Нормальное распределение случайной величины x имеет функцию. Нормальный (гауссовский) закон распределения

Случайные величины связаны со случайными событиями. О случайных событиях говорят тогда, когда оказывается невозможным однозначно предсказать результат, который может быть получен в тех или иных условиях.

Предположим, мы бросаем обыкновенную монету. Обычно результат этой процедуры не является однозначно определенным. Можно лишь с уверенностью утверждать, что произойдет одно из двух: либо выпадет "орел", либо "решка". Любое из этих событий будет случайным. Можно ввести переменную, которая будет описывать исход этого случайного события. Очевидно, что эта переменная будет принимать два дискретных значения: "орел" и "решка". Поскольку мы заранее точно не можем предугадать, какое из двух возможных значений примет эта переменная, можно утверждать, что в этом случае мы имеем дело со случайными величинами.

Предположим теперь, что в эксперименте мы проводим оценку времени реакции испытуемого при предъявлении какого-либо стимула. Как правило, оказывается, что даже тогда, когда экспериментатор предпримет все меры к тому, чтобы стандартизировать экспериментальные условия, минимизировав или даже сведя к нулю возможные вариации в предъявлении стимула, измеренные величины времени реакции испытуемого все равно будут различаться. В таком случае говорят, что время реакции испытуемого описывается случайной величиной. Поскольку в принципе в эксперименте мы можем получить любое значение времени реакции – множество возможных значений времени реакции, которые можно получить в результате измерений, оказывается бесконечным, – говорят о непрерывности этой случайной величины.

Возникает вопрос: существуют ли какие-либо закономерности в поведении случайных величин? Ответ на этот вопрос оказывается утвердительным.

Так, если провести бесконечно большое число подбрасываний одной и той же монеты, можно обнаружить, что число выпадений каждой из двух сторон монеты окажется примерно одинаковым, если, конечно, монета не фальшивая и не гнутая. Чтобы подчеркнуть эту закономерность, вводят понятие вероятности случайного события. Ясно, что в случае с подбрасыванием монеты одно из двух возможных событий произойдет непременно. Это обусловлено тем, что суммарная вероятность этих двух событий, иначе называемая полной вероятностью, равна 100%. Если предположить, что оба из двух событий, связанных с испытанием монеты, происходят с равными долями вероятности, то вероятность каждого исхода в отдельности, очевидно, оказывается равной 50%. Таким образом, теоретические размышления позволяют нам описать поведение данной случайной величины. Такое описание в математической статистике обозначается термином "распределение случайной величины" .

Сложнее обстоит дело со случайной величиной, которая не имеет четко определенного набора значений, т.е. оказывается непрерывной. Но и в этом случае можно отметить некоторые важные закономерности ее поведения. Так, проводя эксперимент с измерением времени реакции испытуемого, можно отметить, что различные интервалы длительности реакции испытуемого оцениваются с разной степенью вероятности. Скорее всего, редко, когда испытуемый будет реагировать слишком быстро. Например, в задачах семантического решения испытуемым практически не удается более или менее точно реагировать со скоростью менее 500 мс (1/2 с). Аналогично маловероятно, что испытуемый, добросовестно следующий инструкциям экспериментатора, будет сильно затягивать свой ответ. В задачах семантического решения, например, реакции, оцениваемые более чем 5 с, обычно рассматриваются как недостоверные. Тем не менее со 100%-ной уверенностью можно предполагать, что время реакции испытуемого окажется в диапазоне от О до +со. Но эта вероятность складывается из вероятностей каждого отдельного значения случайной величины. Поэтому распределение непрерывной случайной величины можно описать в виде непрерывной функции у = f (х ).

