Объяснение расчета критерия стьюдента. Основные статистики и t-критерий Стьюдента

Критерий Стьюдента для независимых выборок

Критерий Стьюдента (t -тест Стьюдента или просто «t -тест») применяется, если нужно сравнить только две группы количественных признаков с нормальным распределением (частный случай дисперсионного анализа). Примечание: этим критерием нельзя пользоваться, сравнивая попарно несколько групп, в этом случае необходимо применять дисперсионный анализ. Ошибочное использование критерия Стьюдента увеличивает вероятность «выявить» несуществующие различия. Например, вместо того, чтобы признать несколько методов лечения равно эффективными (или неэффективными), один из них объявляют лучшим.

Два события называются независимыми, если наступление одного из них никак не влияет на наступление другого. Аналогично, две совокупности можно назвать независимыми, если свойства одной из них никак не связаны со свойствами другой.

Пример выполнения t -теста в программе STATISTICA.

Женщины в среднем ниже мужчин, однако, это не является результатом того, что мужчины оказывают какое-либо влияние на женщин - дело здесь в генетических особенностях пола. С помощью t- теста необходимо проверить, имеется ли статистически значимое различие между средними значениями роста в группах мужчин и женщин. (В учебных целях мы допускаем, что данные о росте подчиняются закону нормального распределения и поэтому t- тест применим).

Рисунок 1. Пример оформления данных для выполнения t-

Обратите внимание на то, как оформлены данные на рисунке 1. Как и при построении графиков типа Whisker plot или Box-whisker plot , в таблице имеются две переменные: одна из них - группирующая (Grouping variable ) («Пол») - содержит коды (муж и жен), позволяющие программе установить, какие из данных о росте принадлежат какой группе; вторая - т.н. зависимая переменная (Dependent variable ) («Рост») - содержит собственно анализируемые данные. Однако при выполнении t- теста для независимых выборок в программе STATISTICA возможен и другой вариант оформления - данные для каждой из групп («Мужчины» и «Женщины») можно ввести в отдельные столбцы (рисунок 2).

Рисунок 2. Еще один вариант оформления данных для выполнения t- теста для независимых выборок

Для выполнения t- теста для независимых выборок необходимо выполнить следующие действия:

1-а. Запустить модуль t- теста из меню Statistics > Basic statistics/Tables > t -test , independent, by groups (если в таблице с данными есть группирующая переменная, см.рисунок 3)​

ИЛИ

1-б. Запустить модуль t- теста из меню Statistics > Basic statistics/Tables > t -test, independent, by variables (если данные внесены в самостоятельные столбцы, см. рисунок 4).

Ниже описывается вариант теста, при котором в таблице с данными имеется группирующая переменная.

2. В открывшемся окне нажать кнопку Variables и указать программе, какая из переменных таблицы Sreadsheet является группирующей, а какая - зависимой (рисунки 5-6).

Рисунок 5. Выбор переменных для включения в t -тест

Рисунок 6. Окно с выбранными переменными для проведения t -теста

3. Нажать на кнопку Summary: T-tests .

Рисунок 7. Результы t -теста для независимых выборок

В итоге программа выдаст рабочую книгу Workbook , содержащую таблицу с результатами t -теста (рисунок 7 ). Эта таблица имеет несколько столбцов:

  • Mean (муж) - среднее значение роста в группе «Мужчины»;
  • Mean (жен) - среднее значение роста в группе «Женщины»;
  • t- value : значение рассчитанного программой t -критерия Стьюдента;
  • df - число степеней свободы;
  • P - вероятность справедливости гипотезы о том, что сравниваемые средние значения не различаются. Фактически, это самый главный результат анализа, поскольку именно значение P говорит, верна ли проверяемая гипотеза. В нашем примере P > 0.05, из чего можно сделать вывод о том, что статистически значимые различия между ростом мужчин и женщин отсутствуют.
  • Valid N (муж) - объем выборки «Мужчины»;
  • Valid N (жен) - объем выборки «Женщины»;
  • Std. dev . (муж) - стандартное отклонение выборки «Мужчины»;
  • Std. dev . (жен) - стандартное отклонение выборки «Женщины»;
  • F-ratio, Variances - значение F-критерия Фишера, с помощью которого проверяется гипотеза о равенстве дисперсий в сравниваемых выборках;
  • P, Variances - вероятность справедливости гипотезы о том, что дисперсии сравниваемых выборок не различаются.

