Обыкновенные дроби. Что такое правильная дробь? Правильная и неправильная дробь: правила

С дробями мы сталкиваемся в жизни гораздо раньше, чем начинается их изучение в школе. Если разрезать целое яблоко пополам, то мы получим часть фрукта - ½. Разрежем ещё раз - будет ¼. Это и есть дроби. И все, казалось бы, просто. Для взрослого человека. Для ребенка же (а данную тему начинают изучать в конце младшей школы) абстрактные математические понятия ещё пугающе непонятны, и преподаватель должен доступно объяснить, что такое правильная дробь и неправильная, обыкновенная и десятичная, какие операции можно с ними совершать и, главное, для чего всё это нужно.

Какие бывают дроби

Знакомство с новой темой в школе начинается с обыкновенных дробей. Их легко узнать по горизонтальной черте, разделяющей два числа - сверху и снизу. Верхнее называется числителем, нижнее - знаменателем. Существует и строчный вариант написания неправильных и правильных обыкновенных дробей - через косую черту, например: ½, 4/9, 384/183. Такой вариант используется, когда высота строки ограничена и нет возможности применить «двухэтажную» форму записи. Почему? Да потому что она удобнее. Чуть позже мы в этом убедимся.

Помимо обыкновенных, существуют также десятичные дроби. Различить их очень просто: если в одном случае используется горизонтальная или наклонная черта, то в другом - запятая, разделяющая последовательности цифр. Посмотрим пример: 2,9; 163,34; 1,953. Мы намеренно воспользовались точкой с запятой в качестве разделителя, чтобы разграничить числа. Первое из них будет читаться так: «две целых, девять десятых».

Новые понятия

Вернемся к обыкновенным дробям. Они бывают двух видов.

Определение правильной дроби звучит следующим образом: это такая дробь, числитель которой меньше знаменателя. Почему это важно? Сейчас увидим!

У вас есть несколько яблок, разделенных на половинки. Всего - 5 частей. Как вы скажете: у вас «два с половиной» или «пять вторых» яблока? Конечно, первый вариант звучит естественнее, и при разговоре с друзьями мы воспользуемся им. А вот если потребуется посчитать, сколько фруктов достанется каждому, если в компании пять человек, мы запишем число 5/2 и разделим его на 5 - с точки зрения математики это будет нагляднее.

Итак, для наименования правильных и неправильных дробей правило таково: если в дроби можно выделить целую часть (14/5, 2/1, 173/16, 3/3), то она является неправильной. Если этого сделать нельзя, как в случае с ½, 13/16, 9/10, она будет правильной.

Основное свойство дроби

Если числитель и знаменатель дроби одновременно умножить или разделить на одно и то же число, её величина не изменится. Представьте: торт порезали на 4 равные части и дали вам одну. Такой же торт порезали на восемь частей и дали вам две. Не всё ли равно? Ведь ¼ и 2/8 - это одно и то же!

Сокращение

Авторы задач и примеров в учебниках по математике зачастую стремятся запутать учеников, предлагая громоздкие в написании дроби, которые на самом деле можно сократить. Вот пример правильной дроби: 167/334, который, казалось бы, выглядит очень «страшно». Но на самом деле мы можем записать его как ½. Число 334 делится на 167 без остатка - проделав такую операцию, мы получим 2.

Смешанные числа

Неправильную дробь можно представить в форме смешанного числа. Это когда целая часть вынесена вперед и записана на уровне горизонтальной черты. Фактически выражение принимает вид суммы: 11/2 = 5 + ½; 13/6 = 2 + 1/6 и так далее.

Чтобы вынести целую часть, нужно разделить числитель на знаменатель. Остаток от деления записать сверху, над чертой, а целую часть - перед выражением. Таким образом, мы получаем две структурные части: целые единицы + правильную дробь.

Можно осуществить и обратную операцию - для этого нужно целую часть умножить на знаменатель и прибавить полученное значение к числителю. Ничего сложного.

Умножение и деление

Как ни странно, умножать дроби проще, чем складывать. Всего-то и требуется - продлить горизонтальную черту: (2/3) * (3/5) = 2*3 / 3*5 = 2/5.

С делением тоже всё просто: нужно перемножить дроби крест-накрест: (7/8) / (14/15) = 7*15 / 8*14 = 15/16.

