующие исследования и продолжено изучение нарушений отдельных психических функций – памяти, речи, интеллектуальных процессов, произвольных движений и действий при локальных поражениях мозга, проанализированы особенности их восстановления.

Существенное влияние на понимание отношений между психическими функциями и мозгом оказали работы Н. А. Бернштейна (1896–1966) и П. К. Анохина (1898– 1974), обосновавших теорию функциональных систем.

Б. Г. Ананьевым (1907–1972) и его учениками был выполнен цикл работ, посвященных изучению роли билатерального мозгового регулирования психической деятельности. Эти работы привели к формулированию ряда важных положений о роли сочетанной работы больших полушарий головного мозга в пространственной ориентации, а затем и в общих процессах управления жизнедеятельностью и поведением живого организма. Им также создана концепция теории ощущений и генеза функциональной структуры анализаторной системы человека.

Академиком Η. П. Бехтеревой (1924–2008) на протяжении многих лет проводились работы по изучению роли подкорковых образований в реализации различных психических процессов.

Выдающиеся ленинградские ученые Η. Н. Трауготт, Л. И. Вассерман и Я. А. Меерсон в середине XX в. обосновали теорию о мозге как системе, воспринимающей, хранящей и перерабатывающей информацию. Ими были введены новые, впоследствии ставшие классическими, понятия "оперативная память", "фильтрация сообщений", "помехоустойчивость", "статистическое кодирование информации", "принятие решений" и т.д.

В конце XX – начале XXI в. были продолжены исследования о соотношении различных структур головного мозга и выполняемых ими функций. Благодаря этому были пересмотрены классические представления о локализации психических функций в коре головного мозга.

Многоплановыми исследованиями было доказано, что в отличие от элементарных функциональных процессов, обусловленных соматическими или вегетативными рефлексами и четко контролирующихся определенной группой нервных клеток, высшие психические функции не могут находиться в строго определенных зонах коры. Они образуют сложные системы совместно работающих зон, каждая из которых вносит свой вклад в осуществление сложных психических процессов. При этом они могут располагаться в различных участках головного мозга, обеспечивая определенную иерархическую систему. Такой подход изменяет и практическую работу психолога.

Понимание того, что психическая деятельность представляет собой сложную функциональную систему, основу которой составляет особая связь между нервными структурами, позволяет подойти по-новому к решению вопросов о локализации нарушений психических функций в разных структурах нервной системы, в частности головного мозга. Это открывает широкие горизонты для понимания полиморфной локализации нарушений и их соответствующей коррекции.

Содержание статьи

ГИСТОЛОГИЯ, наука, занимающаяся изучением тканей животных. Тканью называют группу клеток, сходных по форме, размерам и функциям и по продуктам своей жизнедеятельности. У всех растений и животных, за исключением самых примитивных, тело состоит из тканей, причем у высших растений и у высокоорганизованных животных ткани отличаются большим разнообразием структуры и сложностью своих продуктов; сочетаясь друг с другом, разные ткани образуют отдельные органы тела.

Гистология изучает ткани животных; исследование растительных тканей обычно относят к анатомии растений. Гистологию иногда называют микроскопической анатомией, поскольку она изучает строение (морфологию) организма на микроскопическом уровне (объектом гистологического исследования служат очень тонкие тканевые срезы и отдельные клетки). Хотя эта наука прежде всего описательная, в ее задачу также входит интерпретация тех изменений, которые происходят в тканях в норме и патологии. Поэтому гистологу необходимо хорошо разбираться в том, как формируются ткани в процессе эмбрионального развития, какова их способность к росту в постэмбриональный период и каким они подвергаются изменениям в различных естественных и экспериментальных условиях, в том числе в ходе своего старения и гибели составляющих их клеток.

История гистологии как отдельной ветви биологии тесно связана с созданием микроскопа и его совершенствованием. М.Мальпиги (1628–1694) называют «отцом микроскопической анатомии», а следовательно гистологии. Гистология обогащалась наблюдениями и методами исследования, проводившимися или создававшимися многими учеными, основные интересы которых лежали в области зоологии или медицины. Об этом свидетельствует гистологическая терминология, увековечившая их имена в названиях впервые описанных ими структур или созданных методов: островки Лангерганса, либеркюновы железы, купферовы клетки, мальпигиев слой, окраска по Максимову, окраска по Гимза и т.п.

В настоящее время получили распространение методы изготовления препаратов и их микроскопического исследования, дающие возможность изучать отдельные клетки. К таким методам относятся техника замороженных срезов, фазово-контрастная микроскопия, гистохимический анализ, культивирование тканей, электронная микроскопия; последняя позволяет детально изучать клеточные структуры (клеточные мембраны, митохондрии и др.). С помощью сканирующего электронного микроскопа удалось выявить интереснейшую трехмерную конфигурацию свободных поверхностей клеток и тканей, которую невозможно увидеть под обычным микроскопом.

Происхождение тканей.

Развитие зародыша из оплодотворенного яйца происходит у высших животных в результате многократных клеточных делений (дробления); образующиеся при этом клетки постепенно распределяются по своим местам в разных частях будущего зародыша. Первоначально эмбриональные клетки похожи друг на друга, но по мере нарастания их количества они начинают изменяться, приобретая характерные особенности и способность к выполнению тех или иных специфических функций. Этот процесс, называемый дифференцировкой, в конечном итоге приводит к формированию различных тканей. Все ткани любого животного происходят из трех исходных зародышевых листков: 1) наружного слоя, или эктодермы; 2) самого внутреннего слоя, или энтодермы; и 3) среднего слоя, или мезодермы. Так, например, мышцы и кровь – это производные мезодермы, выстилка кишечного тракта развивается из энтодермы, а эктодерма образует покровные ткани и нервную
систему.

Основные типы тканей.

Гистологи обычно различают у человека и высших животных четыре основных ткани: эпителиальную, мышечную, соединительную (включая кровь) и нервную. В одних тканях клетки имеют примерно одинаковую форму и размеры и так плотно прилегают одна к другой, что между ними не остается или почти на остается межклеточного пространства; такие ткани покрывают наружную поверхность тела и выстилают его внутренние полости. В других тканях (костной, хрящевой) клетки расположены не так плотно и окружены межклеточным веществом (матриксом), которое они продуцируют. От клеток нервной ткани (нейронов), образующих головной и спинной мозг, отходят длинные отростки, заканчивающиеся очень далеко от тела клетки, например в местах контакта с мышечными клетками. Таким образом, каждую ткань можно отличить от других по характеру расположения клеток. Некоторым тканям присуще синцитиальное строение, при котором цитоплазматические отростки одной клетки переходят в аналогичные отростки соседних клеток; такое строение наблюдается в зародышевой мезенхиме, рыхлой соединительной ткани, ретикулярной ткани, а также может возникнуть при некоторых заболеваниях.

Многие органы состоят из тканей нескольких типов, которые можно распознать по характерному микроскопическому строению. Ниже дается описание основных типов тканей, встречающихся у всех позвоночных животных. У беспозвоночных, за исключением губок и кишечнополостных, тоже имеются специализированные ткани, аналогичные эпителиальной, мышечной, соединительной и нервной тканям позвоночных.

Эпителиальная ткань.

Эпителий может состоять из очень плоских (чешуйчатых), кубических или же цилиндрических клеток. Иногда он бывает многослойным, т.е. состоящим из нескольких слоев клеток; такой эпителий образует, например, наружный слой кожи у человека. В других частях тела, например в желудочно-кишечном тракте, эпителий однослойный, т.е. все его клетки связаны с подлежащей базальной мембраной. В некоторых случаях однослойный эпителий может казаться многослойным: если длинные оси его клеток расположены непараллельно друг другу, то создается впечатление, что клетки находятся на разных уровнях, хотя на самом деле они лежат на одной и той же базальной мембране. Такой эпителий называют многорядным. Свободный край эпителиальных клеток бывает покрыт ресничками, т.е. тонкими волосовидными выростами протоплазмы (такой ресничный эпителий выстилает, например, трахею), или же заканчивается «щеточной каемкой» (эпителий, выстилающий тонкий кишечник); эта каемка состоит из ультрамикроскопических пальцевидных выростов (т.н. микроворсинок) на поверхности клетки. Помимо защитных функций эпителий служит живой мембраной, через которую происходит всасывание клетками газов и растворенных веществ и их выделение наружу. Кроме того, эпителий образует специализированные структуры, например железы, вырабатывающие необходимые организму вещества. Иногда секреторные клетки рассеяны среди других эпителиальных клеток; примером могут служить бокаловидные клетки, вырабатывающие слизь, в поверхностном слое кожи у рыб или в выстилке кишечника у млекопитающих.

Мышечная ткань.

Мышечная ткань отличается от остальных своей способностью к сокращению. Это свойство обусловлено внутренней организацией мышечных клеток, содержащих большое количество субмикроскопических сократительных структур. Существует три типа мышц: скелетные, называемые также поперечнополосатыми или произвольными; гладкие, или непроизвольные; сердечная мышца, являющаяся поперечнополосатой, но непроизвольной. Гладкая мышечная ткань состоит из веретеновидных одноядерных клеток. Поперечнополосатые мышцы образованы из многоядерных вытянутых сократительных единиц с характерной поперечной исчерченностью, т.е. чередованием светлых и темных полос, перпендикулярных длинной оси. Сердечная мышца состоит из одноядерных клеток, соединенных конец в конец, и имеет поперечную исчерченность; при этом сократительные структуры соседних клеток соединены многочисленными анастомозами, образуя непрерывную сеть.

Соединительная ткань.

Существуют различные типы соединительной ткани. Самые важные опорные структуры позвоночных состоят из соединительной ткани двух типов – костной и хрящевой. Хрящевые клетки (хондроциты) выделяют вокруг себя плотное упругое основное вещество (матрикс). Костные клетки (остеокласты) окружены основным веществом, содержащим отложения солей, главным образом фосфата кальция. Консистенция каждой из этих тканей определяется обычно характером основного вещества. По мере старения организма содержание минеральных отложений в основном веществе кости возрастает, и она становится более ломкой. У маленьких детей основное вещество кости, а также хряща богато органическими веществами; благодаря этому у них обычно бывают не настоящие переломы костей, а т.н. надломы (переломы по типу «зеленой ветки»). Сухожилия состоят из волокнистой соединительной ткани; ее волокна образованы из коллагена – белка, секретируемого фиброцитами (сухожильными клетками). Жировая ткань бывает расположена в разных частях тела; это своеобразный тип соединительной ткани, состоящий из клеток, в центре которых находится большая глобула жира.

Кровь.

Кровь представляет собой совершенно особый тип соединительной ткани; некоторые гистологи даже выделяют ее в самостоятельный тип. Кровь позвоночных состоит из жидкой плазмы и форменных элементов: красных кровяных клеток, или эритроцитов, содержащих гемоглобин; разнообразных белых клеток, или лейкоцитов (нейтрофилов, эозинофилов, базофилов, лимфоцитов и моноцитов), и кровяных пластинок, или тромбоцитов. У млекопитающих зрелые эритроциты, поступающие в кровяное русло, не содержат ядер; у всех других позвоночных (рыб, земноводных, пресмыкающихся и птиц) зрелые функционирующие эритроциты содержат ядро. Лейкоциты делят на две группы – зернистых (гранулоциты) и незернистых (агранулоциты) – в зависимости от наличия или отсутствия в их цитоплазме гранул; кроме того, их нетрудно дифференцировать, используя окрашивание специальной смесью красителей: гранулы эозинофилов приобретают при таком окрашивании ярко-розовый цвет, цитоплазма моноцитов и лимфоцитов – голубоватый оттенок, гранулы базофилов – пурпурный оттенок, гранулы нейтрофилов – слабый лиловый оттенок. В кровяном русле клетки окружены прозрачной жидкостью (плазмой), в которой растворены различные вещества. Кровь доставляет кислород в ткани, удаляет из них диоксид углерода и продукты метаболизма, переносит питательные вещества и продукты секреции, например гормоны, из одних частей организма в другие.

Нервная ткань.

Нервная ткань состоит из высоко специализированных клеток – нейронов, сконцентрированных главным образом в сером веществе головного и спинного мозга. Длинный отросток нейрона (аксон) тянется на большие расстояния от того места, где находится тело нервной клетки, содержащее ядро. Аксоны многих нейронов образуют пучки, которые мы называем нервами. От нейронов отходят также дендриты – более короткие отростки, обычно многочисленные и ветвистые. Многие аксоны покрыты специальной миелиновой оболочкой, которая состоит из шванновских клеток, содержащих жироподобный материал. Соседние шванновские клетки разделены небольшими промежутками, называемыми перехватами Ранвье; они образуют характерные углубления на аксоне. Нервная ткань окружена опорной тканью особого типа, известной под названием нейроглии.

Замещение ткани и регенерация.