Если мы имеем дело с дискретной случайной величиной, когда все возможные ее значения заранее известны, как в примере с монетой, построить модель ее распределения, как правило, оказывается не очень сложным. Достаточно ввести лишь некоторые разумные допущения, как мы это сделали в рассматриваемом примере. Сложнее обстоит дело с распределением непрерывных величии, принимающих заранее неизвестное число значений. Конечно, если бы мы, например, разработали теоретическую модель, описывающую поведение испытуемого в эксперименте с измерением времени реакции при решении задачи семантического решения, можно было бы попытаться на основе этой модели описать теоретическое распределение конкретных значений времени реакции одного и того же испытуемого при предъявлении одного и того же стимула. Однако такое не всегда оказывается возможным. Поэтому экспериментатор бывает вынужденным предположить, что распределение интересующей его случайной величины описывается каким-либо уже заранее исследованным законом. Чаще всего, хотя это, возможно, и не всегда оказывается абсолютно корректным, для этих целей используется так называемое нормальное распределение, выступающее в качестве эталона распределения любой случайной величины независимо от ее природы. Это распределение впервые было описано математически еще в первой половине XVIII в. де Муавром.

Нормальное распределение имеет место тогда, когда интересующее нас явление подвержено влиянию бесконечного числа случайных факторов, уравновешивающих друг друга. Формально нормальное распределение, как показал де Муавр, может быть описано следующим соотношением:

где х представляет собой интересующую нас случайную величину, поведение которой мы исследуем; Р – значение вероятности, связанное с этой случайной величиной; π и е – известные математические константы, описывающие соответственно отношение длины окружности к диаметру и основание натурального логарифма; μ и σ2 – параметры нормального распределения случайной величины – соответственно математическое ожидание и дисперсия случайной величины х.

Для описания нормального распределения оказывается необходимым и достаточным определение лишь параметров μ и σ2.

Поэтому если мы имеем случайную величину, поведение которой описывается уравнением (1.1) с произвольными значениями μ и σ2, то можем обозначить его как Ν (μ, σ2), не держа в памяти всех деталей этого уравнения.

Рис. 1.1.

Любое распределение можно представить наглядно в виде графика. Графически нормальное распределение имеет вид колоколообразной кривой, точная форма которой определяется параметрами распределения, т.е. математическим ожиданием и дисперсией. Параметры нормального распределения могут принимать практически любые значения, которые оказываются ограничены лишь используемой экспериментатором измерительной шкалой. В теории значение математического ожидания может равняться любому числу из диапазона чисел от -∞ до +∞, а дисперсия – любому неотрицательному числу. Поэтому существует бесконечное множество различных видов нормального распределения и соответственно бесконечное множество кривых, его представляющих (имеющих, однако, сходную колоколообразную форму). Понятно, что все их описать невозможно. Однако, если известны параметры конкретного нормального распределения, его можно преобразовать к так называемому единичному нормальному распределению, математическое ожидание для которого равно нулю, а дисперсия – единице. Такое нормальное распределение называют еще стандартным или z-распределением. График единичного нормального распределения представлен на рис. 1.1, откуда очевидно, что вершина колоколообразной кривой нормального распределения характеризует величину математического ожидания. Другой параметр нормального распределения – дисперсия – характеризует степень "распластанности" колоколообразной кривой относительно горизонтали (оси абсцисс).

по сравнению с другими видами распределений. Главной особенностью этого распределения является то, что к этому закону стремятся все другие законы распределений при бесконечном повторении количества испытаний. Как получается это распределение?

Представим себе, что, взяв ручной динамометр, Вы расположились в самом людном месте Вашего города. И каждому, кто проходит мимо, Вы предлагаете измерить свою силу, сжав динамометр правой или левой рукой. Показания динамометра Вы аккуратно за-писываете. Через некоторое время, при достаточно большом количестве испытаний, Вы нанесли на ось абсцисс показания динамометра, а на ось ординат – количество людей, кото-рые "выжали" это показание. Полученные точки соединили плавной линией. В результате получается кривая, изображенная на рис.9.8 . Вид этой кривой не будет особо изменяться при увеличении времени опыта. Более того, с некоторого момента новые значения будут только уточнять кривую, не изменяя ее формы.