Сложение дробей

Что делать, если требуется осуществить сложение или а в знаменателе у них разные числа? Поступить так же, как с умножением, не получится - здесь следует понимать определение правильной дроби и её сущность. Нужно привести слагаемые к общему знаменателю, то есть в нижней части обеих дробей должны оказаться одинаковые числа.

Чтобы это осуществить, следует воспользоваться основным свойством дроби: умножить обе части на одно и то же число. Например, 2/5 + 1/10 = (2*2)/(5*2) + 1/10 = 5/10 = ½.

Как же выбрать, к какому знаменателю приводить слагаемые? Это должно быть минимальное число, кратное обоим числам, стоящим в знаменателях дробей: для 1/3 и 1/9 это будет 9; для ½ и 1/7 - 14, потому что меньшего значения, делящегося без остатка на 2 и 7, не существует.

Использование

Для чего нужны неправильные дроби? Ведь гораздо удобнее сразу выделить целую часть, получить смешанное число - и дело с концом! Оказывается, если требуется выполнить умножение или деление двух дробей, выгоднее воспользоваться именно неправильными.

Возьмем следующий пример: (2 + 3/17) / (37 / 68).

Казалось бы, сократить и вовсе нечего. Но что, если записать результат сложения в первых скобках в виде неправильной дроби? Посмотрите: (37/17) / (37/68)

Теперь всё встает на свои места! Запишем пример таким образом, чтобы всё стало очевидно: (37*68) / (17*37).

Сократим 37 в числителе и знаменателе и, наконец, разделим верхнюю и нижнюю части на 17. Вы же помните основное правило для правильной и неправильной дроби? Мы можем умножать и делить их на любое число, если делаем это одновременно для числителя и знаменателя.

Итак, получаем ответ: 4. Пример выглядел сложным, а ответ содержит всего одну цифру. В математике так часто происходит. Главное - не бояться и следовать простым правилам.

Распространенные ошибки

При осуществлении учащийся может легко совершить одну из популярных ошибок. Обычно они происходят из-за невнимательности, а иногда - из-за того, что изученный материал ещё не отложился в голове как следует.

Нередко сумма чисел, стоящая в числителе, вызывает желание сократить отдельные её компоненты. Допустим, в примере: (13 + 2) / 13, написанном без скобок (с горизонтальной чертой), многие ученики по неопытности зачеркивают 13 сверху и снизу. Но так делать нельзя ни в коем случае, ведь это грубая ошибка! Если бы вместо сложения стоял знак умножения, мы получили бы в ответе число 2. Но при осуществлении сложения никакие операции с одним из слагаемых не позволительны, только со всей суммой целиком.

Ещё ребята часто ошибаются при делении дробей. Возьмем две правильные несократимые дроби и разделим друг на друга: (5/6) / (25/33). Ученик может перепутать и записать результирующее выражение как (5*25) / (6*33). Но так бы получилось при умножении, а в нашем случае всё будет несколько иначе: (5*33) / (6*25). Сокращаем то, что возможно, и в ответе увидим 11/10. Получившуюся неправильную дробь запишем как десятичную - 1,1.

Скобки

Помните, что в любых математических выражениях порядок действий определяется приоритетом знаков операций и наличием скобок. При прочих равных отсчёт очередности выполнения действий происходит слева направо. Это актуально и для дробей - выражение в числителе или знаменателе рассчитывается строго по этому правилу.

Ведь Это результат деления одного числа на другое. Если они не делятся нацело, получается дробь - вот и всё.

Как записать дробь на компьютере

Поскольку стандартные средства не всегда позволяют создать дробь, состоящую из двух «ярусов», ученики порой идут на различные ухищрения. Например, копируют числители и знаменатели в графический редактор «Пейнт» и склеивают их воедино, рисуя между ними горизонтальную линию. Конечно, есть более простой вариант, который, кстати, предоставляет и массу дополнительных возможностей, которые станут полезны вам в будущем.

Откройте «Майкрософт Ворд». Одна из панелей в верхней части экрана носит называние «Вставка» - нажмите её. Справа, в той стороне, где расположены значки закрытия и сворачивания окна, есть кнопка «Формула». Это именно то, что нам нужно!

Если вы воспользуетесь данной функцией, на экране появится прямоугольная область, в которой можно использовать любые математические знаки, отсутствующие на клавиатуре, а также писать дроби в классическом виде. То есть разделяя числитель и знаменатель горизонтальной чертой. Вы даже можете удивиться, что такую правильную дробь настолько легко записать.

