Причины существования различных форм атомных орбиталей. Атомные орбитали

Орбитали существуют независимо от того, находится на них электрон (занятые орбитали), или отсутствует (вакантные орбитали). Атом каждого элемента, начиная с водорода и заканчивая последним полученным на сегодня элементом, имеет полный набор всех орбиталей на всех электронных уровнях. Их заполнение электронами происходит по мере увеличения порядкового номера, то есть, заряда ядра.

s -Орбитали, как было показано выше, имеют сферическую форму и, следовательно, одинаковую электронную плотность в направлении каждой оси трехмерных координат:

На первом электронном уровне каждого атома находится только одна s- орбиталь. Начиная со второго электронного уровня помимо s- орбитали появляются также три р -орбитали. Они имеют форму объемных восьмерок, именно так выглядит область наиболее вероятного местонахождения р -электрона в районе атомного ядра. Каждая р -орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р -орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:

В современной химии орбиталь – определяющее понятие, позволяющее рассматривать процессы образования химических связей и анализировать их свойства, при этом внимание сосредотачивают на орбиталях тех электронов, которые участвуют в образовании химических связей, то есть, валентных электронов, обычно это электроны последнего уровня.

У атома углерода в исходном состоянии на втором (последнем) электронном уровне находится два электрона на s -орбитали (отмечены синим цветом) и по одному электрону на двух р -орбиталях (отмечены красным и желтым цветом), третья орбиталь – р z -вакантная:

Гибридизация.

В том случае, когда атом углерода участвует в образовании насыщенных соединений (не содержащих кратных связей), одна s- орбиталь и три р -орбитали объединяются, образуя новые орбитали, представляющие собой гибриды исходных орбиталей (процесс называют гибридизацией). Количество гибридных орбиталей всегда равно количеству исходных, в данном случае, четыре. Получившиеся орбитали-гибриды одинаковы по форме и внешне напоминают асимметричные объемные восьмерки:

Вся конструкция оказывается как бы вписанной в правильный тетраэдр – призма, собранная из правильных треугольников. При этом орбитали-гибриды располагаются вдоль осей такого тетраэдра, угол между любыми двумя осями – 109°. Четыре валентных электрона углерода располагаются на этих гибридных орбиталях:

Участие орбиталей в образовании простых химических связей.

Свойства электронов, разместившихся на четырех одинаковых орбиталях, эквивалентны, соответственно, будут эквивалентны химические связи, образованные с участием этих электронов при взаимодействии с атомами одного типа.

Взаимодействие атома углерода с четырьмя атомами водорода сопровождается взаимоперекрыванием вытянутых гибридных орбиталей углерода со сферическими орбиталями водородов. На каждой орбитали находится по одному электрону, в результате перекрывания каждая пара электронов начинает перемещаться по объединенной – молекулярной орбитали.

Гибридизация приводит лишь к изменению формы орбиталей внутри одного атома, а перекрывание орбиталей двух атомов(гибридных или обычных)приводит к образованию химической связи между ними. В данном случае (см . рисунок, помещенный ниже) максимальная электронная плотность располагается вдоль линии, связывающей два атома. Такую связь называют s -связью.

В традиционном написании структуры образовавшегося метана вместо перекрывающихся орбиталей используют символ валентной черты. Для объемного изображения структуры валентность, направленную от плоскости чертежа к зрителю показывают в виде сплошной клиновидной линии, а валентность, уходящую за плоскость рисунка – в виде штриховой клиновидной линии:

Таким образом, структура молекулы метана определяется геометрией гибридных орбиталей углерода:

Образование молекулы этана аналогично показанному выше процессу, отличие состоит в том, что при взаимоперекрывании гибридных орбиталей двух атомов углерода происходит образование С-С – связи:

Геометрия молекулы этана напоминает метан, валентные углы 109°, что определяется пространственным расположением гибридных орбиталей углерода:

Участие орбиталей в образовании кратных химических связей.

Молекула этилена образована также с участием орбиталей-гибридов, однако в гибридизации участвуют одна s -орбиталь и только две р -орбитали (р х и р у ), третья орбиталь – p z , направленная вдоль оси z , в образовании гибридов не участвует. Из исходных трех орбиталей возникают три гибридных орбитали, которые располагаются в одной плоскости, образуя трехлучевую звезду, углы между осями – 120°:

Два атома углерода присоединяют четыре атома водорода, а также соединяются между собой, образуя s -связь С-С:

Две орбитали p z , не участвовавшие в гибридизации, взаимоперекрываются, их геометрия такова, что перекрывание происходит не по линии связи С-С, а выше и ниже ее. В результате образуются две области с повышенной электронной плотностью, где помещаются два электрона (отмечены синим и красным цветом), участвующие в образовании этой связи. Таким образом, образуется одна молекулярная орбиталь, состоящая из двух областей, разделенных в пространстве. Связь, у которой максимальная электронная плотность расположена вне линии, связывающей два атома, называют p -связью:

Вторая валентная черта в обозначении двойной связи, широко используемая для изображения ненасыщенных соединений уже не одно столетие, в современном понимании подразумевает наличие двух областей с повышенной электронной плотностью, расположенных по разные стороны линии связи С-С.