Рис. 9.8.

Теперь переместимся с нашим динамометром в атлетический зал и повторим эксперимент. Теперь максимум кривой сместится вправо, левый конец будет несколько затянут, в то время как правый конец ее будет более крутой (рис.9.9).


Рис. 9.9.

Заметим, что максимальная частота для второго распределения (точка В) будет ниже, чем максимальная частота первого распределения (точка А). Это можно объяснить тем, что общее количество людей, посещающих атлетический зал, будет меньше, чем количество людей, которое прошли возле экспериментатора в первом случае (в центре города в достаточно людном месте). Максимум сместился вправо, так как атлетические залы посещают физически более сильные люди по сравнению с общим фоном.

И, наконец, посетим школы, детские сады и дома престарелых с той же целью: выявить силу рук посетителей этих мест. И опять кривая распределения будет иметь похожую форму, но теперь, очевидно, более крутым будет ее левый конец, а правый более затянут. И как во втором случае, максимум (точка С) будет ниже точки А (рис.9.10).


Рис. 9.10.

Это замечательное свойство нормального распределения – сохранять форму кривой плотности распределения вероятностей (рис. 8 – 10) было замечено и описано в 1733 году Муавром, а затем исследовано Гауссом.

В научных исследованиях, в технике, в массовых явлениях или экспериментах, когда речь идет о многократно повторяющихся случайных величинах при неизменных условиях опыта, говорят, что результаты испытаний испытывают случайное рассеяние, подчиняющееся закону нормальной кривой распределения

(21)

Где - это наиболее часто встречающееся событие. Как правило, в формулу (21) вместо параметра ставят . Причем, чем длин-нее экспериментальный ряд, тем меньше параметр будет отличаться от математического ожидания. Площадь под кривой (рис.9.11) при-нимается равной единице. Площадь , отвечающая какому-либо интервалу оси абсцисс, численно равна вероятности попадания случайного результата в данный интервал .


Рис. 9.11.

Функция нормального распределения имеет вид


(22)

Заметим, что нормальная кривая (рис.9.11) симметрична относительно прямой и асимптотически приближается к оси ОХ при .

Вычислим математическое ожидание для нормального закона


(23)

Свойства нормального распределения

Рассмотрим основные свойства этого важнейшего распределения.

Свойство 1 . Функция плотности нормального распределения (21) определения на всей оси абсцисс.

Свойство 2 . Функция плотности нормального распределения (21) больше нуля для любого из области определения ().

Свойство 3 . При бесконечном увеличении (уменьшении) функция распределения (21) стремится к нулю .

Свойство 4 . При функция распределения , заданная (21), имеет наибольшее значение , равное

(24)

Свойство 5 . График функции (рис.9.11) симметричен относительно прямой .

Свойство 6 . График функции (рис.9.11) имеет по две точки перегиба симметричные относительно прямой :

(25)

Свойство 7 . Все нечетные центральные моменты равны нулю. Заметим, что используя свойство 7, определяют асимметрию функции по формуле . Если , то делают вывод , что исследуемое распределение симметрично относительно прямой . Если , то говорят, что ряд смещен вправо (более пологая правая ветвь графика или затянута). Если , тогда считают, что ряд смещен влево (более пологая левая ветвь графика рис.9.12).


Рис. 9.12.

Свойство 8 . Эксцесс распределения равен 3. Часто на практике вычисляют и по близости этой величины к нулю определяют степень "сжатия" или "размытости" графика (рис.9.13). А так как связан с , то, в конечном итоге характеризует степень рассеяния частоты данных. А так как определяет

Наиболее известным и часто применяемым в теории вероятностей законом является нормальный закон распределения или закон Гаусса .

Главная особенность нормального закона распределения заключается в том, что он является предельным законом для других законов распределения.