Изучайте математику

Если вы учитесь в 5-6 классе, то уже скоро знание математики (в том числе - умение работать с дробями!) потребуется во многих школьных предметах. Практически в любой задаче по физике, при измерении массы веществ в химии, в геометрии и тригонометрии без дробей никак не обойтись. Уже скоро вы научитесь вычислять всё в уме, даже не записывая выражения на бумаге, но будут появляться всё более и более сложные примеры. Поэтому выучите, что такое правильная дробь и как с ней работать, не отставайте по учебной программе, своевременно делайте домашние задания, и тогда вы преуспеете.

В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей !

Понятие дроби вводится в курс математики начиная с 6 класса средней школы.

Дроби имеют вид: ±X/Y, где Y - знаменатель, он сообщает на сколько частей разделили целое, а X - числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:

В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.

Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.

Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.

Иными словами дробь - это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.

Если числитель меньше знаменателя - дробь является правильной, если наоборот - неправильной. В состав дроби может входить целое число.

Например, 5 целых 3/4.

Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.

Если вы хотите запомнить, как решать дроби за 6 класс , вам надо понять, что решение дробей , в основном, сводится к понимаю нескольких простых вещей.

  • Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого - три.
  • Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
  • Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.

Как решать дроби. Примеры.

К дробям применимы самые разные арифметические операции.

Приведение дроби к общему знаменателю

Например, необходимо сравнить дроби 3/4 и 4/5.

Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей

Наименьший общий знаменатель(4,5) = 20

Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю

Ответ: 15/20

Сложение и вычитание дробей

Если необходимо посчитать сумму двух дробей, их сначала приводят к общему знаменателю, затем складывают числители, при этом знаменатель останется без изменений. Разность дробей считается аналогичным образом, различие лишь в том, что числители вычитаются.

Например, необходимо найти сумму дробей 1/2 и 1/3

Теперь найдем разность дробей 1/2 и 1/4

Умножение и деление дробей

Тут решение дробей несложное, здесь все достаточно просто:

  • Умножение - числители и знаменатели дробей перемножаются между собой;
  • Деление - сперва получаем дробь, обратную второй дроби, т.е. меняем местами ее числитель и знаменатель, после чего полученные дроби перемножаем.

Например:

На этом о том, как решать дроби , всё. Если у вас остались какие то вопросы по решению дробей , что то непонятно, то пишите в комментарии и мы обязательно вам ответим.

Если вы учитель, то возможно скачать презентацию для начальной школы (http://school-box.ru/nachalnaya-shkola/prezentazii-po-matematike.html) будет вам кстати.

Энциклопедичный YouTube

  • 1 / 5

    Обыкновенная (или простая ) дробь - запись рационального числа в виде ± m n {\displaystyle \pm {\frac {m}{n}}} или ± m / n , {\displaystyle \pm m/n,} где n ≠ 0. {\displaystyle n\neq 0.} Горизонтальная или косая черта обозначает знак деления, в результате чего получается частное. Делимое называется числителем дроби, а делитель - знаменателем .

    Обозначения обыкновенных дробей

    Есть несколько видов записи обыкновенных дробей в печатном виде:

    Правильные и неправильные дроби

    Правильной называется дробь, у которой модуль числителя меньше модуля знаменателя. Дробь, не являющаяся правильной, называется неправильной , и представляет рациональное число, по модулю большее или равное единице.

    Например, дроби 3 5 {\displaystyle {\frac {3}{5}}} , 7 8 {\displaystyle {\frac {7}{8}}} и - правильные дроби, в то время как 8 3 {\displaystyle {\frac {8}{3}}} , 9 5 {\displaystyle {\frac {9}{5}}} , 2 1 {\displaystyle {\frac {2}{1}}} и 1 1 {\displaystyle {\frac {1}{1}}} - неправильные дроби. Всякое отличное от нуля целое число можно представить в виде неправильной обыкновенной дроби со знаменателем 1.

    Смешанные дроби

    Дробь, записанная в виде целого числа и правильной дроби, называется смешанной дробью и понимается как сумма этого числа и дроби. Любое рациональное число можно записать в виде смешанной дроби. В противоположность смешанной дроби, дробь, содержащая лишь числитель и знаменатель, называется простой .