Чаще всего в психологическом исследовании наблюдается задачи на выявление различий между двумя или более группами признаков. Выяснение таких различий на уровне средних арифметических рассмотрено в процедуре анализа первичных статистик. Однако возникает вопрос, насколько эти различия достоверны и можно ли их распространить (экстраполировать) на всю популяцию. Для решения этой задачи чаще всего используют (при условии нормального или близкого к нормальному распределению) t - критерий (критерий Стьюдента), который предназначен для выяснения, насколько достоверно отличаются показатели одной выборки испытуемых от другой (например, когда исследуемые получают в результате тестирования одной группы высшие баллы, чем представители другой). Это параметрический критерий, имеет две основные формы:

1) несвязанный (нечетная) t - критерий, предназначенный для того, чтобы выяснить, есть ли различия между оценками, полученными при использовании одного и того же теста для тестирования двух групп, сформированных из разных людей. Например, это может быть сравнение уровня интеллекта или нервно-психической устойчивости, тревожности успевающих и неуспевающих учеников или сравнение по этим признакам учеников разных классов, возрастов, социальных уровней и тому подобное. Могут быть и разнополые, разнонациональные выборки, а также подвыборки в исследуемых выборках, выделены по определенному признаку. Критерий называют "несвязанный", потому что сравниваемые группы сформированы из разных людей;

2) связан (парный) t - критерий, применяемый для сравнения показателей двух групп, между элементами которых существует специфическая связь. Это означает, что каждому элементу первой группы соответствует элемент второй группы, похожий на него по определенным параметром интересующей исследователя. Чаще всего сравнивают параметры одних и тех же лиц до и после определенного события или действия (например, в процессе проведения лонгитюдного исследования или формирующего эксперимента). Поэтому этот критерий используют для сравнения показателей одних и тех же лиц до и после обследования, эксперимента или истечении определенного времени.

Если данные не подлежат нормальному закону распределения, используют непараметрические критерии, эквивалентные t - критерия: критерий Манна - Уитни, эквивалентный нечетном t - критерия, и Двухвыборочный критерий Вилкоксона, эквивалентный парном t - критерия.

С помощью t - критериев и их непараметрических эквивалентов можно только сравнивать результаты двух групп, полученные с использованием одного и того же теста. Однако в некоторых случаях возникает необходимость сравнения нескольких групп или оценок нескольких видов. Это можно сделать поэтапно, разбив задачу на несколько пар сравнений (например, если надо сравнить группы А, Б и Y по результатам тестов X и Y, то можно с помощью t - критерия сначала сравнить группы А и Б по результатам теста X, затем А и Б по результатам теста В, А и В по результатам теста Х и т. д.). Однако это очень трудоемкий метод, поэтому прибегают к более сложному методу дисперсионного анализа.

Метод оценки достоверности различий средних арифметических по достаточно эффективным параметрическим критерием Стьюдента предназначен для решения одной из задач, чаще всего наблюдаются при обработке данных - выявление достоверности различий между двумя или более рядами значений. Такая оценка часто необходимо при сравнительном анализе полярных групп. их выделяют на основе различной выраженности определенной целевой признаки (характеристики) изучаемого явления. Как правило, анализ начинают с подсчета первичных статистик выделенных групп ", затем оценивают достоверность различий. Критерий Стьюдента вычисляют по формуле:

Значение критерия Стьюдента для трех уровней доверительной (статистической) значимости (р) приводят в справочниках по матстатистику. Количество степеней свободы определяют по формуле:

С уменьшением объемов выборок (n <10) критерий Стьюдента становится чувствительным к форме распределения исследуемого признака в генеральной совокупности. Поэтому в сомнительных случаях рекомендуют использовать непараметрические методы или сравнивать полученные значения с критическими (табл. 2.17) для высшего уровня значимости.

Решение о достоверности различий принимают в том случае, если исчисленная величина t превышает табличное значение для определенного количества степеней свободы (d (v)). В публикациях или научных отчетах указывают высокий уровень значимости из трех: р <0,05; р <0,01; р <0,001.

При любом числового значения критерия достоверности различия между средними этот показатель оценивает не степень выявленной различия (ее оценивают по самой разницей между средними), а только его статистическую достоверность, то есть право распространять полученный на основе сопоставления выборок вывод о наличии разницы на все явление (весь процесс) в целом. Низкий исчисленный критерий отличия не может служить доказательством отсутствия различия между двумя признаками (явлениями), потому что его значимость (степень достоверности) зависит не только от величины средних, но и от количества сравниваемых выборок. Он указывает не на отсутствие различия, а на то, что при такой величины выборок она статистически недостоверная: очень большой шанс, что разница в этих условиях случайная, очень мала вероятность ее достоверности.