На протяжении всей жизни организма постоянно происходит изнашивание или разрушение отдельных клеток, что составляет один из аспектов нормальных физиологических процессов. Кроме того, иногда, например в результате какой-то травмы, происходит утрата той или иной части тела, состоящей из разных тканей. В таких случаях для организма крайне важно воспроизвести утраченную часть. Однако регенерация возможна только в определенных границах. Некоторые относительно просто организованные животные, например планарии (плоские черви), дождевые черви, ракообразные (крабы, омары), морские звезды и голотурии, могут восстанавливать части тела, утраченные целиком по каким-либо причинам, в том числе в результате самопроизвольного отбрасывания (аутотомии). Чтобы произошла регенерация, недостаточно одного лишь образования новых клеток (пролиферации) в сохранившихся тканях; новообразованные клетки должны быть способны к дифференцировке, чтобы обеспечить замену клеток всех типов, входивших в утраченные структуры. У других животных, особенно у позвоночных, регенерация возможна лишь в некоторых случаях. Тритоны (хвостатые амфибии) способны регенерировать хвост и конечности. Млекопитающие лишены этой способности; однако и у них после частичного экспериментального удаления печени можно наблюдать в определенных условиях восстановление довольно значительного участка печеночной ткани.

Более глубокое понимание механизмов регенерации и дифференцировки несомненно откроет много новых возможностей для использования этих процессов в лечебных целях. Фундаментальные исследования уже внесли большой вклад в развитие методов пересадки кожи и роговицы. В большинстве дифференцированных тканей сохраняются клетки, способные к пролиферации и дифференцировке, но существуют ткани (в частности, центральная нервная система у человека), которые, будучи полностью сформированными, не способны к регенерации. Примерно в годовалом возрасте центральная нервная система человека содержит положенное ей число нервных клеток, и хотя нервные волокна, т.е. цитоплазматические отростки нервных клеток, способны регенерировать, случаи восстановления клеток головного или спинного мозга, разрушенных в результате травмы или дегенеративного заболевания, неизвестны.

Классическими примерами замещения нормальных клеток и тканей в организме человека служит обновление крови и верхнего слоя кожи. Наружный слой кожи – эпидермис – лежит на плотном соединительнотканном слое, т.н. дерме, снабженной мельчайшими кровеносными сосудами, доставляющими ей питательные вещества. Эпидермис состоит из многослойного плоского эпителия. Клетки его верхних слоев постепенно трансформируются, превращаясь в тонкие прозрачные чешуйки – процесс, называемый ороговением; в конце концов эти чешуйки слущиваются. Такое слущивание особенно заметно после сильных солнечных ожогов кожи. У земноводных и пресмыкающихся сбрасывание ороговевшего слоя кожи (линька) происходит регулярно. Ежедневная утрата поверхностных клеток кожи компенсируется за счет новых клеток, поступающих из активно растущего нижнего слоя эпидермиса. Различают четыре слоя эпидермиса: наружный роговой слой, под ним – блестящий слой (в котором начинается ороговение, и его клетки при этом становятся прозрачными), ниже – зернистый слой (в его клетках накапливаются пигментные гранулы, что вызывает потемнение кожи, особенно под действием солнечных лучей) и, наконец, самый глубокий – зачатковый, или базальный, слой (в нем на протяжении всей жизни организма происходят митотические деления, дающие новые клетки для замены слущивающихся).

Клетки крови человека и других позвоночных тоже постоянно обновляются. Каждому типу клеток свойственна более или менее определенная продолжительность жизни, по истечении которой они разрушаются и удаляются из крови другими клетками – фагоцитами («пожирателями клеток»), специально приспособленными для этой цели. Новые кровяные клетки (взамен разрушившихся) образуются в кроветворных органах (у человека и млекопитающих – в костном мозге). Если потеря крови (кровотечение) или разрушение клеток крови под действием химических веществ (гемолитических агентов) наносят клеточным популяциям крови большой ущерб, кроветворные органы начинают продуцировать больше клеток. При потере большого количества эритроцитов, снабжающих ткани кислородом, клеткам тела угрожает кислородное голодание, особенно опасное для нервной ткани. При недостатке лейкоцитов организм теряет способность сопротивляться инфекциям, а также удалять из крови разрушившиеся клетки, что само по себе ведет к дальнейшим осложнениям. В нормальных условиях потеря крови служит достаточным стимулом для мобилизации регенеративных функций кроветворных органов.

Реакции тканей на аномальные условия.

При повреждении тканей возможна некоторая утрата типичной для них структуры в качестве реакции на возникшее нарушение.

Механическое повреждение.

При механическом повреждении (разрезе или переломе) тканевая реакция направлена на то, чтобы заполнить образовавшийся разрыв и воссоединить края раны. К месту разрыва устремляются слабо дифференцированные элементы тканей, в частности фибробласты. Иногда рана бывает так велика, что хирургу приходится вносить в нее кусочки ткани, чтобы стимулировать начальные стадии процесса заживления; для этого используют обломки или даже целые куски кости, полученные при ампутации и хранящиеся в «банке костей». В тех случаях, когда кожа, окружающая большую рану (например, при ожогах), не может обеспечить заживление, прибегают к пересадкам лоскутов здоровой кожи, взятых с других частей тела. Такие трансплантаты в некоторых случаях не приживляются, поскольку пересаженной ткани не всегда удается образовать контакт с теми частями тела, на которые ее переносят, и она отмирает или отторгается реципиентом.

Инородные объекты.

Давление.

Омозолелости возникают при постоянном механическом повреждении кожи в результате оказываемого на нее давления. Они проявляются в виде хорошо знакомых всем мозолей и утолщений кожи на подошвах ног, ладонях рук и на других участках тела, испытывающих постоянное давление. Удаление этих утолщений путем иссечения не помогает. До тех пор, пока давление будет продолжаться, образование омозолелостей не прекратится, а срезая их мы лишь обнажаем чувствительные нижележащие слои, что может привести к образованию ранок и развитию инфекции.

Методы изучения тканей.

Разработано множество специальных методов изготовления тканевых препаратов для микроскопического исследования. Существует также особый метод, называемый культурой тканей, позволяющий наблюдать и исследовать живые ткани.

Культура ткани.

Изолированные кусочки тканей или органов помещают в питательные растворы в условиях, исключающих возможность заражения микробами. В этой необычной среде ткани продолжают расти, проявляя многие особенности (такие, как потребность в питательных веществах, кислороде, определенном пространстве и т.п.), характерные для них в нормальных условиях, т.е. когда они находятся в живом организме. Культивируемые ткани могут сохранять и многие из своих структурных и функциональных признаков: фрагменты сердечной мышцы продолжают ритмически сокращаться, кожа зародыша продолжает расти и дифференцируется в обычном направлении. Однако иногда культивирование выявляет такие свойства ткани, которые у нее в обычных условиях не выражены и могли бы остаться неизвестными. Так, изучая строение клеток аномальных новообразований (опухолей), не всегда удается установить их принадлежность к той или иной ткани или их эмбриональное происхождение. Однако при выращивании в искусственной питательной среде они приобретают черты, характерные для клеток определенной ткани или органа. Это может оказаться чрезвычайно полезным не только для правильной идентификации опухоли, но и для установления органа, в котором она первоначально возникла. Некоторые клетки, например фибробласты (клетки соединительной ткани), очень легко поддаются культивированию, что делает их ценными экспериментальными объектами, в частности в тех случаях, когда необходим однородный материал для испытания новых лекарственных препаратов.

Выращивание тканевой культуры требует определенных навыков и оборудования, однако это важнейший метод изучения живых тканей. Кроме того, он позволяет получить дополнительные данные о состоянии тканей, изучавшихся обычными гистологическими методами.

Микроскопические исследования и гистологические методы.

Даже самый поверхностный осмотр позволяет отличить одни ткани от других. Мышечную, костную, хрящевую и нервную ткани, а также кровь можно распознать невооруженным глазом. Однако для детального исследования необходимо изучать ткани под микроскопом при большом увеличении, позволяющем увидеть отдельные клетки и характер их распределения. Под микроскопом можно исследовать влажные препараты. Пример такого препарата – мазок крови; для его изготовления наносят каплю крови на предметное стекло и размазывают по нему в виде тонкой пленки. Однако эти методы обычно не позволяют получить полную картину распределения клеток, а также участков, в которых ткани соединяются.

Живые ткани, извлеченные из тела, подвергаются быстрым изменениям; между тем любое самое незначительное изменение ткани ведет к искажению картины на гистологическом препарате. Поэтому очень важно сразу же после извлечения ткани из организма обеспечить ее сохранность. Это достигается с помощью фиксаторов – жидкостей различного химического состава, которые очень быстро убивают клетки, не искажая детали их строения и обеспечивая сохранение ткани в этом – фиксированном – состоянии. Состав каждого из многочисленных фиксаторов был разработан в результате многократного экспериментирования, и тем же способом многократных проб и ошибок было установлено нужное соотношение в них разных компонентов.

После фиксации ткань обычно подвергают обезвоживанию. Поскольку быстрый перенос в спирт высокой концентрации привел бы к сморщиванию и деформации клеток, обезвоживание производят постепенно: ткань проводят через ряд сосудов, содержащих спирт в последовательно возрастающей концентрации, вплоть до 100%. После этого ткань обычно переносят в жидкость, хорошо смешивающуюся с жидким парафином; чаще всего для этого используют ксилол или толуол. После кратковременного выдерживания в ксилоле ткань способна поглощать парафин. Пропитывание ведется в термостате, чтобы парафин оставался жидким. Всю эту т.н. проводку производят вручную или же помещают образец в специальный прибор, который проделывает все операции автоматически. Используется и более быстрая проводка с использованием растворителей (например, тетрагидрофурана), способных смешиваться как с водой, так и с парафином.

После того как кусочек ткани полностью пропитался парафином, его помещают в небольшую бумажную или металлическую форму и добавляют в нее жидкий парафин, заливая им весь образец. Когда парафин затвердеет, получается твердый блок с заключенной в нем тканью. Теперь ткань можно нарезать. Обычно для этого используют специальный прибор – микротом. Образцы тканей, взятые во время операции, можно нарезать, предварительно заморозив, т.е. не проводя обезвоживания и заливки в парафин.

Описанную выше процедуру приходится несколько модифицировать, если ткань, например кость, содержит твердые включения. Минеральные компоненты кости необходимо предварительно удалить; для этого ткань после фиксации обрабатывают слабыми кислотами – этот процесс называют декальцинированием. Наличие в блоке кости, не подвергшейся декальцинированию, деформирует всю ткань и повреждает режущий край ножа микротома. Можно, однако, распилив кость на мелкие кусочки и обтачивая их каким-либо абразивом, получить шлифы – чрезвычайно тонкие срезы кости, пригодные для изучения под микроскопом.

Микротом состоит из нескольких частей; главные из них – нож и держатель. Парафиновый блок прикрепляют к держателю, который перемещается относительно края ножа в горизонтальной плоскости, а сам нож при этом остается неподвижным. После того как получен один срез, держатель при помощи микрометрических винтов продвигают вперед на определенное расстояние, соответствующее желаемой толщине среза. Толщина срезов может достигать 20 мкм (0,02 мм) или составлять всего 1–2 мкм (0,001–0,002 мм); она зависит от размеров клеток в данной ткани и обычно колеблется от 7 до 10 мкм. Срезы парафиновых блоков с заключенной в них тканью помещают на предметное стекло. Далее удаляют парафин, помещая стекла со срезами в ксилол. Если нужно сохранить в срезах жировые компоненты, то для заливки ткани вместо парафина используют карбовакс – синтетический полимер, растворимый в воде.

После всех этих процедур препарат готов для окрашивания – очень важного этапа изготовления гистологических препаратов. В зависимости от типа ткани и характера исследования применяют разные методы окрашивания. Эти методы, как и методы заливки ткани, вырабатывались в ходе многолетнних экспериментов; однако постоянно создаются и новые методы, что связано как с развитием новых направлений исследований, так и с появлением новых химических веществ и красителей. Красители служат важным инструментом гистологического исследования в силу того, что они по-разному поглощаются разными тканями или их отдельными компонентами (клеточными ядрами, цитоплазмой, мембранными структурами). В основе окрашивания лежит химическое сродство между сложными веществами, входящими в состав красителей, и определенными компонентами клеток и тканей. Красители применяют в виде водных или спиртовых растворов, в зависимости от их растворимости и выбранного метода. После окрашивания препараты промывают в воде или спирте, чтобы удалить избыток красителя; после этого окрашенными остаются только те структуры, которые поглощают данный краситель.

Чтобы препарат сохранялся в течение достаточно долгого времени, окрашенный срез накрывают покровным стеклом, смазанным каким-нибудь клейким веществом, которое постепенно затвердевает. Для этого используют канадский бальзам (природная смола) и различные синтетические среды. Приготовленные таким образом препараты можно хранить годами. Для изучения тканей в электронном микроскопе, позволяющем выявить ультраструктуру клеток и их компонентов, применяют другие методы фиксации (обычно с использованием осмиевой кислоты и глутаральдегида) и другие среды для заливки (обычно эпоксидные смолы). Специальный ультрамикротом со стеклянным или алмазным ножом позволяет получать срезы толщиной менее 1 мкм, а постоянные препараты монтируют не на предметных стеклах, а на медных сеточках. Недавно были созданы методы, позволяющие применять ряд обычных гистологических процедур окрашивания после того, как ткань была подвергнута фиксации и заливке для электронной микроскопии.