Заметим, что для нормального распределения интегральная функция имеет вид:

.

Покажем теперь, что вероятностный смысл параметров и таков: а есть математическое ожидание, - среднее квадратическое отклонение (то есть ) нормального распределения:

а) по определению математического ожидания непрерывной случайной величины имеем

Действительно

,

так как под знаком интеграла стоит нечётная функция, и пределы интегрирования симметричны относительно начала координат;

- интеграл Пуассона .

Итак, математическое ожидание нормального распределения равно параметру а .

б) по определению дисперсии непрерывной случайной величины и, учитывая, что , можем записать

.

Интегрируя по частям, положив , найдём

Следовательно .

Итак, среднее квадратическое отклонение нормального распределения равно параметру .

В случае если и нормальное распределение называют нормированным (или, стандартным нормальным) распределением. Тогда, очевидно, нормированная плотность (дифференциальная) и нормированная интегральная функция распределения запишутся соответственно в виде:

(Функция , как вам известно, называется функцией Лапласа (см. ЛЕКЦИЮ5) или интегралом вероятностей. Обе функции, то есть , табулированы и их значения записаны в соответствующих таблицах).

Свойства нормального распределения (свойства нормальной кривой):

1. Очевидно, функция на всей числовой прямой.

2. , то есть нормальная кривая расположена над осью Ох .

3. , то есть ось Ох служит горизонтальной асимптотой графика.

4. Нормальная кривая симметрично относительно прямой х = а (соответственно график функции симметричен относительно оси Оу ).

Следовательно, можем записать : .

5. .

6. Легко показать, что точки и являются точками перегиба нормальной кривой (доказать самостоятельно).

7. Очевидно, что

но, так как , то . Кроме того , следовательно, все нечётные моменты равны нулю.

Для чётных же моментов можем записать:

8. .

9. .

10. , где .

11. При отрицательных значениях случайной величины: , где .


13. Вероятность попадания случайной величины на участок, симметричный относительно центра распределения, равна:

ПРИМЕР 3 . Показать, что нормально распределённая случайная величина Х отклоняется от математического ожидания М (Х ) не более чем на .

Решение . Для нормального распределения: .

Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0, 0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий, можно считать практически невозможными.

Итак, событие с вероятностью 0,9973 можно считать практически достоверным, то есть случайная величина отклоняется от математического ожидания не более чем на .

ПРИМЕР 4 . Зная характеристики нормального распределения случайной величины Х - предела прочности стали: кг/мм 2 и кг/мм 2 , найти вероятность получения стали с пределом прочности от 31 кг/мм 2 до 35 кг/мм 2 .

Решение .

3. Показательное распределение (экспоненциальный закон распределения)

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х , которое описывается дифференциальной функцией (плотность распределения)

где - постоянная положительная величина.

Показательное распределение определяется одним параметром . Эта особенность показательного распределения указывает на его преимущество, по сравнению с распределениями, зависящими от большего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближённые значения); разумеется, проще оценить один параметр, чем два, или три и т.д.

Нетрудно записать интегральную функцию показательного распределения:

Мы определили показательное распределение при помощи дифференциальной функции; ясно, что его можно определить, пользуясь интегральной функцией.

Замечание : Рассмотрим непрерывную случайную величину Т - длительность времени безотказной работы изделия. Обозначим принимаемые её значения через t , . Интегральная функция распределения определяет вероятность отказа изделия за время длительностью t . Следовательно, вероятность безотказной работы за это же время, длительностью t , то есть вероятность противоположного события , равна

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса .

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и , входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Найдем функцию распределения F(x) .

График плотности нормального распределения называется нормальной кривой или кривой Гаусса .

Нормальная кривая обладает следующими свойствами:

1) Функция определена на всей числовой оси.

2) При всех х функция распределения принимает только положительные значения.

3) Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента х , значение функции стремится к нулю.