    Например, 2 3 7 = 2 + 3 7 = 14 7 + 3 7 = 17 7 {\displaystyle 2{\frac {3}{7}}=2+{\frac {3}{7}}={\frac {14}{7}}+{\frac {3}{7}}={\frac {17}{7}}} . В строгой математической литературе такую запись предпочитают не использовать из-за схожести обозначения смешанной дроби с обозначением произведения целого числа на дробь, а также из-за более громоздкой записи и менее удобных вычислений.

    Составные дроби

    Многоэтажной, или составной, дробью называется выражение, содержащее несколько горизонтальных (или реже - наклонных) черт:

    1 2 / 1 3 {\displaystyle {\frac {1}{2}}/{\frac {1}{3}}} или 1 / 2 1 / 3 {\displaystyle {\frac {1/2}{1/3}}} или 12 3 4 26 {\displaystyle {\frac {12{\frac {3}{4}}}{26}}}

    Десятичные дроби

    Десятичной дробью называют позиционную запись дроби. Она выглядит следующим образом:

    ± a 1 a 2 … a n , b 1 b 2 … {\displaystyle \pm a_{1}a_{2}\dots a_{n}{,}b_{1}b_{2}\dots }

    Пример: 3,141 5926 {\displaystyle 3{,}1415926} .

    Часть записи, которая стоит до позиционной запятой, является целой частью числа (дроби), а стоящая после запятой - дробной частью . Всякую обыкновенную дробь можно преобразовать в десятичную, которая в этом случае либо имеет конечное число знаков после запятой, либо является периодической дробью .

    Вообще говоря, для позиционной записи числа́ можно использовать не только десятичную систему счисления, но и другие (в том числе и специфические, такие, как фибоначчиева).

    Значение дроби и основное свойство дроби

    Дробь является всего лишь записью числа. Одному и тому же числу могут соответствовать разные дроби, как обыкновенные, так и десятичные.

    0 , 999... = 1 {\displaystyle 0,999...=1} - две разные дроби соответствуют одному числу.

    Действия с дробями

    В этом разделе рассматриваются действия над обыкновенными дробями. О действиях над десятичными дробями см. Десятичная дробь .

    Приведение к общему знаменателю

    Для сравнения, сложения и вычитания дробей их следует преобразовать (привести ) к виду с одним и тем же знаменателем. Пусть даны две дроби: a b {\displaystyle {\frac {a}{b}}} и c d {\displaystyle {\frac {c}{d}}} . Порядок действий:

    После этого знаменатели обеих дробей совпадают (равны M ). Вместо наименьшего общего кратного можно в простых случаях взять в качестве M любое другое общее кратное, например, произведение знаменателей. Пример см. ниже в разделе Сравнение.

    Сравнение

    Чтобы сравнить две обыкновенные дроби, следует привести их к общему знаменателю и сравнить числители получившихся дробей. Дробь с бо́льшим числителем будет больше.

    Пример. Сравниваем 3 4 {\displaystyle {\frac {3}{4}}} и 4 5 {\displaystyle {\frac {4}{5}}} . НОК(4, 5) = 20. Приводим дроби к знаменателю 20.

    3 4 = 15 20 ; 4 5 = 16 20 {\displaystyle {\frac {3}{4}}={\frac {15}{20}};\quad {\frac {4}{5}}={\frac {16}{20}}}

    Следовательно, 3 4 < 4 5 {\displaystyle {\frac {3}{4}}<{\frac {4}{5}}}

    Сложение и вычитание

    Чтобы сложить две обыкновенные дроби, следует привести их к общему знаменателю. Затем сложить числители, а знаменатель оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} + = + = 5 6 {\displaystyle {\frac {5}{6}}}

    НОК знаменателей (здесь 2 и 3) равно 6. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 6, для этого числитель и знаменатель надо умножить на 3.
    Получилось 3 6 {\displaystyle {\frac {3}{6}}} . Приводим дробь 1 3 {\displaystyle {\frac {1}{3}}} к тому же знаменателю, для этого числитель и знаменатель надо умножить на 2. Получилось 2 6 {\displaystyle {\frac {2}{6}}} .
    Чтобы получить разность дробей, их также надо привести к общему знаменателю, а затем вычесть числители, знаменатель при этом оставить без изменений:

    1 2 {\displaystyle {\frac {1}{2}}} - = - 1 4 {\displaystyle {\frac {1}{4}}} = 1 4 {\displaystyle {\frac {1}{4}}}

    НОК знаменателей (здесь 2 и 4) равно 4. Приводим дробь 1 2 {\displaystyle {\frac {1}{2}}} к знаменателю 4, для этого надо числитель и знаменатель умножить на 2. Получаем 2 4 {\displaystyle {\frac {2}{4}}} .