Для описанного здесь трудоемкого процесса необходим квалифицированный персонал, однако при массовом производстве микроскопических препаратов используют конвейерную технологию, при которой многие этапы обезвоживания, заливки и даже окрашивания производятся автоматическими приборами для проводки тканей. В тех случаях, когда необходимо срочно поставить диагноз, в частности во время хирургической операции, ткани, полученные при биопсии, быстро фиксируют и замораживают. Срезы таких тканей изготавливают за несколько минут, не заливают и сразу окрашивают. Опытный патоморфолог может по общему характеру распределения клеток сразу поставить диагноз. Однако для детального исследования такие срезы непригодны.

Гистохимия.

Некоторые методы окрашивания позволяют выявлять в клетках те или иные химические вещества. Возможно дифференциальное окрашивание жиров, гликогена, нуклеиновых кислот, нуклеопротеинов, определенных ферментов и других химических компонентов клетки. Известны красители, интенсивно окрашивающие ткани с высокой метаболической активностью. Вклад гистохимии в изучение химического состава тканей постоянно возрастает. Подобраны красители, флуорохромы и ферменты, которые можно присоединить к специфическим иммуноглобулинам (антителам) и, наблюдая связывание этого комплекса в клетке, идентифицировать клеточные структуры. Эта область исследований составляет предмет иммуногистохимии. Использование иммунологических маркеров в световой и электронной микроскопии способствует быстрому расширению наших знаний о биологии клетки, а также повышению точности медицинских диагнозов.

«Оптическое окрашивание».

Традиционные гистологические методы окрашивания сопряжены с фиксацией, которая убивает ткани. Методы оптического окрашивания основаны на том, что клетки и ткани, различающиеся по толщине и химическому составу, обладают и разными оптическими свойствами. В результате, используя поляризованный свет, дисперсию, интерференцию или фазовый контраст, удается получать изображения, на которых отдельные детали строения хорошо видны благодаря различиям в яркости и (или) окраске, тогда как в обычном световом микроскопе такие детали малоразличимы. Эти методы позволяют изучать как живые, так и фиксированные ткани и исключают появление артефактов, возможных при использовании обычных гистологических методов.

Прежде чем подвергать нервную ткань гистологическому анализу, необходимо подготовить препарат, т.е. правильно взять материал и зафиксировать. Как правило, исследуется нервная ткань умерших организмов. И самый распространенный способ изучения – это способ с предварительной окраской. Окраска обуславливается свойством некоторых металлов образовывать на телах или отростках нейронов соединения, которые при действии восстановителя дают черный либо другой цвет.

Вещество Ниссля выявляется окраской метиленовым синим . Используют люминесцентную микроскопию с предварительным введением раствора трипафлавина , который создает красное свечение безмякотных волокон и зеленоватую флюоресценцию мякотных.

Для фиксации нервной ткани перед окраской используют 10-20% раствор формалина , большие куски (головной мозг) помещают на 24 часа в 5% формалина нафизиологическом растворе (NaCl), после чего переносят в 10% раствор формалина. После этого вырезаются необходимые кусочки и выдерживаются либо в свежем формалиновом растворе, либо в др. фиксаторах (спирт, суржа, др.).

Некоторые методы предполагают первоначальную фиксацию в смеси формалина с бромистым аммоминием , либо в смеси спирта и аммиака. Используется также хлороформ, двухромовокислый калий, азотная кислота.

В дальнейшем кусочки мозга заливают в парафиновые блоки с помощью которых изготавливают микросрезы толщиной до 120 мкм. Готовые срезы наклеивают на предметное стекло и приступают к окраске. Осаждение солей металлов на клеточных мембранах делает их видимыми. Применяют также метод замороженных срезов, высушивания. Препараты можно окрашивать гематоксилином , эозином , пикрофуксином , хромовой кислотой , тионином , толуидиновым синим , крезиловым фиолетовым , галлоцианином , серебром , свинцом , золотом , молибденом , осмиевой кислот .ой .

5.Современные методы исследования анатомии цнс.

Каждая наука имеет свои методы исследования, свои способы познания объекта изучения, постижения научной истины. Методы, применяемые в анатомии, позволяют изучать как внешнее, так и внутреннее строение человека.

Соматоскопия - осмотр тела - дает сведения о форме тела и его частей, их поверхности, рельефе. Рельеф тела образуют возвышения различной формы и углубления - ямки, отверстия, борозды, щели, складки, кожные линии. Возвышения и углубления зависят отчасти от свойств самой кожи, но преимущественно от анатомических образований, расположенных сразу под кожей или более глубоко.



Соматометрия - измерение тела и его частей - дополняет данные осмотра. Основные размеры тела - общая его длина (рост), окружность грудной клетки, ширина плеч, длина конечностей - используются для суждения о телосложении человека, для оценки его физического развития. Измерение отдельных частей тела используется во многих областях медицины. Например, измерение позвоночного столба применяется для характеристики осанки тела, определение размеров таза необходимо в акушерской практике.

Пальпация - прощупывание тела руками и пальцами - позволяет найти костные опознавательные точки, определить пульсацию артерий, положение и состояние внутренних органов, лимфатических узлов.

Вскрытие трупов и препарирование - старейшие, но не потерявшие своего значения, методы. С этими двумя методами связано в первую очередь развитие анатомии как науки. Вскрытия в научных целях впервые стали производиться в древних рабовладельческих государствах. Великий ученый эпохи Возрождения Андрей Везалий разработал и довел до совершенства метод препарирования. Начиная с Везалия, метод препарирования становится главным в анатомии, с его помощью была получена основная масса сведений о строении человеческого тела.



Мацерация - также один их древнейших методов анатомии. Он представляет собой процесс размачивания мягких тканей с последующим их размягчением и отгниванием и применяется, в частности, для выделения костей.

Метод инъекции - применяется с XVII - XVIII веков. В широком смысле под этим подразумевают заполнение полостей, щелей, просветов, трубчатых структур в человеческом теле окрашенной или бесцветной уплотняющей массой. Это часто делают в целях получения слепка исследуемой полости или сосуда, а также для того, чтобы этот сосуд легче было отделить от окружающих тканей. В настоящее время метод инъекции применяется, главным образом, для изучения кровеносных и лимфатических сосудов. Этот метод сыграл прогрессивную роль в развитии анатомических знаний, в частности, он позволил узнать ход и распределение кровеносных и лимфатических сосудов внутри органов, выяснить протяженность сосудов, особенности их хода.

Метод коррозии - в общих чертах заключается в том, что трудно препарируемые ткани удаляются путем вытравливания их кислотами или при постепенном отгнивании в теплой воде. Предварительно кровеносные сосуды или полость органа наполняют массой, которая не разрушается под действием кислоты. Следовательно, этот метод тесно связан с методом инъекции. Метод коррозии дает более точные данные относительно хода и расположения кровеносных сосудов, чем метод простого препарирования. Недостатком метода является то, что после удаления тканей теряются естественные топографические взаимоотношения между отдельными частями органа.

Метод окрашивания - имеет целью контрастную цветовую дифференцировку различных элементов организма. В качестве красок используются вещества животного (кармин) или растительного (гематоксилин) происхождения, искусственные анилиновые или каменноугольные (метиленовый синий, фуксин) краски или соли металлов.

В XIX веке для изучения топографических отношений в организме был предложен метод распила замороженных трупов (пироговские срезы) . Достоинство этого метода состоит в том, что на определенном участке тела сохраняется существующее в действительности взаиморасположение между различными образованиями. Он позволил уточнить анатомические данные почти обо всех областях человеческого тела и тем самым способствовал развитию хирургии. Пользуясь этим методом, великий русский хирург и топографоанатом Н.И.Пирогов составил атлас распилов тела человека в различных направлениях и заложил основы хирургической анатомии. Полученные на пироговских срезах данные могут быть дополнены сведениями о соотношении тканей, если изготовить срез толщиной несколько микрометров и обработать его гистологическими красителями. Такой метод носит название гистотопографии . По серии гистологических срезов и гистотопограмм можно восстановить изучаемое образование на рисунке или объемно. Такое действие представляет собой графическую или пластическую реконструкцию.

В конце XIX века немецкий анатом В.Шпальтегольц разработал метод просветления анатомических препаратов. Под просветлением тканей понимают такую обработку органов или их частей, при которой изучаемый объект на фоне просветленных тканей становится хорошо видимым. Метод просветления чаще всего используется для изучения нервной и сосудистой систем.

На протяжении XIX века совершенствовались микроскопические методы, и от анатомии отделилась гистология как самостоятельная научная и учебная дисциплина.

В начале XX века харьковский анатом В.П.Воробьев разработал метод макро-микроскопического исследования , сущность которого заключается в тонком препарировании окрашенных объектов (мелких сосудов, нервов) с последующим изучением их под бинокулярной лупой. Данный метод открыл новую, пограничную область исследования анатомических структур. Этот метод имеет ряд разновидностей: препарирование под падающей каплей, под слоем воды. Он может дополняться разрыхлением соединительной ткани кислотами, избирательной окраской изучаемых структур (нервов, желез), инъекцией трубчатых систем (сосудов, протоков) окрашенными массами.

На рубеже прошлого и нынешнего столетия в анатомию вошел рентгеновский метод . Рентгеновские лучи были открыты в 1895 году. И уже в 1896 году их применили для изучения скелета отечественные анатомы П.Ф.Лесгафт и В.Н.Тонков. Преимущество рентгеновского метода перед методами, ранее применявшимися в анатомии, состоит в том, что он позволяет изучать строение живого человека, видеть функционирующие органы, исследовать в динамике их возрастные изменения. Рентгеновская анатомия выделилась в особый раздел анатомии, необходимый для клиники. В настоящее время помимо рентгеноскопии и рентгенографии применяют специальные рентгеновские методы. Стереорентгенография дает объемные изображения частей тела и органов. Рентгенокинематография позволяет изучать движения органов, сокращения сердца, прохождение контрастного вещества по сосудам. Томография - послойная рентгеновская съемка - дает четкое, без посторонних наслоений, изображение анатомических образований, расположенных в снимаемом слое. Компьютерная томография позволяет получать изображения поперечных срезов головы, туловища, конечностей, на которых органы и ткани различаются по их плотности. Электрорентгенография позволяет получить рентгеновское изображение мягких тканей (кожи, подкожной клетчатки, связок, хрящей, соединительнотканного каркаса паренхиматозных органов), которые на обычных рентгенограммах не выявляются, так как почти не задерживают рентгеновские лучи. Рентгеноденситометрия позволяет прижизненно определять количество минеральных солей в костях.

Изучению анатомии на живом человеке служат методы эндоскопии - наблюдения с помощью специальных оптических приборов внутренней поверхности органов: гортани - ларингоскопия, бронхов - бронхоскопия, желудка - гастроскопия и других.

Ультразвуковая эхолокация (эхография), основанная на различиях акустических свойств органов и тканей, позволяет получить изображения некоторых органов, которые трудно поддаются рентгеновскому исследованию, например, печени, селезенки.

Для решения ряда анатомических задач применяются гистологические и гистохимические методы , когда объект исследования может быть обнаружен при увеличениях, позволяющих производить световую микроскопию.

Активно внедряется в анатомию электронная микроскопия , позволяющая видеть структуры столь тонкие, что они не видны в световом микроскопе. Перспективен метод сканирующей электронной микроскопии , дающий как бы объемное изображение объекта исследования как при малых, так и при больших увеличениях.

Современная анатомия, как и медицина в целом, развивается в русле научно-технического прогресса. Это выражается в усилении взаимосвязи анатомии с другими научными дисциплинами, возрастании роли эксперимента в научных исследованиях, в применении новых технических методов. Анатомия использует достижения физики, химии, кибернетики, информатики, математики, механики. Свои достижения анатомия ставит на службу медицине.

6.С анатомией тесно связаны другие морфологические науки:

Цитология;

Гистология - наука о тканях;

Эмбриология, которая изучает процессы образования половых клеток, оплодотворение, зародышевое развитие организмов.

1. Анатомия (греч. «anatemno »– рассекаю) является самой древней из наук о строении человеческого тела. Раздел этой науки – анатомия ЦНС – изучает морфологию нервной системы на органном уровне.

2. Гистология ЦНС (греч. «histos » – ткань) изучает строение нервной системы на тканевом и клеточном уровнях.

3. Цитология (греч. «сytos » – клетка) изучает строение нейронов и клеток глии на клеточном и субклеточном уровнях.

4. Биохимия и молекулярная биология изучают строение нейронов и вспомогательных клеток нервной системы на субклеточном и молекулярном уровнях.

5. Следующая группа дисциплин изучает функции нервной системы с помощью экспериментов и моделирования процессов, происходящих в ней:

6. Физиология ЦНС исследует общие закономерности функционирования нервных клеток, отдельных структур ЦНС и всей нервной системы в целом.

7. Физиология анализаторов (сенсорных систем) изучает работу структур, воспринимающих и перерабатывающих информацию.

Из наук, имеющих прикладное значение, знание анатомии ЦНС необходимо, в первую очередь, в медицине (7). Функции ЦНС и их связь с различными отделами и структурами мозга изучаются клиницистами, наблюдающими за больными людьми * . Особенно большой вклад сделан врачами таких медицинских специальностей, как невропатология и нейрохирургия, отоларингология, психиатрия.