4) Найдем экстремум функции.

Т.к. при y’ > 0 при x < m и y’ < 0 при x > m , то в точке х = т функция имеет максимум, равный .

5) Функция является симметричной относительно прямой х = а , т.к. разность

(х – а ) входит в функцию плотности распределения в квадрате.

6) Для нахождения точек перегиба графика найдем вторую производную функции плотности.

При x = m + s и x = m - s вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно .

Построим график функции плотности распределения.

Построены графики при т =0 и трех возможных значениях среднего квадратичного отклонения s = 1, s = 2 и s = 7. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается..

Если а > 0, то график сместится в положительном направлении, если а < 0 – в отрицательном.

При а = 0 и s = 1 кривая называется нормированной . Уравнение нормированной кривой:

Для краткости говорят, что СВ Х подчиняется закону N(m, s), т.е. Х ~ N(m, s). Параметры m и s совпадают с основными характеристиками распределения: m = m X , s = s Х = . Если СВ Х ~ N(0, 1), то она называется стандартизованной нормальной величиной . ФР стандартизованной нормальной величиной называется функцией Лапласа и обозначается как Ф(x) . С ее помощью можно вычислять интервальные вероятности для нормального распределения N(m, s):

P(x 1 £ X < x 2) = Ф - Ф .

При решении задач на нормальное распределение часто требуется использовать табличные значения функции Лапласа. Поскольку для функции Лапласа справедливо соотношение Ф(-х) = 1 - Ф(х) , то достаточно иметь табличные значения функции Ф(х) только для положительных значений аргумента.

Для вероятности попадания на симметричный относительно математического ожидания интервал справедлива формула: P(|X - m X | < e) = 2×Ф(e/s) - 1.

Центральные моменты нормального распределения удовлетворяют рекуррентному соотношению: m n +2 = (n+1)s 2 m n , n = 1, 2, ... . Отсюда следует, что все центральные моменты нечетного порядка равны нулю (так как m 1 = 0).

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция

,

которая называется функцией Лапласа или интегралом вероятностей .

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

Ниже показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

2) Ф(-х ) = - Ф(х );

Функцию Лапласа также называют функцией ошибок и обозначают erf x .

Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Ниже показан график нормированной функции Лапласа.

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм .

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины D:

Если принять D = 3s, то получаем с использованием таблиц значений функции Лапласа:

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм .

Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.

Пример. Поезд состоит из 100 вагонов. Масса каждого вагона – случайная величина, распределенная по нормальному закону с математическим ожидание а = 65 т и средним квадратичным отклонением s = 0,9 т. Локомотив может везти состав массой не более 6600 т, в противном случае необходимо прицеплять второй локомотив. Найти вероятность того, что второй локомотив не потребуется.

Второй локомотив не потребуется, если отклонение массы состава от ожидаемого (100×65 = 6500) не превосходит 6600 – 6500 = 100 т.

Т.к. масса каждого вагона имеет нормальное распределение, то и масса всего состава тоже будет распределена нормально.

Получаем:

Пример. Нормально распределенная случайная величина Х задана своими параметрами – а =2 – математическое ожидание и s = 1 – среднее квадратическое отклонение. Требуется написать плотность вероятности и построить ее график, найти вероятность того, Х примет значение из интервала (1; 3), найти вероятность того, что Х отклонится (по модулю) от математического ожидания не более чем на 2.

Плотность распределения имеет вид:

Построим график:

Найдем вероятность попадания случайной величины в интервал (1; 3).

Найдем вероятность отклонение случайной величины от математического ожидания на величину, не большую чем 2.

Тот же результат может быть получен с использованием нормированной функции Лапласа.

Лекция 8 Закон больших чисел (Раздел 2)

План лекции

Центральная предельная теорема (общая формулировка и частная формулировка для независимых одинаково распределенных случайных величин).

Неравенство Чебышева.

Закон больших чисел в форме Чебышева.