    Умножение и деление

    Чтобы умножить две обыкновенные дроби, нужно перемножить их числители и знаменатели:

    a b ⋅ c d = a c b d . {\displaystyle {\frac {a}{b}}\cdot {\frac {c}{d}}={\frac {ac}{bd}}.}

    В частности, чтобы умножить дробь на натуральное число, надо числитель умножить на число, а знаменатель оставить тем же:

    2 3 ⋅ 3 = 6 3 = 2 {\displaystyle {\frac {2}{3}}\cdot 3={\frac {6}{3}}=2}

    В общем случае, числитель и знаменатель результирующей дроби могут не быть взаимно простыми, и может потребоваться сокращение дроби, например:

    5 8 ⋅ 2 5 = 10 40 = 1 4 . {\displaystyle {\frac {5}{8}}\cdot {\frac {2}{5}}={\frac {10}{40}}={\frac {1}{4}}.}

    Чтобы поделить одну обыкновенную дробь на другую, нужно умножить первую на дробь, обратную второй:

    a b: c d = a b ⋅ d c = a d b c , c ≠ 0. {\displaystyle {\frac {a}{b}}:{\frac {c}{d}}={\frac {a}{b}}\cdot {\frac {d}{c}}={\frac {ad}{bc}},\quad c\neq 0.}

    Например,

    1 2: 1 3 = 1 2 ⋅ 3 1 = 3 2 . {\displaystyle {\frac {1}{2}}:{\frac {1}{3}}={\frac {1}{2}}\cdot {\frac {3}{1}}={\frac {3}{2}}.}

    Преобразование между разными форматами записи

    Чтобы преобразовать обыкновенную дробь в дробь десятичную, следует разделить числитель на знаменатель. Результат может иметь конечное число десятичных знаков, но может быть и бесконечной

    Дробь — форма представления числа в математике. Дробная черта обозначает операцию деления. Числителем дроби называется делимое, а знаменателем — делитель. Например, в дроби числителем является число 5, а знаменателем — 7.

    Правильной называется дробь, у которой модуль числителя больше модуля знаменателя. Если дробь является правильной, то модуль её значения всегда меньше 1. Все остальные дроби являются неправильными .

    Дробь называют смешанной , если она записана как целое число и дробь. Это то же самое, что и сумма этого числа и дроби:

    Основное свойство дроби

    Если числитель и знаменатель дроби умножить на одно и то же число, то значение дроби не изменится, то есть, например,

    Приведение дробей к общему знаменателю

    Чтобы привести две дроби к общему знаменателю, нужно:

    1. Числитель первой дроби умножить на знаменатель второй
    2. Числитель второй дроби умножить на знаменатель первой
    3. Знаменатели обеих дробей заменить на их произведение

    Действия с дробями

    Сложение. Чтобы сложить две дроби, нужно

    1. Сложить новые числители обеих дробей, а знаменатель оставить без изменений

    Пример:

    Вычитание. Чтобы вычесть одну дробь из другой, нужно

    1. Привести дроби к общему знаменателю
    2. Вычесть из числителя первой дроби числитель второй, а знаменатель оставить без изменений

    Пример:

    Умножение. Чтобы умножить одну дробь на другую, следует перемножить их числители и знаменатели:

    Деление. Чтобы разделить одну дробь на другую, следует числитель первой дроби умножить на знаменатель второй, а знаменатель первой дроби умножить на числитель второй:

    Одним из самых сложных разделов математики по сей день считаются дроби. История дробей насчитывает не одно тысячелетие. Умение делить целое на части возникло на территории древнего Египта и Вавилона. С годами усложнялись операции, проделываемые с дробями, менялась форма их записи. У каждого были свои особенности во «взаимоотношениях» с этим разделом математики.

    Что такое дробь?

    Когда возникла необходимость делить целое на части без лишних усилий, тогда и появились дроби. История дробей неразрывна связана с решением утилитарных задач. Сам термин «дробь» имеет арабские корни и происходит от слова, обозначающего «ломать, разделять». С древних времен в этом смысле мало что изменилось. Современное определение звучит следующим образом: дробь — это часть или сумма частей единицы. Соответственно, примеры с дробями представляют собой последовательное выполнение математических операций с долями чисел.

    Сегодня различают два способа их записи. возникли в разное время: первые являются более древними.