Все вышеперечисленные науки изучают работу ЦНС с помощью объективных методов исследования. В отличие от них, психология (8) и нейропсихология (9) делают упор на субъективные, косвенные методы изучения психики человека и процессов в ЦНС, лежащих в её основе. Однако современная психология, особенно клиническая психология, уже не мыслима без знаний, полученных точными науками, позволяющими не умозрительно предполагать, а точно знать механизмы психических нарушений и возможные пути их компенсации. Это связано с тем, что, несмотря на наличие у человека сложной психики, речи, сознания, интеллекта и социального характера его существования (то, что называется духовной и социальной сущностью человека), он остаётся биологическим субъектом, и биологические законы определяют или, по крайней мере, влияют на все высшие функции человека.

Изучение ЦНС традиционно начинается с анатомии, так как без знания основных элементов нервной системы и их взаимосвязей невозможно изучать функции ЦНС. При изучении связи поведения со структурами и функциями ЦНС учёные опираются на основной постулат современной неврологии (нейробиологии), который гласит, что всё многообразие и уникальность психической деятельности человека, функции здорового и больного мозга могут быть объяснены из особенностей строения и свойств основных анатомических структур мозга

7.Значение анатомии цнс для психологии.

ия человека - наука, изучающая строение человеческого организма и закономерности развития этого строения. Современная анатомия, являясь частью морфологии, не только исследует строение, но и старается объяснить принципы и закономерности формирования определенных структур. Анатомия центральной нервной системы (ЦНС) является частью анатомии человека. Знание анатомии ЦНС необходимо для понимания связи психологических процессов с теми или иными морфологическими структурами как в норме, так и при патологии.

8. Онтогенез - это индивидуальное развитие организма, в ходе которого происходит преобразование его морфофизиологических, физиолого-биохимических и цитогенетических признаков. Онтогенез включает две группы процессов: морфогенез и воспроизведение (репродукцию): в результате морфогенеза формируется репродуктивно зрелая особь. Онтогенез характеризуется устойчивостью - гомеорезом. Гомеорез - это стабилизированный поток событий, который представляет собой процесс реализации генетической программы строения, развития и функционирования организма.

Онтогенез делится на два периода: пренатальный (внутриутробный) и постнатальный (после рождения). Первый продолжается от момента зачатия и формирования зиготы до рождения; второй -- от момента рождения и до смерти. онтогенез развитие организм

Пренатальный период в свою очередь подразделяется на три периода: начальный, зародышевый и плодный. Начальный (предимплантационный) период у человека охватывает первую неделю развития (с момента оплодотворения до имплантации в слизистую оболочку матки). Зародышевый (предплодный, эмбриональный) период -- от начала второй недели до конца восьмой недели (с момента имплантации до завершения закладки органов). Плодный (фетальный) период начинается с девятой недели и длится до рождения. В это время происходит усиленный рост организма.

Постнатальный период онтогенеза подразделяют на одиннадцать периодов: 1-й -- 10-й день -- новорожденные; 10-й день -- 1 год -- грудной возраст; 1--3 года -- раннее детство; 4--7 лет -- первое детство; 8--12 лет -- второе детство; 13--16 лет -- подростковый период; 17--21 год -- юношеский возраст; 22--35 лет -- первый зрелый возраст; 36--60 лет -- второй зрелый возраст; 61--74 года-- пожилой возраст; с 75 лет -- старческий возраст, после 90 лет -- долгожители. Завершается онтогенез естественной смертью.

Пренатальный период онтогенеза начинается с момента слияния мужских и женских половых клеток и образования зиготы. Зигота последовательно делится, образуя шаровидную бластулу. На стадии бластулы идет дальнейшее дробление и образование первичной полости -- бластоцели.

Эмбриогенез головного мозга начинается с развития в передней (ростральной) части мозговой трубки двух первичных мозговых пузырей, возникающих в результате неравномерного роста стенок нервной трубки (архэнцефалон и дейтерэнцефалон). Дейтерэнцефалон, как и задняя часть мозговой трубки (впоследствии спинной мозг), располагается над хордой. Архэнцефалон закладывается впереди нее. Затем в начале четвертой недели у зародыша дейтерэнцефалон делится на средний (mesencephalon) и ромбовидный (rhombencephalon) пузыри. А архэнцефалон превращается на этой (трехпузырной) стадии в передний мозговой пузырь (prosencephalon). В нижней части переднего мозга выпячиваются обонятельные лопасти (из них развиваются обонятельный эпителий носовой полости, обонятельные луковицы и тракты). Из дорсолатеральных стенок переднего мозгового пузыря выступают два глазных пузыря. В дальнейшем из них развиваются сетчатка глаз, зрительные нервы и тракты.

На шестой неделе эмбрионального развития передний и ромбовидный пузыри делятся каждый на два и наступает пятипузырная стадия

Передний пузырь -- конечный мозг -- разделяется продольной щелью на два полушария. Полость также делится, образуя боковые желудочки. Мозговое вещество увеличивается неравномерно, и на поверхности полушарий образуются многочисленные складки -- извилины, отделенные друг от друга более или менее глубокими бороздами и щелями Каждое полушарие разделяется на четыре доли, в соответствие с этим полости боковых желудочков делятся также на 4 части: центральный отдел и три рога желудочка. Из мезенхимы, окружающей мозг зародыша, развиваются оболочки мозга. Серое вещество располагается и на периферии, образуя кору

больших полушарий, и в основании полушарий, образуя подкорковые ядра.

Задняя часть переднего пузыря остается неразделенной и называется теперь промежуточным мозгом. Функционально и морфологически он связан с органом зрения. На стадии, когда границы с конечным мозгом слабо выражены, из базальной части боковых стенок образуются парные выросты -- глазные пузыри, которые соединяются с местом их происхождения при помощи глазных стебельков, впоследствии превращающихся в зрительные нервы. Наибольшей толщины достигают боковые стенки промежуточного мозга, которые преобразуются в зрительные бугры, или таламус. В соответствии с этим полость III желудочка превращается в узкую сагиттальную щель. В вентральной области (гипоталамус) образуется непарное выпячивание -- воронка, из нижнего конца которой происходит задняя мозговая доля гипофиза -- нейрогипофиз.

Третий мозговой пузырь превращается в средний мозг, который развивается наиболее просто и отстает в росте. Стенки его утолщаются равномерно, а полость превращается в узкий канал -- Сильвиев водопровод, соединяющий III и IV желудочки. Из дорсальной стенки развивается четверохолмие, а из вентральной -- ножки среднего мозга.

Ромбовидный мозг делится на задний и добавочный. Из заднего формируется мозжечок-- сначала червь мозжечка, а затем полушария, а также мост. Добавочный мозг превращается в продолговатый мозг. Стенки ромбовидного мозга утолщаются -- как с боков, так и на дне, только крыша остается в виде тончайшей пластинки. Полость превращается в IV желудочек, который сообщается с Сильвиевым водопроводом и с центральным каналом спинного мозга.

В результате неравномерного развития мозговых пузырей мозговая трубка начинает изгибаться (на уровне среднего мозга -- теменной прогиб, в области заднего мозга -- мостовой и в месте перехода добавочного мозга в спинной -- затылочный прогиб). Теменной и затылочный прогибы обращены наружу, а мостовой -- внутрь.

Структуры головного мозга, формирующиеся из первичного мозгового пузыря: средний, задний и добавочный мозг -- составляют ствол головного мозга (trщncus cerebri). Он является ростральным продолжением спинного мозга и имеет с ним общие черты строения. Проходящая по латеральным стенкам спинного мозга и стволового отдела головного мозга парная пограничная борозда (sulcus limitons) делит мозговую трубку на основную (вентральную) и крыловидную (дорзальную) пластинки. Из основной пластинки формируются моторные структуры (передние рога спинного мозга, двигательные ядра черепно-мозговых нервов). Над пограничной бороздой из крыловидной пластинки развиваются сенсорные структуры (задние рога спинного мозга, сенсорные ядра ствола мозга), в пределах самой пограничной борозды -- центры вегетативной нервной системы.

Производные архэнцефалона (telencephalon и diencйphalon) создают подкорковые структуры и кору. Здесь нет основной пластинки (она заканчивается в среднем мозге), следовательно, и нет двигательных и вегетативных ядер. Весь передний мозг развивается из крыловидной пластинки, поэтому в нем имеются лишь сенсорные структуры

Постнатальный онтогенез нервной системы человека начинается с момента рождения ребенка. Головной мозг новорожденного весит 300--400 г. Вскоре после рождения прекращается образование из нейробластов новых нейронов, сами нейроны не делятся. Однако к восьмому месяцу после рождения вес мозга удваивается, а к 4--5 годам утраивается. Масса мозга растет в основном за счет увеличения количества отростков и их миелинизации. Максимального веса мозг мужчин достигает к 20--29 годам, а женщин к 15--19. После 50 лет мозг уплощается, вес его падает и в старости может уменьшиться на 100 г.

9. Нервная трубка - зачаток 0%A6%D0%9D%D0%A1"ЦНС у 0%A5%D0%BE%D1%80%D0%B4%D0%BE%D0%B2%D1%8B%D0%B5"хордовых, образующийся в процессе 0%9D%D0%B5%D0%B9%D1%80%D1%83%D0%BB%D1%8F%D1%86%D0%B8%D1%8F"нейруляции из нервной пластинки.

В поперечном сечении в ней вскоре после образования можно выделить три слоя, изнутри наружу:

Эпендимный - псевдомногослойный слой, содержащий зачаточные клетки.

Мантийная зона, или плащевой слой - содержит мигрирующие, 0%9F%D1%80%D0%BE%D0%BB%D0%B8%D1%84%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D1%8F"пролиферирующие клетки, выселяющиеся из эпендимного слоя.

Наружная краевая зона - слой, где образуются нервные волокна.

В центре нервной трубки находится первичный желудочек.

Развитие нервной трубки происходит по следующему механизму: делящиеся клетки 0%AD%D0%BF%D0%B5%D0%BD%D0%B4%D0%B8%D0%BC%D0%B0"эпендимы выходят в мантийную зону, где развиваются либо по нейробластальному пути - закрепляются и пускают отростки, выходящие в наружную краевую зону, либо по глиобластальному - не прикрепляются и превращаются в глиальные клетки .

    Источники развития нервной ткани

    Морфофункциональная характеристика нейроцитов

    Классификация нейронов

    Классификация, морфофункциональная характеристика глиоцитов

    Классификация, морфофункциональная характеристика нервных волокон

    Понятие о рефлекторной дуге

    Гематоэнцефалический барьер

    Возрастные изменения, регенерация нервной ткани

Источники развития нервных тканей

Нервная ткань является основным тканевым элементом нервной системы, как соматической, так и вегетативной.

Функции:

    Регулирует деятельность всех тканей и органов

    Осуществляет взаимосвязь всех органов и систем в условиях целого организма (интегрирует)

    Обеспечивает связь человека с окружающей средой (адаптирует)

    Обеспечивает гомеостаз

Развитие:

Источником развития нервной ткани является нейроэктодерма. В результате нейруляции из дорсальной эктодермы образуется нервная трубка и ганглиозная пластинка. Эти зачатки состоят из малодифференцированных клеток первого дифферона - медулобластов , которые интенсивно делятся митозом. Медулобласты, в свою очередь, очень рано начинают дифференцироваться и дают начало еще 2 дифферонам: нейробластическому дифферону (нейробласты - молодые нейроциты - зрелые нейроциты (нейроны)); спонгиобластическому дифферону (спонгиобласты – глиобласты - макроглиоциты).

Нейробласты в цитоплазме имеют хорошо выраженную гранулярную ЭПС, пластинчатый комплекс, митохондрии и нейрофибриллы и характеризуются наличием одного отростка (аксона). Они способны к миграции, но утрачивают способность к делению.

Молодые нейроциты интенсивно растут, у них появляются дендриты, в цитоплазме образуется базофильное вещество, формируются первые синапсы.

Стадия зрелых нейроцитов - самая длительная стадия; в ходе нее нейроциты приобретают свои окончательные морфофункциональные особенности, у клеток увеличивается количество синапсов.

Нейроны и макроглиоциты – основные клетки нервной ткани.

Элементы второго дифферона микроглиоциты образуются из клеток крови моноцитарного ряда (клетки Гортега). Функция их - защитная, они являются мозговыми макрофагами, имеют отростки и способны к свободному передвижению. При раздражении они меняют свою форму, становятся шарообразными, отростки увеличиваются, образуются выпячивания мембраны. Такие клетки способны распознавать и разрушать АГ попавшие в нервную ткань, а так же поврежденные и старые нейроны.

Морфофункциональная характеристика нейронов

Структурно-функциональной единицей нервной ткани является нейрон (синонимы: нейроцит, нервная клетка, неврон), окруженный глией.

Каждый нейрон состоит из:

    Тело нейрона

    Отростков

    Окончаний

Размеры тел нейронов широко варьирует от 5 до 150 мкм.

Ядро нейроцита – обычно одно крупное, круглое, содержит сильно деконденсированный (эу-) хроматин; в нем находится несколько или 1 хорошо выраженное ядрышко. Множественные ядра встречаются у нейронов только вегетативной нервной системе (в ганглиях шейки матки и предстательной железы в нейронах могут содержать до 15 ядер).