Таблица 2.17. Доверительные границы для критерия Стьюдента (t-критерий) для f степеней свободы

ния среднего времени выполнения задания во второй попытке (по сравнению с первой пробой) не является достоверным.

Это выражение не равносильно утверждению о статистической однородности двух выборок, которые сопоставляют. Кроме того, применение критерия Стьюдента в случае таких неодинаковых выборок не вполне корректное математически и, безусловно, сказывается на конечном итоге о недостоверности различий Хср = 9,1 и Хср = 8,5. Пользуясь этим критерием, оценивают не степень близости двух средних, а рассматривают отнесения или невод несения случайной (при заданном уровне значимости). .

где f – степень свободы, которая определяется как

Пример . Две группы студентов обучались по двум различным методикам. В конце обучения с ними был проведен тест по всему курсу. Необходимо оценить, насколько существенны различия в полученных знаниях. Результаты тестирования представлены в таблице 4.

Таблица 4

Рассчитаем выборочное среднее, дисперсию и стандартное отклонение:

Определим значение t p по формуле t p = 0,45

По таблице 1 (см. приложение) находим критическое значение t k для уровня значимости р = 0,01

Вывод: так как расчетное значение критерия меньше критического 0,45<2,88 гипотеза Но подтверждается и существенных различий в методиках обучения нет на уровне значимости 0,01.

Алгоритм расчета t-критерия Стьюдента для зависимых выборок измерений

1. Определить расчетное значение t-критерия по формуле

, где

2. Рассчитать степень свободы f

3. Определить критическое значение t-критерия по таблице 1 приложения.

4. Сравнить расчетное и критическое значение t-критерия. Если расчетное значение больше или равно критическому, то гипотеза равенства средних значений в двух выборках изменений отвергается (Но). Во всех других случаях она принимается на заданном уровне значимости.

U - критерий Манна - Уитни

Назначение критерия

Критерий предназначен для оценки различий между двумя непараметрическими выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n < 30.

Описание критерия

Этот метод определяет, достаточно ли мала зона пересекающихся значений между двумя рядами. Чем меньше эта область, тем более вероятно, что различия достоверны. Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U, тем более вероятно, что различия достоверны.

Гипотезы

НО: Уровень признака в группе 2 не ниже уровня признака в группе 1.

HI: Уровень признака в группе 2 ниже уровня признака в группе 1.

Алгоритм расчета критерия Манна-Уитни (u)

    Перенести все данные испытуемых на индивидуальные карточки.

    Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 – другим, например, синим.

    Разложить все карточки в единый ряд по степени нарастания признака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.


где n 1 – количество испытуемых в выборке 1;

n 2 – количество испытуемых в выборке 2,

Т х – большая из двух рантовых сумм;

n х – количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения U по таблице 2 (см. приложение).

Если U эмп.> U кр0,05 , то гипотеза Но принимается. Если U эмп.≤ U кр, то отвергается. Чем меньше значения U, тем достоверность различий выше.

Пример. Сравнить эффективность двух методов обучения в двух группах. Результаты испытаний представлены в таблице 5.

Таблица 5

Перенесем все данные в другую таблицу, выделив данные второй группы подчеркиванием и сделаем ранжирование общей выборки (см. алгоритм ранжирования в методических указаниях к заданию 3).

Значения

Найдем сумму рангов двух выборок и выберем большую из них: Т х = 113

Рассчитаем эмпирическое значение критерия по формуле 2: U p = 30.

Определим по таблице 2 приложения критическое значение критерия при уровне значимости р = 0.05: U k = 19.

Вывод: так как расчетное значение критерия U больше критического при уровне значимости р = 0.05 и 30 > 19, то гипотеза о равенстве средних принимается и различия в методиках обучения несущественны .

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Общий подход в проверке гипотез описан , поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ 2 (знаю-знаю, что так не бывает, но не нужно меня перебивать!). Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь с математическим ожиданием μ и

Тогда случайная величина

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s x̅ . Другими словами, являются ли распределения случайных величин

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннеса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Т.к. Гиннесс строго-настрого запретил выдавать секреты пивоварения, Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение , все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента . Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента . Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию :

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию .

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t .

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s 2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ 2 (хи-квадрат) с таким же количеством степеней свободы, т.е.

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

На этом законе основывается множество других результатов в статистике нормальных моделей.