    Пришли из глубины веков

    Впервые оперировать дробями начали на территории Египта и Вавилона. Подход математиков двух государств имел значительные отличия. Однако начало и там и там было положено одинаково. Первой дробью стала половина или 1/2. Дальше возникла четверть, треть и так далее. Согласно данным археологических раскопок, история возникновения дробей насчитывает около 5 тысяч лет. Впервые доли числа встречаются в египетских папирусах и на вавилонских глиняных табличках.

    Древний Египет

    Виды обыкновенных дробей сегодня включают в себя и так называемые египетские. Они представляют собой сумму нескольких слагаемых вида 1/n. Числитель — всегда единица, а знаменатель — натуральное число. Появились такие дроби, как ни трудно догадаться, в древнем Египте. При расчетах все доли старались записывать в виде таких сумм (например, 1/2 + 1/4 + 1/8). Отдельными обозначениями обладали только дроби 2/3 и 3/4, остальные разбивались на слагаемые. Существовали специальные таблицы, в которых доли числа представлялись в виде суммы.

    Наиболее древнее из известных упоминаний такой системы встречается в Математическом папирусе Ринда, датируемом началом второго тысячелетия до нашей эры. Он включает таблицу дробей и математические задачи с решениями и ответами, представленными в виде сумм дробей. Египтяне умели складывать, делить и умножать доли числа. Дроби в долине Нила записывались с помощью иероглифов.

    Представление доли числа в виде суммы слагаемых вида 1/n, характерное для древнего Египта, использовалось математиками не только этой страны. Вплоть до Средних веков египетские дроби применялись на территории Греции и других государств.

    Развитие математики в Вавилоне

    Иначе выглядела математика в Вавилонском царстве. История возникновения дробей здесь напрямую связана с особенностями системы счисления, доставшейся древнему государству в наследство от предшественника, шумеро-аккадской цивилизации. Расчетная техника в Вавилоне была удобнее и совершеннее, чем в Египте. Математика в этой стране решала гораздо больший круг задач.

    Судить о достижениях вавилонян сегодня можно по сохранившимся глиняным табличкам, заполненным клинописью. Благодаря особенностям материала они дошли до нас в большом количестве. По мнению некоторых в Вавилоне раньше Пифагора открыли известную теорему, что, несомненно, свидетельствует о развитии науки в этом древнем государстве.

    Дроби: история дробей в Вавилоне

    Система счисления в Вавилоне была шестидесятеричной. Каждый новый разряд отличался от предыдущего на 60. Такая система сохранилась в современном мире для обозначения времени и величин углов. Дроби также были шестидесятеричными. Для записи использовали специальные значки. Как и в Египте, примеры с дробями содержали отдельные символы для обозначения 1/2, 1/3 и 2/3.

    Вавилонская система не исчезла вместе с государством. Дробями, написанными в 60-тиричной системе, пользовались античные и арабские астрономы и математики.

    Древняя Греция

    История обыкновенных дробей мало чем обогатилась в древней Греции. Жители Эллады считали, что математика должна оперировать лишь целыми числами. Поэтому выражения с дробями на страницах древнегреческих трактатов практически не встречались. Однако определенный вклад в этот раздел математики внесли пифагорейцы. Они понимали дроби как отношения или пропорции, а единицу считали также неделимой. Пифагор с учениками построил общую теорию дробей, научился проводить все четыре арифметические операции, а также сравнение дробей путем приведения их к общему знаменателю.

    Священная римская империя

    Римская система дробей была связана с мерой веса, называемой «асс». Она делилась на 12 долей. 1/12 асса называлась унцией. Для обозначения дробей существовало 18 названий. Приведем некоторые из них:

      семис — половина асса;

      секстанте — шестая доля асса;

      семиунция — пол-унции или 1/24 асса.

    Неудобство такой системы заключалось в невозможности представить число в виде дроби со знаменателем 10 или 100. Римские математики преодолели трудность с помощью использования процентов.

    Написание обыкновенных дробей

    В Античности дроби уже писали знакомым нам образом: одно число над другим. Однако было одно существенное отличие. Числитель располагался под знаменателем. Впервые так писать дроби начали в древней Индии. Современный нам способ стали использовать арабы. Но никто из названных народов не применял горизонтальную черту для разделения числителя и знаменателя. Впервые она появляется в трудах Леонардо Пизанского, более известного как Фибоначчи, в 1202 году.