В цитоплазме имеется хорошо выраженная гранулярная ЭПС, пластинчатый комплекс и митохондрии. Под световым микроскопом цитоплазма базофильна из-за наличия базофильного вещества (синоним: хроматофильная субстанция, тигроид, субстанция Ниссля). В конце 19 века Ф. Ниссль впервые описал в цитоплазме нейронов зерна, выявленные при окраске анилиновыми красителями (толуидиновым синим). Базофильное вещество встречается в перикарионе и дендритах, но отсутствует в аксонах, начиная от аксонального холмика Количество его меняется в зависимости от функционального состояния нейрона (при активной работе клетки – увеличивается). При электронной микроскопии выявлено, что базофильное вещество нейроцитов соответствует гранулярной ЭПС.

В цитоплазме нейроцитов содержится органоид специального назначения нейрофибриллы , состоящие из нейрофиламентов и нейротубул. Нейрофибриллы - это фибриллярные структуры диаметром 6-10 нм из спиралевидно закрученных белков; выявляются при импрегнации серебром в виде волокон, расположенных в теле нейрона беспорядочно, а в отростках - параллельными пучками. Функция их: опорно-механическая (формирование цитоскелета) и участие в транспорте веществ по нервному отростку.

В телах нейронов содержится 2 вида пигмента : меланин и липофусцин (пигмент изнашивания). В 70х гг. 20 века появилась новая теория, по которой липофусцин участвует в энергообмене клеток с высокой импульсной активностью при дефиците кислорода (гипоксии).

Отличительной особенность нейроцитов является обязательное наличие отростков , которые могут достигать до 1,5 метров в длину, их образование является характерной чертой всех зрелых нейронов. Среди отростков различают аксон - аxon (ось) у клетки всегда только 1, обычно длинный отросток; проводит импульс от тела нейроцита к другим клеткам (клеткам мышцы, железы или телам нейронов) и дендрит – dendron (дерево) - у клетки 1 или чаще несколько, обычно сильно разветвляется и проводит импульс к телу нейроцита .

Аксон и дендрит - это отростки клетки, покрытые цитолеммой, внутри содержат нейрофиламенты, нейротрубочки, митохондрии, везикулы. Обнаружено, что в отростках существует течение цитоплазмы от тела нейрона на периферию – антероградный ток . Выделяют медленный антероградный ток со скоростью 1-5 мм/сут. и быстрый транспорт белков, предшественников нейромедиаторов и др. (50-2000 мм/сут). Причем при транспорте веществ по отросткам большую роль играют нейротубулы, белки кинезин и динеин. Антероградный транспорт необходим для обеспечения роста аксонов при развитии и регенерации. В аксонах, кроме того, существует ретроградная быстрая транспортировка веществ (от периферии к телу нейроцита) со скоростью 50-70 мм/сут.. Так транспортируются, например, факторы роста нервов, а также некоторые вирусы.

Благодаря аксональному транспорту осуществляется постоянная связь между телом клетки и отростками.

Нервные отростки заканчиваются концевыми аппаратами – нервными окончаниями . Выделяют три вида нервных окончаний

    Окончания, образующие нейрональные синапсы и осуществляющие связь нейронов между собой (бывают синапсы с химической передачей, с электрической передачей и смешанные).

    Эффекторные нервные окончания (передающие нервный импульс на ткани рабочего органа либо выбрасывающие нейросекрет в кровь) – двигательные и секреторные.

    Рецепторные нервные окончания (чувствительные, воспринимающие внешние или внутренние раздражители) - рецепторы.

Классификация нейронов

    По форме нейроны бывают:

звездчатые, пирамидные, веретеновидные, паукообразные, округлые и др.

      По функции нейроны делятся на:

    афферентные (чувствительные, рецепторные) – генерируют нервный импульс под действием раздражителей и передают его в нервный центр;

    ассоциативные (вставочные) - осуществляют связь между нейронами;

    эффекторные или эфферентные (двигательные или секреторные) – передают нервный импульс на клетки рабочих органов или вырабатывают первичный нейросекрет в кровь.

    По строению (количеству отростков) нейроны бывают:

    униполярные - с одним отростком аксоном (у человека такую форму имеют нейробласты);

    биполярные:

Истинные биполярные (аксон и дендрит отходят от тела нейроцита раздельно) – нейроны сетчатки глаза, спиралевидного ганглия внутреннего уха;

Псевдоуниполярные (от тела нейроцита аксон и дендрит отходят вместе как один отросток и на определенном расстоянии разделяются на два) – нейроны чувствительных спинальных узлов.

    мультиполярные - с 3 и более отростками – большинство нейронов ЦНС.

    По оказываемому эффекту:

    возбуждающие

    тормозные

    смешанные.

    По отношению к системам:

    соматические

    вегетативные

Классификация, морфофункциональная характеристика глиоцитов

В 1846 г. Немецкий патолог Р. Вирхов обнаружил в нервной ткани клетки, которым дал название глия (glia – клей). Он предположил, что эти клетки необходимы, чтобы склеивать нейроны.

Сегодня глиоциты рассматривают как вспомогательные клетки нервной ткани.

Функции (около 17):

  1. Трофическая

    Разграничительная

    Секреторная

    Защитная

Выделяют следующие виды глии: макроглию (глиоциты) и микроглию.

Среди макроглиоцитов различают: эпендимоциты, астроциты, олигодендроциты.

1. Эпендимоциты: По строению напоминают эпителий, участвует в образовании и регуляции состава ликвора. Выделяют 3 типа клеток:

а. Эпендимоциты 1 типа - лежат на базальной мембране мягкой мозговой оболочки и участвуют в образовании гематоэнцефалического барьера, через который проходит ультрафильтрация крови с образованием спинномозговой жидкости субарахноидального пространства.

в. Эпендимоциты 2 типа - выстилают спинномозговой канал и все желудочки мозга. Они кубической формы, в цитоплазме хорошо развиты секреторные органеллы и митохондрии, содержится жировые и пигментные включения. На апикальной поверхности они имеют реснички, которые, двигаясь, создают однонаправленный ток спинномозговой жидкости. Реснички развиты у детей, у взрослых же они редуцируются и сохраняются лишь в Сильвиевом водопроводе. Эти клетки синтезируют в просвет желудочков мозга цереброспинальную жидкость.

с. Танициты– находятся на боковых поверхностях стенки III желудочка мозга и срединного возвышения ножки гипофиза, кубической или призматической формы, апикальная поверхность покрыта микроворсинками, а от базальной отходит длинный отросток, пронизывающий всю толщу головного мозга и заканчивающийся пластинчатым расширением на кровеносных капиллярах. Они транспортируют вещества из спинномозговой жидкости трансцеребрально в кровь.

2. Астроциты: Это мелкие, похожие на звезды клетки с многочисленными отростками, отходящими во все стороны.

Астроциты подразделяются на 2 типа:

а. Протоплазматические: их много в сером веществе ЦНС. Имеют большое ядро, развитую ЭПС, рибосомы и микротрубочки, а также значительное количество ветвящихся отростков. Выполняют трофическую и разграничительную функцию.

в. Волокнистые астроциты: их много в белом веществе ЦНС. Это небольшие клетки, которые имеют 20-40 гладкоструктурированных слабоветвящихся отростков, образующих глиальные волокна. Основная их функция – опорная, разграничительная, трофическая.

Все астроциты одними отростками контактируют с кровеносными капиллярами, образуя периваскулярные глиальные мембраны, а другими с нервными клетками или их отростками.

3. Олигодендроциты : их наибольшее количество. Они окружают тела нейронов как в периферической (мантийные клетки (сателлиты)), так и в центральной нервной системе (центральные глиоциты), а так же нервные волокна (нейролеммоциты или Шванновские клетки). Имеют овальную или угловатую форму и несколько коротких слаборазветвленных отростков. Они бывают светлые, темные и промежуточные. При электронной микроскопии выявлено, что плотность цитоплазмы приближается к плотности у нервных клеток, но они не содержат нейрофиламентов. Они осуществляют трофику нейронов и отростков, синтезируют компоненты оболочек нервных волокон, регулируют регенерацию нервных волокон.

Классификация, морфофункциональная характеристика нервных волокон

Нервное волокно - отросток нервной клетки, окруженный леммоцитами.

Классификация:

    По отношению к системам:

      соматические

      вегетативные

По отношению к нервным узлам:

  1. преганглионарные

    постганглионарные

    По наличию миелина:

    безмиелиновые (безмякотные)

    миелиновые (мякотные)

    По скорости проведения нервного импульса

    волокна типа А (быстропроводящие)

    волокна типа В

    волокна типа С (медленнопроводящие)

Формирование волокон

При формировании безмиелинового нервного волокна осевой цилиндр (аксон) прогибает цитолемму леммоцита и продавливается до центра клетки; при этом осевой цилиндр отделен от цитоплазмы цитолеммой леммоцита и подвешен на дупликатуре этой мембраны (брыжейка или мезаксон). В продольном срезе безмиелинового волокна осевой цилиндр покрыт цепочкой леммоцитов, как бы нанизанных на этот осевой цилиндр. Как правило, в каждую цепочку леммоцитов погружаются одновременно с разных сторон несколько осевых цилиндров и образуется так называемое "безмиелиновое волокно кабельного типа". Безмиелиновые нервные волокна имеются в постганглионарных волокнах рефлекторной дуги вегетативной нервной системы. Нервный импульс по безмиелиновому нервному волокну проводится со скоростью 1-5 м/сек. 2. Начальный этап формирования миелинового волокна аналогичен безмиелиновому волокну. В дальнейшем в миелиновом нервном волокне мезаксон сильно удлиняется и наматывается на осевой цилиндр много крат раз, образуя много слоев. При электронной микроскопии каждый завиток мезаксона виден как чередование светлых и темных полос. Светлый слой шириной 8-12 нм, соответствует слоям липидов двух мембран, посередине и по-поверхности видны темные линии – это молекулы белков. Цитоплазма леммоцита также как и ядро оттесняется на периферию и образует поверхностный слой волокна. В продольном срезе миелиновое нервное волокно также представляет цепочку леммоцитов, "нанизанных" на осевой цилиндр. Границы между соседними леммоцитами в волокне называются перехватами Ранвье. Большинство нервных волокон в нервной системе по строению являются миелиновыми. Нервный импульс в миелиновом нервном волокне проводится со скоростью до 120 м/сек. Места, где слои мезаксона расходятся, называются насечками Шмидта-Лантермана. Последние можно увидеть только у волокон периферического нерва (из-за скорости роста отростков происходит натяжение мезаксона), в ЦНС у нервных волокон насечек нет.

Понятие о рефлекторной дуге

Нервная ткань функционирует по рефлекторному принципу, морфологическим субстратом которого является рефлекторная дуга.

Рефлекторная дуга – это цепь нейронов, связанных друг с другом синапсами, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе. Самая простая рефлекторная дуга состоит из двух нейронов чувствительного и двигательного. Более подробное описание будет представлено в разделе «Морфология спинного мозга».

Гематоэнцефалический барьер

В конце IX – начале XX веков впервые возникло понятие гистогематического барьера, но еще в 1885 году П. Эрлих придал особую значимость изучению обменных процессов между кровью и нервной тканью, выделив на первое место гематоэнцефалический барьер (ГЭБ). Он писал, что этот барьер имеет как научное значение, так и клиническое. Окончательно термин «ГЭБ» был утвержден в 1921 г. после работ Л. Штерн и Р. Готье по изучению проницаемости сосудов головного мозга для различных красителей, когда было продемонстрировано отсутствие красителя трипанового синего, введенного в общий кровоток, в веществе нервной ткани мозга, в то время как практически все другие ткани и органы были окрашены в синий цвет.

В настоящее время выделены 8 особых гистогематических барьеров, с различными уровнями организации барьерных функций, направленными на обеспечение общего и локального гомеостаза конкретного органа. К таким гистогематическим барьерам относятся: гематоэнцефалический, гематоофтальмический, гематотестикулярный, аэрогематический, гематотиреоидальный, гематотимический, плацентарный и гематоренальный. Гематоэнцефалический барьер представляет особую морфологическую систему, обеспечивающую гомеостаз нервной ткани. Функциональные механизмы барьера неоднозначны и включают как усиливающие, так и тормозящие процессы транспорта веществ из крови и мозга во встречных направлениях. Выделяют ГЭБ I и II типов.

Первым, и главным структурным элементом ГЭБ I типа является монослой эндотелия . Клетки эндотелия имеют толщину в безъядерной зоне от 200 до 500 нм, в области ядра до 2-3 мкм. Внутри эндотелиоцитов очень мало органелл и микропиноцитозных пузырьков. В клетках эндотелия капилляров этого типа отсутствуют фенестры.

Второй структурной единицей ГЭБ этого типа является базальная мембрана , которая имеет непрерывный характер и всегда хорошо выражена, ее толщина 40-80 нм.

Следующий составной компонент ГЭБ – это распластанный по поверхности базальной мембраны отросток клетки астроглии . Очень часто этот отросток называют «сосудистая ножка». В совокупности, контактирующие с помощью плотных контактов сосудистые ножки астроцитов, создают единую глиальную мембрану, в виде муфты покрывающую с поверхности капилляр. Представление о ГЭБ было – бы неполным, если не учесть контакта астроцитарного глиоцита с олигодендроглией – все вещества (98%) поступают к нейрону только через эти клетки (это 4 и 5 компоненты).

Капилляры 1 типа ГЭБ с непрерывным эндотелием в норме надежно защищают мозг от временных изменений состава крови.