Понятие частоты события.

Статистическое понимание вероятности.

Закон больших чисел в форме Бернулли.

Изучение статистических закономерностей позволило установить, что при некоторых условиях суммарное поведение большого количества случайных величин почти утрачивает случайный характер и становится закономерным (иначе говоря, случайные отклонения от некоторого среднего поведения взаимно погашаются). В частности, если влияние на сумму отдельных слагаемых является равномерно малым, закон распределения суммы приближается к нормальному. Математическая формулировка этого утверждения дается в группе теорем, называемой законом больших чисел .

ЗАКОН БОЛЬШИХ ЧИСЕЛ – общий принцип, в силу которого совместное действие случайных факторов приводит при некоторых весьма общих условиях к результату, почти не зависящему от случая. Первым примером действия этого принципа может служить сближение частоты наступления случайного события с его вероятностью при возрастании числа испытаний (часто использующееся на практике, например, при использовании частоты встречаемости какого-либо качества респондента в выборке как выборочной оценки соответствующей вероятности).

Сущность закона больших чисел состоит в том, что при большом числе независимых опытов частота появления какого-то события близка к его вероятности.

Центральная предельная теорема (ЦПТ) (в формулировке Ляпунова А.М. для одинаково распределенных СВ). Если попарно независимые СВ X 1 , X 2 , ..., X n , ... имеют одинаковый закон распределения с конечными числовыми характеристиками M = m и D = s 2 , то при n ® ¥ закон распределения СВ неограниченно приближается к нормальному закону N(n×m, ).

Следствие. Если в условии теоремы СВ , то при n ® ¥ закон распределения СВ Y неограниченно приближается к нормальному закону N(m, s/ ).

Теорема Муавра-Лапласа. Пусть СВ К - число “успехов” в n испытаниях по схеме Бернулли. Тогда при n ® ¥ и фиксированном значении вероятности “успеха” в одном испытании p закон распределения СВ K неограниченно приближается к нормальному закону N(n×p, ).

Следствие. Если в условии теоремы вместо СВ К рассмотреть СВ К/n - частоту “успехов” в n испытаниях по схеме Бернулли, то ее закон распределения при n ® ¥ и фиксированном значении p неограниченно приближается к нормальному закону N(p, ).

Замечание. Пусть СВ К - число “успехов” в n испытаниях по схеме Бернулли. Законом распределения такой СВ является биноминальный закон. Тогда при n ® ¥ биноминальный закон имеет два предельных распределения:

n распределение Пуассона (при n ® ¥ и l = n×p = const);

n распределение Гаусса N(n×p, ) (при n ® ¥ и p = const).

Пример. Вероятность “успеха” в одном испытании всего лишь p = 0,8. Сколько нужно провести испытаний, чтобы с вероятностью не менее 0,9 можно ожидать, что наблюдаемая частота “успеха” в испытаниях по схеме Бернулли отклонится от вероятности p не более чем на e = 0,01?

Решение. Для сравнения решим задачу двумя способами.

В теории вероятностей рассматривается достаточно большое количество разнообразных законов распределения. Для решения задач, связанных с построением контрольных карт, представляют интерес лишь некоторые из них. Важнейшим из них является нормальный закон распределения , который применяется для построения контрольных карт, используемых при контроле по количественному признаку , т.е. когда мы имеем дело с непрерывной случайной величиной. Нормальный закон распределения занимает среди других законов распределения особое положение. Это объясняется тем, что, во-первых, наиболее часто встречается на практике, и, во-вторых, он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях. Что касается второго обстоятельства, то в теории вероятностей доказано, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, могут быть представлены как сумма весьма большего числа сравнительно малых слагаемых - элементарных ошибок, каждая из которых вызвана действием отдельной причины, независящей от остальных. Нормальный закон проявляется в тех случаях, когда случайная переменная Х является результатом действия большого числа различных факторов. Каждый фактор в отдельности на величину Х влияет незначительно, и нельзя указать, какой именно влияет в большей степени, чем остальные.