    Китай

    Если история возникновения обыкновенных дробей началась в Египте, то десятичные впервые появились в Китае. В Поднебесной империи их стали использовать примерно с III века до нашей эры. История десятичных дробей началась с китайского математика Лю Хуэя, предложившего использовать их при извлечении квадратных корней.

    В III веке нашей эры десятичные дроби в Китае стали применяться при расчете веса и объема. Постепенно они все глубже начали проникать в математику. В Европе, однако, десятичные дроби стали использоваться гораздо позже.

    Аль-Каши из Самарканда

    Независимо от китайских предшественников десятичные дроби открыл астроном аль-Каши из древнего города Самарканда. Жил и трудился он в XV веке. Свою теорию ученый изложил в трактате «Ключ к арифметике», увидевшем свет в 1427 году. Аль-Каши предложил использовать новую форму записи дробей. И целая, и дробная часть теперь писались в одной строке. Для их разделения самаркандский астроном не использовал запятую. Он писал целое число и дробную часть разными цветами, используя черные и красные чернила. Иногда для разделения аль-Каши также применял вертикальную черту.

    Десятичные дроби в Европе

    Новый вид дробей начал появляться в трудах европейских математиков с XIII века. Нужно заметить, что с трудами аль-Каши, как и с изобретением китайцев они знакомы не были. Десятичные дроби появились в трудах Иордана Неморария. Затем их использовал уже в XVI веке Французский ученый написал «Математический канон», в котором содержались тригонометрические таблицы. В них Виет использовал десятичные дроби. Для разделения целой и дробной части ученый применял вертикальную черту, а также разный размер шрифта.

    Однако это были лишь частные случаи научного использования. Для решения повседневных задач десятичные дроби в Европе стали применяться несколько позже. Произошло это благодаря голландскому ученому Симону Стевину в конце XVI века. Он издал математический труд «Десятая» в 1585 году. В нем ученый изложил теорию использования десятичных дробей в арифметике, в денежной системе и для определения мер и весов.

    Точка, точка, запятая

    Стевин также не пользовался запятой. Он отделял две части дроби при помощи нуля, обведенного в круг.

    Впервые запятая разделила две части десятичной дроби только в 1592 году. В Англии, однако, вместо нее стали применять точку. На территории США до сих пор десятичные дроби пишут именно таким образом.

    Одним из инициаторов использования обоих знаков препинания для разделения целой и дробной части был шотландский математик Джон Непер. Он высказал свое предложение в 1616-1617 гг. Запятой пользовался и немецкий ученый

    Дроби на Руси

    На русской земле первым математиком, изложившим деление целого на части, стал новгородский монах Кирик. В 1136 году он написал труд, в котором изложил метод «счисления лет». Кирик занимался вопросами хронологии и календаря. В своем труде он привел в том числе и деление часа на части: пятые, двадцать пятые и так далее доли.

    Деление целого на части применялось при расчете размера налога в XV-XVII веках. Использовались операции сложения, вычитания, деления и умножения с дробными частями.

    Само слово «дробь» появилось на Руси в VIII веке. Оно произошло от глагола «дробить, разделять на части». Для названия дробей наши предки использовали специальные слова. Например, 1/2 обозначалась как половина или полтина, 1/4 — четь, 1/8 — полчеть, 1/16 — полполчеть и так далее.

    Полная теория дробей, мало чем отличающаяся от современной, была изложена в первом учебнике по арифметике, написанном в 1701 году Леонтием Филипповичем Магницким. «Арифметика» состояла из нескольких частей. О дробях подробно автор рассказывает в разделе «О числах ломаных или с долями». Магницкий приводит операции с «ломанными» числами, разные их обозначения.

    Сегодня по-прежнему в числе самых сложных разделов математики называются дроби. История дробей также не была простой. Разные народы иногда независимо друг от друга, а иногда заимствуя опыт предшественников, пришли к необходимости введения, освоения и применения долей числа. Всегда учение о дробях вырастало из практических наблюдений и благодаря насущным проблемам. Необходимо было делить хлеб, размечать равные участки земли, высчитывать налоги, измерять время и так далее. Особенности применения дробей и математических операций с ними зависели от системы счисления в государстве и от общего уровня развития математики. Так или иначе, преодолев не одну тысячу лет, раздел алгебры, посвященный долям чисел, сформировался, развился и с успехом используется сегодня для самых разных нужд как практического характера, так и теоретического.