Однако, вещества растворимые в липидах, а значит и в цитолемме эндотелия, могут проникать через ГЭБ I типа. К ним относятся в первую очередь: этиловый спирт, героин, никотин.

Кроме того, прекрасно транспортируется через ГЭБ глюкоза, более того, введение последней способствует снижению контакта, между клетками эндотелия и усилению проницаемости ГЭБ.

ГЭБ II типа имеется в нескольких областях ЦНС, и в первую очередь в гипоталамусе.

Морфологически в сосудах гипоталамуса эндотелий капилляров имеет фенестрированную цитоплазму, между эндотелиоцитами отсутствует плотный контакт, в стенке исчезают перициты, а базальная мембрана истончается в несколько раз по сравнению с барьером первого типа. Поэтому капилляры гипоталамуса высокопроницаемы для крупномолекулярных белковых соединений, даже для таких как нуклеопротеиды. Именно этим объясняется высокая чувствительность гипоталамуса к нейровирусным инфекциям и различным гуморальным веществам.

Возрастные изменения, регенерация нервных тканей

Возрастные изменения в нервной ткани связаны с утратой нейроцитами в постнатальном периоде способности к делению, и как следствие этого постпенным уменьшением количества нейронов, а также уменьшением уровня метаболических процессов в оставшихся нервных клетках.

Рассматривая процессы регенерации в нервных тканях, следует сказать, что нейроны являются наиболее высокоспециализированными клетками организма и, поэтому, утратили способность к митозу. Физиологическая регенерация (восполнение естественного износа) в нейронах хорошая и протекает по типу "внутриклеточной регенерации " – то есть клетка не делится, но интенсивно обновляет изношенные органоиды и другие внутриклеточные структуры. Хорошей «клеточной регенерацией» обладают только клетки глии.

Репаративной регенерацией сами нервные клетки не обладают, а их отростки, то есть нервные волокна способны регенерировать, при наличии определенных для этого условий. Дистальнее места повреждения осевой цилиндр нервного волокна подвергается деструкции и рассасывается. Свободный конец осевого цилиндра выше места повреждения утолщается - образуется "колба роста", и отросток начинает расти со скоростью 1 мм/день вдоль оставшихся в живых леммоцитов поврежденного нервного волокна, таким образом, эти леммоциты играют роль "проводника" для растущего осевого цилиндра (лента Бюнгнера). При благоприятных условиях растущий осевой цилиндр достигает бывшего рецепторного или эффекторного концевого аппарата и формирует новый концевой аппарат.

Контрольные вопросы

Окрашивание нервной ткани

При морфологических исследованиях нервной ткани на светооптическом уровне применяют большое количество методов окрашивания, многие из которых модифицированы. Чаще всего это избирательные (элективные) методы, используемые для выявления одного или двух элементов. С определенной целью применяют комбинированные методы.

ФИКСАЦИЯ

При изучении нервной ткани из простых фиксаторов наиболее часто используют 10 - 20 % раствор формальдегида и 96 % и 100 % спирт, из фиксирующих смесей - сулему и пиридин. Существуют также специфические фиксаторы, применяющиеся только при исследовании элементов нервной ткани.

Фиксирующая смесь Рамон-и-Кахаля (для выявления глии):

нейтральный формалин 15 мл

бромид аммония 20 г

дистиллированная вода 85 мл

Смесь применяют для серебрения глии по Рамон-и-Кахалю -Хортеге.

Продолжительность фиксации тонких (до 1,5 см) кусочков материала 2 - 15 дней.

Промывание в проточной воде.

Фиксирующая смесь Рамон-и-Кахаля (для выявления нейро-фибрилл):

пиридин 40 мл

96 % спирт 30 мл

Продолжительность фиксации 2 ч.

Промывание в проточной воде в течение 1 ч.

ОБЕЗВОЖИВАНИЕ

Особенностью обработки нервной ткани является ее тщательное обезвоживание. Для обезвоживания кусочков толщиной 5 -б мм используют следующую схему:

50 % спирт 2 ч

70 % спирт 6 ч

80 % спирт 6 ч

96 % спирт 6 ч

100 % спирт I 6 ч

100% спирт II 6 ч

Продолжительность обезвоживания 32 ч

НЕКОТОРЫЕ ОСОБЕННОСТИ ЗАЛИВКИ НЕРВНОЙ ТКАНИ

Нервную ткань для гистологического исследования заливают в парафин, целлоидин и желатин. Методика заливки в парафин и целлоидин никаких особенностей обработки нервной ткани на этой стадии нет.

Заливка в желатин по Снесареву

Метод пригоден для эмбриологических исследований. Преимущество его заключается в том, что он не вызывает сморщивания материала. Рекомендуется для выявления тонкой межклеточной структуры соединительной ткани, а также для некоторых цитологических исследований.

Для заливки берут бесцветный прозрачный пищевой желатин и вначале из него готовят 25 % раствор. Для этого мелко нарезают нужное количество желатина, насыпают в широкогорлую банку и ставят в термостат при 37 °С до растворения. После этого часть приготовленного желатина разводят пополам теплым 1 % раствором фенола (карболовой кислоты) и таким образом получают 12,5 % раствор. Растворы желатина лучше готовить в небольших количествах по мере надобности.

После фиксации тщательно промытый материал переносят в 12,5 % раствор желатина, где держат в зависимости от величины кусочков от 1 - 2 ч до 1 - 2 сут, затем на такое же время переносят в 25 % раствор желатина при 37 °С. После заливки следуют быстрое охлаждение в холодильнике и уплотнение в 5- 10 % формалине. Блоки режут только на замораживающем микротоме.

ОКРАШИВАНИЕ НЕЙРОНОВ

Окрашивание метиленовым синим, которое Ниссль положил в основу изучения эквивалентной картины нервных клеток, основано на перекрашивании фиксированных в спирте срезов основным анилиновым красителем с последующим отмыванием его избытка спиртом. При этом составные части клеток сильнее удерживают краситель, чем масса волокон, которая дифференцируется быстрее. В результате интенсивно окрашенный клеточный материал резко выделяется на бесцветном фоне. В окрашивании клеток участвуют как ядерные структуры, так и вещества, находящиеся в цитоплазме нервных клеток,- тигроидные глыбки; глыбки, или вещество Ниссля.

Под эквивалентной картиной клетки F. Nissl понимал «картину микроскопической структуры имеющихся в ткани нервных клеток животного, убитого определенным образом, которая может быть закономерно воспроизведена при определенной микротехнике обработки нервной ткани, находящейся в определенных экспериментальных условиях».

Со временем метод Ниссля был упрощен. Даже основное требование F. Nissl - фиксация препаратов этиловым спиртом - выполняют частично, поскольку метод часто применяют для обработки материала, фиксированного в формалине. Однако в ответственных случаях следует рекомендовать по возможности проводить окрашивание материала, который был фиксирован по прописи в спирте. Что же касается указаний F. Nissl о резании и окрашивании, то их вполне можно заменить без ущерба для результата обычным спирт-целлоидиновым методом и более контрастным окрашиванием толуидиновым синим или тионином.

Метод Ниссля

Фиксация.

Острыми ножницами вырезают кусочки ткани мозга в форме кубиков и сразу, без соприкосновения с водой, помещают в большое количество 96 % спирта. Кусочки не должны быть ни слишком большими, ни слишком маленькими (длина сторон не менее 1 см). Важно, чтобы кусочек ткани со всех сторон омывался спиртом (положить на вату), который в 1-й день нужно сменить, по крайней мере, 1 раз, в дальнейшем обновлять каждые 2 дня.

Получение срезов.

Через 5 дней блок обычно достигает необходимой консистенции. Его сторону, предназначенную для наклейки, ровно срезают острой бритвой так, чтобы толщина блока не была более 6 - 8 мм, размер плоскости среза может быть любым. На ровную поверхность деревянной колодки, служащую для наклейки, наносят раствор гуммиарабика консистенции меда. Поверхность кусочка мозга промокают фильтровальной бумагой и легким нажимом вдавливают в раствор гуммиарабика так, чтобы он всюду хорошо прилегал к деревянной колодке. Затем блок переносят обратно в 96 % спирт, где гуммиарабик белеет и быстро уплотняется. Через несколько минут блок можно резать.

Блок режут косо поставленным ножом, смоченным спиртом, причем стараются срезы толщиной 10-15 мкм по возможности полностью расправить с помощью смоченной спиртом кисточки. Срезы собирают в чашку с 96 % спиртом. Долго хранить их в спирте нельзя, следует сразу же подготовить к окрашиванию. Блок, наоборот, можно хранить в спирте довольно долго: для этого его нужно снять с деревянной колодки.

Окрашивание срезов.

Срезы окрашивают в часовом стекле с красящим раствором, в состав которого входят 3,75 г метиленового синего В, 1,75 г наскобленного венецианского мыла, 1 л дистиллированной воды. Красящий раствор осторожно подогревают до появления паров. Затем расправленные срезы переносят для дифференцировки в свежеприготовленную смесь из 10 мл совершенно прозрачного анилинового масла и 90 мл 96 % спирта. Дифференцируют до прекращения отхождения крупных облачков краски. Затем срез помещают на предметное стекло, просушивают гладкой фильтровальной бумагой, быстро покрывают кайепутовым маслом, снова просушивают, поливают бензином (не давать подсохнуть!) и покрывают канифолью с ксилолом (насыщенный раствор канифоли в ксилоле). Предметное стекло осторожно подогревают до испарения ксилола, после чего на еще горячий слой канифоли накладывают подогретое покровное стекло. Красящий раствор перед использованием взбалтывают и фильтруют.

Свежеприготовленный красящий раствор должен созревать не менее 3 мес. Этот метод является основной высоко специфической методикой окрашивания нервных клеток для изучения в них выраженных патологических и структурно-функциональных изменений в световом микроскопе. Основу его составляет способность выявлять с помощью основных красителей специфичный для нейронов нуклеопротеидный комплекс (тигроид), содержащийся в цитоплазме и дендритах, а также другие комплексы РНК и основных белков (ядрышко, хроматин ядра).

==========================================================

Окраска по Нисслю

==========================================================

Упрощенный метод Ниссля

Фиксированный в спирте материал заливают в спирт-целлоидин.

Срезы собирают в 70 % спирт, где их можно хранить долгое время.

Методика окраски

1. Расправленные срезы помещают в 0,1 % раствор толуидинового синего или тионина, который после этого дважды нагревают до появления паров.

2. После охлаждения ополаскивают в воде и 70 % спирте.

3. Дифференцируют в 96 % спирте.

4. Проводят через 100 % спирт, ксилол, бальзам или окрашивают, как указано выше; дифференцируют в анилиновом масле со спиртом.

5. Извлекают срезы на предметное стекло, просушивают фильтровальной бумагой.

6. Просветляют кайепутовым маслом, затем масло сливают.

7. Просушивают, проводят через ксилол и заключают в бальзам.

Результат: глыбки тигроида, ядерная оболочка и ядрышки интенсивно синие или фиолетовые, цитоплазма ганглиозных и глиальных клеток бледно-синяя, волокнистое нервное вещество не окрашено.

==========================================================

ОКРАШИВАНИЕ НЕРВНЫХ ВОЛОКОН

Ускоренный метод Гольджи

1. Кусочки ткани, по возможности свежей, помещают в смесь из 40 мл 2,5 % (до 3,5 % по Кахалю) бихромата калия и 10 мл 4 % тетраоксида осмия при 20 - 25 °С в коричневую склянку на стек­лянную вату так, чтобы жидкость проникала со всех сторон. Указанного количества, жидкости достаточно для 5 - 6 кусочков. Ку­сочки не должны быть слишком большими или слишком малень­кими (толщина 2 - 3 мм, площадь поверхности 5 - 10 мм2).

Продолжительность воздействия заранее нельзя указать, так как для каждого объекта она различна, поэтому всегда кладут в смесь большое количество кусочков и вынимают их из раствора в течение 2 - 7 дней с промежутками около 12 ч.

2. Кусочки обсушивают фильтровальной бумагой и погружают в небольшое количество 0,75 % раствора нитрата серебра, который в случае необходимости несколько раз меняют до пре­кращения образования осадка, затем помещают на 1 - 2 дня (на 1-6 дней по Рамон-и-Кахалю) в 100 мл 0,75 % раствора нитра­та серебра при комнатной температуре или 35 °С (не выше), лучше в темноте.

3. Промывают в 40 % спирте (1 -2 ч), сменяя его несколько раз. Переносят в 80 % и 96 % спирты. Затем кусочки зажимают в уплотненную печень или проклеивают гуммиарабиком и режут бритвой или на микротоме, смачивая спиртом (толщина срезов 20-100 мкм). Если кусочки после уплотнения в спирте перенести обратно в воду, то их можно резать и на замораживающем микротоме. Кусочки можно также быстро залить в целлоидин, для чего их обезвоживают в 100 % спирте 12 ч, спирт-эфире 2 -4 ч, 4 % целлоидине 1 - 2 дня, накладывают на деревянный или лучше стабилитовый блок, обливают густым раствором целлоидина и уплотняют на воздухе или в 80 % спирте. Если ткань при резке сильно крошится, то блок после каждого среза смазывают жидким раствором целлоидина.