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

на σ X̅ . Получим

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Тогда исходное выражение примет вид

Это и есть в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Все равно ей никто не пользуется, т.к. вероятности приведены в специальных таблицах распределения Стьюдента (иногда называют таблицами коэффициентов Стьюдента), либо забиты в формулы ПЭВМ.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

где ξ распределена по стандартному нормальному закону, а χ 2 k подчиняется распределению χ 2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

Есть частный случай стьюдентова отношения

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двухсторонним. Обычно пользуются двухсторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность, т.к. при фиксированном уровне значимости критическое значение немного приближается к нулю.

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия, т.е. фактический уровень значимости (p-level).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-level.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α , а для правого 1 — α .

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α . Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-level.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s ) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H 0: μ = 50 кг

H 1: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двухсторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей t-распределения Стьюдента (есть в любом учебнике по статистике).

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двухсторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H 0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-level попробовать найти, но он будет приближенным. А, как правило, именно p-level используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двухсторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-level, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

P-level равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-level оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-level (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала с помощью t-распределения Стьюдента

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов . Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α , стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-level, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю посмотреть видеоролик о том, как проводить расчеты, связанные с t-критерием Стьюдента в Excel.

История

Данный критерий был разработан Уильямом Госсеттом для оценки качества пива в компании Гиннесс . В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсета вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).

Требования к данным

Для применения данного критерия необходимо, чтобы исходные данные имели нормальное распределение . В случае применения двухвыборочного критерия для независимых выборок также необходимо соблюдение условия равенства дисперсий . Существуют, однако, альтернативы критерию Стьюдента для ситуации с неравными дисперсиями.

Двухвыборочный t-критерий для независимых выборок

В случае с незначительно отличающимся размером выборки применяется упрощённая формула приближенных расчётов:

В случае, если размер выборки отличается значительно, применяется более сложная и точная формула:

Где M 1 ,M 2 - средние арифметические, σ 1 ,σ 2 - стандартные отклонения, а N 1 ,N 2 - размеры выборок.

Двухвыборочный t-критерий для зависимых выборок

Для вычисления эмпирического значения t-критерия в ситуации проверки гипотезы о различиях между двумя зависимыми выборками (например, двумя пробами одного и того же теста с временным интервалом) применяется следующая формула:

где M d - средняя разность значений, а σ d - стандартное отклонение разностей.

Количество степеней свободы рассчитывается как

Одновыборочный t-критерий

Применяется для проверки гипотезы об отличии среднего значения от некоторого известного значения :

Количество степеней свободы рассчитывается как

Непараметрические аналоги

Аналогом двухвыборочного критерия для независимых выборок является U-критерий Манна-Уитни . Для ситуации с зависимыми выборками аналогами являются критерий знаков и T-критерий Вилкоксона

Автоматический расчет t-критерия Стьюдента


Wikimedia Foundation . 2010 .

Смотреть что такое "T-критерий Стьюдента" в других словарях:

    Критерий Стьюдента t-к - Критерий Стьюдента, t к. * крытэрый Ст’юдэнта, t к. * Student’s criterion or t c. or S. t test статистический критерий существенности разности между сравниваемыми средними. Определяется отношением этой разности к ошибке разности: При значениях t… … Генетика. Энциклопедический словарь

    T критерий Стьюдента общее название для класса методов статистической проверки гипотез (статистических критериев), основанных на сравнении с распределением Стьюдента. Наиболее частые случаи применения t критерия связаны с проверкой равенства… … Википедия

    критерий Стьюдента - Stjūdento kriterijus statusas T sritis augalininkystė apibrėžtis Skirtumo tarp dviejų vidurkių patikimumo rodiklis, išreiškiamas skirtumo ir jo paklaidos santykiu. atitikmenys: angl. Student’s test rus. критерий Стьюдента … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

    критерий Стьюдента - Статистический критерий, в котором, в предположении нулевой гипотезы, используемая статистика соответствует t распределению (распределению Стьюдента). Примечание. Вот примеры применения этого критерия: 1. проверка равенства среднего из… … Словарь социологической статистики

    КРИТЕРИЙ СТЬЮДЕНТА - Биометрический показатель достоверности разницы (td) между средними значениями двух сравниваемых между собой групп животных (M1 и М2) по какому либо признаку. Достоверность разницы определяется по формуле: Полученное значение td сравнивается с… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

    КРИТЕРИЙ СТЬЮДЕНТА - оценивает близость двух средних значений с точки зрения отнесения или не отнесения ее к случайной (при заданном уровне значимости), отвечая на вопрос о том, отличаются ли средние значения статистически достоверно друг от друга }