Нормальное распределение (распределение Лапласа–Гаусса ) – распределение вероятностей непрерывной случайной величины Х такое, что плотность распределения вероятностей при - ¥ <х< + ¥ принимает действительное значение:

Ехр (3)

То есть, нормальное распределение характеризуется двумя параметрами m и s, где m - математическое ожидание; s- стандартное отклонение нормального распределения.

Величина s 2 – это дисперсия нормального распределения.

Математическое ожидание m характеризует положение центра распределения, а стандартное отклонение s (СКО) является характеристикой рассеивания (рис. 3).

f(x) f(x)


Рисунок 3 – Функции плотности нормального распределения с:

а) разными математическими ожиданиями m; б) разными СКО s .

Таким образом, значением μ определяется положением кривой распределения на оси абсцисс. Размерность μ - та же, что и размерность случайной величины X . С ростом математического ожидания mобе функции сдвигается параллельно вправо. С убывающей дисперсией s 2 плотность все больше концентрируется вокруг m, в то время как функция распределения становится все более крутой.

Значением σ определяется форма кривой распределения. Поскольку площадь под кривой распределения должна всегда оставаться равной единице, то при увеличении σ кривая распределения становится более плоской. На рис. 3.1 показаны три кривые при разных σ: σ1 = 0,5; σ2 = 1,0; σ3 = 2,0.

Рисунок 3.1 – Функции плотности нормального распределения с разными СКО s .

Функция распределения (интегральная функция) имеет вид (рис. 4):

(4)

Рисунок 4 – Интегральная (а) и дифференциальная (б) функции нормального распределения

Особенно важно то линейное преобразование нормально распределенной случайной переменной Х , после которого получается случайная переменная Z с математическим ожиданием 0 и дисперсией 1. Такое преобразование называется нормированием:

Его можно провести для каждой случайной переменной. Нормирование позволяет все возможные варианты нормального распределения свести к одному случаю: m = 0, s = 1.

Нормальное распределение с m = 0, s = 1 называется нормированным нормальным распределением (стандартизованным) .

Стандартное нормальное распределение (стандартное распределение Лапласа–Гаусса или нормированное нормальное распределение) – это распределение вероятностей стандартизованной нормальной случайной величины Z , плотность распределения которой равна:

при - ¥ <z < + ¥

Значения функции Ф(z) определяется по формуле:

(7)

Значения функции Ф(z) и плотности ф(z) нормированного нормального распределения рассчитаны и сведены в таблицы (табулированы). Таблица составлена только для положительных значений z поэтому:

Ф (z) = 1 Ф (z) (8)

С помощью этих таблиц можно определить не только значения функции и плотности нормированного нормального распределения для заданного z , но и значения функции общего нормального распределения, так как:

; (9)

. 10)

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины Х , подчиненной нормальному закону с параметрами m и s, на определенный участок. Таким участком может быть, например, поле допуска на параметр от верхнего значения U до нижнего L .

Вероятность попадания в интервал от х 1 до х 2 можно определить по формуле:

Таким образом, вероятность попадания случайной величины (значение параметра) Х в поле допуска определяется формулой

Можно найти вероятность того, что случайная переменная Х окажется в пределах μ k s. Полученные значения для k =1,2 и 3 следующие (также смотрим рис. 5):

Таким образом, если какое-либо значение появляется за пределами трехсигмового участка, в котором находятся 99,73% всех возможных значений, а вероятность появления такого события очень мала (1:270), следует считать, что рассматриваемое значение оказалось слишком маленьким или слишком большим не из-за случайного варьирования, а из-за существенной помехи в самом процессе, способной вызывать изменения в характере распределения.

Участок, лежащий внутри трехсигмовых границ, называют также областью статистического допуска соответствующей машины или процесса.