Кусочки также можно поместить на 1-4ч в 100% спирт, на 1 ч в смесь 100 % спирта и эфира (1:1), а затем на несколько часов в жидкий целлоидин (в сосуд со свободно сидящей пробкой). После этого объект уплотняют в парах хлороформа и режут в 96 % спирте.

Срезы тщательно промывают в 80 % спирте для удаления избытка серебра, обезвоживают в абсолютном спирте, просветляют в креозоте, а затем в скипидаре.

После этого срезы переносят на покровное стекло, осторожно отсасывают масло и наносят каплю густого бальзама, которую распространяют по всему препарату. В таком виде препарат оставляют на несколько дней сохнуть в месте, защищенном от пыли, и, наконец, укрепляют покровное стекло срезом вниз на продырявленном предметном стекле или деревянной дощечке. Таким образом, препарат не следует заключать между предметным и покровным стеклами, так как в этом случае импрегнация разрушается в короткий срок.

Результат: при удавшейся импрегнации на светлом фоне выделяются отдельные темно-черные ганглиозные клетки вместе с отростками.

Наиболее легко удается импрегнация ганглиозных клеток на материале, взятом от молодых животных (поздние эмбрионы, 1 -10-дневные животные). Особенно благоприятными объекта­ми являются головной и спинной мозг птенцов голубя.

Выраженное влияние на результаты оказывает продолжительность хромирования. Точные рекомендации, к сожалению, дать невозможно, так как для каждого объекта она различна и зависит от состояния препарата, температуры, концентрации, количества жидкости и др. Сроки устанавливают чисто эмпирически: для ганглиозных клеток ЦНС обычно 3 - 5 дней, для глии 2 - 3 дня, для нервных волокон 5-7 дней. При слишком кратковременном хромировании появляется лишь диффузный осадок хромата серебра, при слишком длительном находят только резко отграниченные кристаллы, импрегнация же отсутствует.

Кусочки ткани обычно окружены толстым слоем осадка серебра, который может затруднять наблюдение, особенно в случае тонких препаратов мембран, так как покрывает большую часть препарата. В связи с этим перед помещением кусочков в раствор нитрата серебра целесообразно несколько раз быстро погрузить их в 10 % раствор желатина, т.е. окружить желатиновой оболочкой. После серебрения от желатина освобождаются путем быстрого погружения кусочков в теплую воду, насыщенную хроматом серебра.

Объекты, находившиеся слишком долго в растворах, содержащих хром, еще могут быть пригодны для импрегнации по Гольджи, если их обрабатывать в течение 1 - 14 дней в часто сменяемой смеси равных частей 2 - 3 % раствора бихромата калия и 4 -5 % раствора сульфата меди; из этой смеси объект переносят в ванну с нитратом серебра.

Надежность метода Гольджи повышается при 2- или 3-кратном импрегнировании по Кахалю. Благодаря этому часто можно «спасти» импрегнацию, оказавшуюся в первый раз неудачной.

При повторном импрегнировании поступают так, как при использовании метода Гольджи (быстрого). Обсушивают кусочек на фильтровальной бумаге и помещают в ранее использовавшуюся смесь бихромата калия и тетраоксида осмия, а затем на 1 сут в раствор нитрата серебра, применявшийся ранее. Ополаскивают дистиллированной водой, обсушивают фильтровальной бумагой. Погружают на 1 - 2 мин в 96 % спирт, обсушивают фильтровальной бумагой. Делают блок с помощью гуммиарабика или парафина и режут, смачивая 96 % спиртом. Толщина срезов 80-100 мкм; срезы промывают в 96 % спирте, сменяемом 5 - 6 раз, в общей сложности не дольше 30 мин. Переносят на предметное стекло, прижимают фильтровальной бумагой и заключают (по методу Гольджи). Приведенные выше процедуры можно повторить и в 3-й раз.

==========================================================

Медленный метод Гольджи

Маленькие кусочки органов помещают в жидкость Мюллера или 3 % раствор бихромата калия, концентрацию которого постепенно повышают до 5 % (в сосуде из коричневого стекла). Через 4 - 6 недель проводят первую пробу; для этого один кусочек обсушивают фильтровальной бумагой, ополаскивают в 0,75 % растворе нитрата серебра, а затем кладут в такой же раствор на 24 ч. Если на сделанных бритвой срезах с материала не обнаруживают никакой импрегнации, то пробу повторяют через 8 дней. После того как наступит импрегнация, материал обрабатывают по методу Гольджи, начиная с пункта 3.

Специальные методики импрегнации нервных клеток с отростками и контактным аппаратом

Метод Гольджи-Дейнеки

(для выявления синапсов)

1. Материал фиксируют в свежем растворе АФА (состоит из равных частей 96 % спирта, 20 % нейтрального формалина и насыщенного раствора мышьяковистой кислоты) до 3 ч.

2. Промывают в 1 % растворе нитрата серебра и оставляют в этом растворе на срок от 18 дней до 2,5 мес.

3. Промывают в дистиллированной воде 3 - 4 мин.

4. Переносят в восстановительную смесь, в состав которой входят 2 г гидрохинона, 0,5 г сульфита натрия, 5 мл 40 % нейтрального формалина и 100 мл дистиллированной воды, на 1 сут.

5. Промывают в дистиллированной воде.

6. Проводят через 70 %, 80 %, 96 % спирты по 3 ч в каждом и оставляют в 100 % спирте на ночь.

7. Переносят в 6 % целлоидин на 2 - 3 сут, затем в 8 % целлоидин на 2 сут (лучше только в 6 % целлоидин на 2 - 3 сут).

8. После заливки на блоках готовят срезы толщиной от 15 до 30 мкм и переносят их в 70 % спирт.

9. Промывают срезы в дистиллированной воде и погружают до почернения в вираж (1,5 г тиосульфата натрия, 1,5 г тиоцианата аммония, 50 мл дистиллированной воды, на каждые 10 мл виража 1 мл 1 % трихлорида золота).

10. Промывают 10 - 30 мин водопроводной, затем дистиллированной водой.

11. Дифференцируют до просветления в растворе перманганата калия (2 - 3 кристалла на 50 мл дистиллированной воды + 1 капля серной кислоты).

12. Не промывая срезы, погружают их в 1 % раствор щавеле­вой кислоты на 1 - 3 мин (щавелевая кислота отмывает перманганат калия).

13. Промывают дистиллированной водой и переносят в спирты восходящей концентрации (50 %, 70 %, 96 %, 100 %) по 2 -3 мин.

14. Проводят через карбол-ксилол 1-2 мин, 2 - 3 порции ксилола и заключают.

Результат: фон препаратов светлый, тела нейронов и дендриты светло-серого цвета. Аксонные синаптические окончания импрегнируются интенсивно, дендриты - более интенсивно.

==========================================================

Методы Бильшовского

Предварительной обработкой материала для выявления нейрофибрилл, по Бильшовскому, служит фиксация нейтральным формалином. Оптимальная ее продолжительность - 3 - 6 нед после помещения в формалин, однако материал, лежавший в формалине несколько лет, также дает удовлетворительные результаты, особенно после обработки пиридином. Проводят окраску срезов (импрегнация срезов) или кусочков (тотальная импрегнация). Для получения хороших результатов необходимы точное соблюдение прописей (инструменты только стеклянные!) и применение чистых реактивов.

Импрегнация срезов

Материал фиксируют в растворе формалина (1:9) не менее 14 дней (максимальная толщина кусочков 1 см); промывают в проточной воде 2 -3 ч, затем в дистиллированной воде 1-2 дня; нарезают на замораживающем микротоме срезы толщиной.5 - 10 мкм и собирают в дистиллированную воду. Хорошие срезы вылавливают и промывают 1 - 2 раза в дистиллированной воде, которую меняют 3 - 4 раза.

Импрегнация:

1) срезы помещают в 2 % раствор нитрата серебра на 24 ч;

2) быстро (2 - 3 с) проводят через дистиллированную воду, сменяя стеклянные палочки;

3) помещают в свежеприготовленный раствор аммиачного се­ребра: к 10 мл 10 % раствора нитрата серебра добавляют 5 капель 40 % раствора гидроксида натрия - образуется коричнево-черный осадок окиси серебра. После этого при постоянном взбалтывании к раствору серебра по каплям добавляют раствор аммиака (молекулярная масса 0,875 - 0,910) до тех пор, пока от растворяющегося осадка останется лишь несколько крупинок. После каждой капли выжидают 10 - 20 с, прежде чем добавить следующую каплю. Необходимо избегать избытка аммиака. Раствор разводят до 20 мл дистиллированной водой. В раствор аммиачного серебра срезы помещают на 10 - 20 мин, в нем они должны приобрести желтоватый оттенок;

4) быстро проводят через 2 - 3 порции дистиллированной воды;

5) восстанавливают в растворе формалина (1:4), не содержащем кислоты в течение 10 мин, - срезы быстро окрашиваются в темно-серый цвет;

6) промывают в воде 15 мин;

7) золотят в разбавленном растворе трихлорида золота (3 - 5 капель 1 % раствора желтого трихлорида золота на 10 мл дистиллированной воды) до тех пор, пока коричневый тон не перейдет в серый или серо-фиолетовый;

8) фиксируют 1-2 мин в 5 % растворе тиосульфата натрия;

9) тщательно промывают в обычной воде (1-2 ч); проводят через спирты, карбол-ксилол, ксилол (не дольше, чем нужно) и заключают в бальзам.

На хорошо импрегнированных препаратах нейрофибриллы и перицеллюлярные сетчатые структуры ганглиозных клеток черного цвета выделяются на светлом фоне, так же отчетливо видны тончайшие осевые цилиндры.

К восстанавливающему 4 % раствору формалина можно добавить 1 % цитрат натрия в соотношении 1:9. В этом случае картина, получающаяся в результате серебрения, очень равномерная и более контрастная.

==========================================================

Метод серебрения с предварительной обработкой пиридином

В тех случаях, когда материал предназначается главным образом для выявления осевых цилиндров, а не внутриклеточных нейрофибрилл, М. Бильшовский рекомендует предварительно обработать его пиридином (благодаря этому сильно подавляется подкраска глии и соединительной ткани). Фиксацию и предварительную подготовку материала проводят по методу Бильшовского. Замороженные срезы промывают в дистиллированной воде 1 - 2 ч и переносят в неразведенный пиридин на 24- 48 ч. Затем срезы тщательно освобождают от пиридина, промывая их в часто сменяемой дистиллированной воде до тех пор, пока не исчезнет специфический запах пиридина. После этого переносят в 2 % раствор нитрата серебра на 24 ч и далее обрабатывают по методу Бильшовского.

Тотальная импрегнация

Импрегнацию целого кусочка проводят с предварительной обработкой пиридином или без нее. В последнем случае кусочки ткани размером не более 1 см3 фиксируют в формалине и без промывания переносят в 2 % раствор нитрата серебра на 1 - 8 дней (в зависимости от величины). Затем перекладывают на 0,5 - 6 ч в раствор аммиачного серебра, быстро проводят через дистиллированную воду и помещают в 20 % раствор формалина на 12 -24 ч. После этого материал как можно быстрее заливают в парафин.

Более надежной является тотальная импрегнация с пиридином по Билшовскому.

1. Органы, фиксированные не менее 1 нед в нейтральном формалине (от 1:4 до 1:9), разрезают на кусочки толщиной не более 0,5 см и на 3 - 4 дня помещают в чистый неразведенный пиридин при комнатной температуре.

2. Промывают 12 - 24 ч в проточной воде и столько же в часто сменяемой дистиллированной воде.

3. Пропитывают в 3 % растворе нитрата серебра при 36 °С 3 - 5 дней.

4. Быстро ополаскивают в дистиллированной воде.

5. Помещают на 24 ч в раствор аммиачного серебра (готовят так же, как для импрегнации срезов, но доливают дистиллированной водой до 100 мл).

6. Промывают в часто сменяемой воде (по Билшовскому до 1 ч в зависимости от толщины блока, по Буке, 2 ч).

7. Восстанавливают в нейтральном формалине (1:9) 10 - 12 ч.

8. Ополаскивают в дистиллированной воде, быстро проводят через спирты, заливают в парафин; золочение и фиксацию проводят на срезах.

При тотальной импрегнации с применением пиридина можно использовать материал, находившийся в формалине в течение нескольких лет. При этом методе глия и соединительная ткань обычно отступают на задний план или выделяются благодаря иному тону окраски. Фибриллярные структуры ганглиозных клеток выявляются менее четко, чем при использовании оригинального метода, моторные и чувствительные концевые образования нервов, наоборот, видны отчетливо.

Нередко импрегнация протекает хорошо не во всем кусочке, а лишь в его определенных зонах. Более благоприятные результаты наблюдаются в эмбриональных тканях, которые легче пропитываются.

М. Бильшовский рекомендует использовать для восстановления серебра не формалин, а смесь, состоящую из 75 мл 30 % раствора фруктозы, 75 мл 10 % раствора сегнетовой соли, 20 мл 10 % раствора карбоната калия и 5 мл чистого формалина. Импрегнированные блоки помещают в эту смесь на 24 ч при 50 °С. Затем следуют промывание в дистиллированной воде, обезвоживание и заливка.

Смесь может быть применена и для восстановления импрегнированных срезов. В этом случае срезы после пропитывания в растворе аммиачного серебра быстро ополаскивают и переносят на 1 - 2 мин в указанный раствор, подогретый до 50 °С. Затем следуют промывание, золочение и т.п.

С помощью восстанавливающей смеси по Бильшовскому особенно хорошо выявляются перицеллюлярные концевые образования в ЦНС.

==========================================================

Метод Адэра и Витгилию

(для выявления нейрофибрилл и синапсов)

Головной мозг кошки фиксируют в дважды сменяемом ацетоне по 24 ч в каждом. Заливают в парафин в течение 18 - 24 ч. Срезы толщиной 15-20 мкм депарафинируют, промывают в 100 % спирте и опускают на 6 ч в 1 % раствор аммиака на абсолютном спирте. Затем погружают на 6 ч в пиридин. Промывают в дистиллированной воде и переносят в 2 % раствор нитрата серебра на 12 ч при температуре 30 °С, затем промывают в 100 % спирте. Восстанавливают серебро в растворе пирогалловой кислоты с формалином (95 мл 95 % спирта, 3 г пирогалловой кислоты и 8 мл формалина).

Для усиления окраски срезы обрабатывают 3 - 4 мин в 1 % растворе щавелевой кислоты. Снова промывают в 6-8 порциях дистиллированной воды и погружают на 5-10 мин в 10 % раствор тиосульфата натрия. Далее промывают, обезвоживают в спиртах, просветляют в ксилолах и заключают в бальзам.

Результат: хорошо выражены нейрофибриллы черного цвета, видны конечные колечки и колбочки.

==========================================================

Методы Рамон-и-Кахаля

Методы импрегнации нейрофибрилл, предложенные S. Ramon y Cajal, применяют преимущественно в форме тотальной импрегнации. Принцип методов основан на том, что свежевзятые кусочки ткани сразу или после фиксации спиртом пропитывают раствором нитрата серебра, а образовавшиеся при этом соединения серебра восстанавливают при последующей обработке пирогалловой кислотой или гидрохиноном.

Недостаток методов состоит в том, что в импрегнированном кусочке пригодной для исследования обычно оказывается лишь средняя зона, так как раствор серебра не проникает в глубокие слои. Наружная зона не может быть исследована вследствие сильного зачернения. Кроме того, часто происходит значительное сжатие ткани, в связи с чем общая сохранность препарата во многих случаях оказывается не очень хорошей. В новых модификациях метода импрегнации на срезах эти недостатки устраняются.

В растворах серебра препараты должны находиться все время в отсутствие света (коричневые склянки с пришлифованными пробками, обертки из картона и т.п.). Кусочки ткани не должны быть толще 3 мм.

Метод I.

Пригоден для исследования головного мозга мелких животных, а также эмбрионов и новорожденных крупных животных, позволяет выявить пирамидные клетки большого мозга и клетки-зерна мозжечка.

1. Свежевзятые кусочки ткани помещают на 3 - 5 дней в 0,75 - 3 % раствор нитрата серебра при 35 °С до появления табачно-коричневой окраски кусочков.

2. Ополаскивают дистиллированной водой 1 мин.

3. Восстанавливают 24 ч в смеси, состоящей из 1 - 2 г пирогалловой кислоты или гидрохинона, 5 мл нейтрального формалина и 100 мл дистиллированной воды.

4. Ополаскивают в дистиллированной воде 5 мин.

5. Заливают в целлоидин или парафин.

Обезвоживать следует по возможности быстро, около 5-6 ч.

Для обработки материала, взятого у новорожденных и эмбрионов, берут 0,75 % раствор нитрата серебра, у взрослых млекопитающих-3 %, у беспозвоночных-6 % раствор. На 2-3 кусочка расходуют 80-100 мл раствора.

Метод II.

Пригоден для выявления мякотных и безмякотных нервных волокон, перицеллюлярных разветвлений, больших и средних нервных клеток, особенно головного мозга, мозжечка, спинного мозга и, кроме того, двигательных и чувствительных нервных окончаний и регенерационных стадий.

1. Материал фиксируют в 96 % или 100 % спирте 24 ч.

2. Разрезают на кусочки толщиной 2,5-3 мм, импрегнируют 5-7 дней в 1-1,5 % растворе нитрата серебра при 30-35 °С.

3. Ополаскивают дистиллированной водой 1 мин.

4. Восстанавливают 24 ч в смеси, состоящей из 1-2 г пирогалловой кислоты или гидрохинона, 5 мл нейтрального формалина и 100 мл дистиллированной воды.

5. Ополаскивают дистиллированной водой 5 мин.

6. Заливают в парафин или целлоидин; обезвоживать следует по возможности быстрее (примерно 5-6 ч).

В том случае, если импрегнация слишком светлая, срезы 5 - 10 мин обрабатывают в смеси, состоящей из 3 г тиоцианата аммония. 3 г тиосульфата натрия, 100 мл дистиллированной воды и нескольких капель 1 % раствора трихлорида золота. Если к спирту, используемому для фиксации, добавить веронал, хлоралгидрат и т.п. (на 50 мл 1 г), то для импрегнации в растворе нитрата серебра потребуется только 5 дней. Это делает метод более надежным, и он может быть применен на материале, долгое время лежавшем в спирте.

Метод III.

Особенно показан для выявления нейрофибрилл спинного мозга, чувствительных симпатических ганглиев человека, кошки, собаки, кролика.

Материал фиксируют 24 ч в смеси 50 мл 96 % или 100 % спирта и 1-12 капель (для большого мозга 1-3 капли, моз­жечка-4, спинного и продолговатого мозга-8-12, периферических окончаний - 2 -3) раствора аммиака (молекулярная масса 0,910). Если аммиака добавлено слишком много, то импрегнация получается бледная. Сжатие можно уменьшить, если объект вначале поместить на 6 ч в 70 % спирт, затем на 2-4 ч в 85 % спирт и лишь после этого перенести в аммиачный спирт. После обсушивания фильтровальной бумагой обработку проводят так же, как при использовании метода II.

Метод IV.

Пригоден для выявления безмякотных волокон ЦНС, перицеллюлярных разветвлений, моховидных волокон мозжечка.

Материал фиксируют в смеси 15 мл формалина и 85 мл воды; промывают в проточной воде 6 - 12 ч; помещают на 24 ч в 50 мл 96 % спирта, к которому добавлено 5 капель раствора аммиака; обсушивают фильтровальной бумагой; далее обработку проводят так же, как при использовании метода II.

Метод V.

Хорошие результаты получают на эмбрионах, а у взрослых прежде всего при изучении нейрофибрилл, нервных окончаний и процесса регенерации нервов (за исключением первых стадий).

Материал фиксируют 24 ч в 70 % пиридине или смеси, состоящей из 40 частей пиридина и 30 частей 95 % спирта; промывают в проточной воде до исчезновения запаха 12-24 ч; переносят на 6-12 ч в 95 % спирт; далее обработку ведут так же, как при использовании метода II.

Метод VI.

Пригоден для изучения двигательных концевых пластинок, перицеллюлярных разветвлений, мозжечка.

Материал фиксируют 24 ч в смеси, состоящей из 5 г хлоралгидрата, 25 мл 100 % спирта и 75 мл дистиллированной воды; ополаскивают в дистиллированной воде 1 мин; помещают на 24 ч в 50 мл 100 % спирта, в который добавлено 4 капли раствора аммиака; промывают 12 - 24 ч в проточной воде и 2 - 5 ч в часто сменяемой дистиллированной воде; далее обработку ведут так же, как при использовании метода II.

Метод Рамона-Лермитта

(выявление дегенерированных синапсов)

Материал фиксируют в 10 % нейтральном формалине в течение 1-2 нед или дольше. Затем его переносят на 1 ч в 40 % формалин, 2 ч промывают в проточной воде и 2 ч -в дистиллированной. Срезы толщиной 15 - 20 мкм получают на замораживающем микротоме. Из дистиллированной воды их переносят в 20 % раствор нитрата серебра при температуре 50 - 53 °С (продолжительность пребывания в этом растворе срезов спинного мозга - 50 мин, продолговатого мозга и коры головного мозга - 60 мин, мозжечка и таламуса - 80 мин). После импрегнации срезы должны быть табачного цвета.

1. Срезы ополаскивают в дистиллированной воде, на 5-10 мин переносят в раствор аммиачного серебра (в 20 % раствор нитрата серебра добавлять по каплям 25 % раствор аммиака до растворения осадка в мерном стаканчике, а затем добавляют столько же раствора аммиака).

2. Промывают в дистиллированной воде.

3. Восстанавливают в формалине (1 часть формалина, 2 части водопроводной воды и 2 части дистиллированной воды) 15 мин, срезы должны стать коричнево-черными.

4. Переносят в 0,5 % раствор трихлорида, золота и держат до тех пор, пока срезы не станут серыми.

5. Закрепляют в 3 % растворе тиосульфата натрия 5 мин.

6. Промывают в дистиллированной воде (2 - 3 смены)

7. Обезвоживают в 40 % и 96 % спирте по 10 мин.

8. Просветляют в 10 % карбол-ксилоле и 2 смесях ксилола по 10 мин, заключают в бальзам.

==========================================================

Методика Бильшовского

(выявление внутриклеточных нейрофибрилл,

МЕТОДЫ ОКРАШИВАНИЯ ГЛИИ

Методика Снесарева

(выявление волокнистой, астроцитарной глии и глиальных волокон)

Методика высокоизбирательна, позволяет выявить астроциты белого вещества ЦНС, глиальные волокна, а в нервных клетках - феномен центральной тинкториальной ацидофилии (ЦТА) и одновременно бета-зернистость [Снесарев П.Е., 1950]. Преимущество методики Снесарева перед методикой Рамон-и-Кахаля заключается в получении дифференцированной окраски органелл астроцитов (цитоплазма, ядро, отростки). Дополнительно выявляют эритроциты в сосудах и дренажную снесаревскую олигодендроглию.

Материал фиксируют в 10 % формалине.

Срезы толщиной 8- 10 мкм получают на замораживающем микротоме.

1. Ополаскивают срезы в 2 сменах дистиллированной воды и помещают в профильтрованный 1 % водный раствор эритрозина (1 г эритрозина на 100 мл дистиллированной воды) на 20 - 30 с (в зависимости от восприимчивости красителя).

2. Срезы тщательно промывают в 2 и более сменах дистиллированной воды до прекращения отхождения краски.

3. Переносят в 0,5 % раствор фосфорно-молибденовой кислоты на 35 -40 с.

4. Быстро промывают в дистиллированной воде, переносят на предметное стекло, смазанное смесью белка и глицерина, тщательно протирают мягкой тканью стекло вокруг среза, промокают сложенной в 4 раза фильтровальной бумагой, а затем смоченной метилхлороформом (1 часть метилового спирта + 2 части хлороформа).

5. Стекла со срезами помещают в раствор Мая-Грюнвальда на 3 - 5 с.

6. Промывают в водопроводной воде в течение 3 - 5 с до удаления излишка красителя, протирают стекло тканью и промокают фильтровальной бумагой.

7. Обезвоживают в ацетоне, просветляют в ксилоле и заключают в бальзам под покровное стекло.

Для приготовления 0,5 % раствора фосфорно-молибденовой кислоты на 200 мл дистиллированной воды берут 1 г фосфорно-молибденовой кислоты, взбалтывают. В полученном растворе имеется осадок. Раствор помещают на 2 - 3 ч в термостат при 37 - 40 °С, пока осадок не растворится (раствор должен быть абсолютно прозрачным).

Результат: на нежно-голубовато-синеватом фоне определяются такого же оттенка астроциты (ядро, цитоплазма, отростки). Вследствие патологических изменений астроцитарная клетка может настолько измениться, что патоморфоз в виде амебоидного астроцита бывает не всегда ясен. Ядра дренажной олигодендроглии в белом веществе также имеют светло-синеватую окраску, иногда с розоватым оттенком (метахромазия). Феномен центральной тинкториальной ацидофилии принадлежит к гистохимическим реакциям, при этом центральная часть клетки - ядро и прилежащая цитоплазма,- становится розовой: от ярко­го цвета до едва заметного розоватого оттенка. Эритроциты в сосудах розового цвета.

Следует иметь в виду, что фосфорно-молибденовая кислота и метилхлороформ могут пережечь ткань (появляется дырчатость), излишек эритрозина обусловливает появление розовых пятен, при излишке раствора Мая - Грюнвальда и чрезмерной толщине срезов (более 8-10 мкм) срез становится грубым и тонкая структура астроцитов плохо дифференцируется.

==========================================================

Методика Рамон-и-Кахаля

(выявление волокнистой и астроцитарной глии)

Материал фиксируют в 10 % формалине. Срезы толщиной 8 - 10 мкм получают на замораживающем микротоме, хранят в свежем 10 % кислом формалине.

1. Срезы промывают в 3 сменах дистиллированной воды и переносят на 2 сут в свежий бромистый фиксатор (14 мл нейтрального формалина, 2 г бромида аммония и 100 мл дистиллированной воды).

2. Тщательно промывают в 3 сменах дистиллированной воды и переносят в раствор трихлорида золота с сулемой (8 мл 5 % прозрачного раствора сулемы, 10 мл 1 % раствора трихлорида золота и 60 мл дистиллированной воды) на 1 сут в темное место.

3. Промывают в 3 сменах дистиллированной воды и помещают в 5 % раствор тиосульфата натрия на 1 мин.