Структура молекулы этилена задана геометрией гибридных орбиталей, валентный угол Н-С-Н – 120°:

При образовании ацетилена в гибридизации участвует одна одна s -орбиталь и одна р x -орбиталь (орбитали p y и p z , в образовании гибридов не участвуют). Две образовавшиеся гибридные орбитали располагаются на одной линии, вдоль оси х :

Взаимоперекрывание орбиталей-гибридов друг с другом и с орбиталями атомов водорода приводит к образованию s -связей С-С и С-Н, изображаемых с помощью простой валентной черты:

Две пары оставшихся орбиталей p y и p z взаимоперекрываются. На рисунке, приведенном ниже, цветными стрелками показано, что из чисто пространственных соображений наиболее вероятно перекрывание орбиталей с одинаковыми индексами х-х и у-у . В результате образуются две p -связи, окружающие простую s -связь С-С:

В итоге молекула ацетилена имеет палочкообразную форму:

У бензола остов молекулы собран из атомов углерода, имеющих гибридные орбитали, составленные из одной s - и двух р -орбиталей, расположенные в форме трехлучевой звезды (как у этилена), р -орбитали, не участвующие в гибридизации, показаны полупрозрачными:

В образовании химических связей могут также участвовать вакантные, то есть, не содержащие электронов орбитали ().

Орбитали высоких уровней.

Начиная с четвертого электронного уровня, у атомов появляются пять d -орбиталей, их заполнение электронами происходит у переходных элементов, начиная со скандия. Четыре d -орбитали имеют форму объемных четырехлистников, называемых иногда «клеверным листом», они отличаются лишь ориентацией в пространстве, пятая d -орбиталь представляет собой объемную восьмерку, продетую в кольцо:

d -Орбитали могут образовывать гибриды с s- и p- орбиталями. Параметры d -орбиталей обычно используют при анализе строения и спектральных свойств в комплексах переходных металлов.

Начиная с шестого электронного уровня, у атомов появляются семь f -орбиталей, их заполнение электронами происходит в атомах лантаноидов и актиноидов. f -Орбитали имеют довольно сложную конфигурацию, ниже на рисунке показана форма трех из семи таких орбиталей, имеющих одинаковую форму и ориентированных в пространстве различным образом:

f -Орбитали весьма редко используют при обсуждении свойств различных соединений, поскольку расположенные на них электроны практически не принимают участия в химических превращениях..

Перспективы.

На восьмом электронном уровне находится девять g -орбиталей. Элементы, содержащие электроны на этих орбиталях, должны появится в восьмом периоде, пока они недоступны (в ближайшее время ожидается получение элемента № 118, последнего элемента седьмого периода Периодической системы, его синтез проводят в Объединенном институте ядерных исследований в Дубне).

Форма g -орбиталей, вычисленная методами квантовой химии, еще более сложная, чем у f -орбиталей, область наиболее вероятного местонахождения электрона в данном случае выглядит весьма причудливо. Ниже показан внешний вид одной из девяти таких орбиталей:

В современной химии представления об атомных и молекулярных орбиталях широко используют при описании строения и реакционных свойств соединений, также при анализе спектров различных молекул, в некоторых случаях – для прогнозирования возможности протекания реакций.

Михаил Левицкий

Системы. При этом орбитальопределяется одноэлектронным ур-ни-ем Шрёдингера с эффективным одноэлектронным гамильтонианом ; орбитальная энергия , как правило, соотносится с (см. ). В зависимости от системы, для к-рой определена орбиталь, различают атомные, молекулярные и кристаллические орбитали.

Атомные орбитали (АО) характеризуются тремя квантовыми числами: главным п, орбитальным / и магнитным ш. Значение l = 0, 1, 2,... задает квадрат орбитального (углового) момента (-постоянная Планка), значение m = l,l - 1,..., +1, 0, - 1,..., - l + 1, - l-проекцию момента на нек-рую выбранную ось z; n нумерует орбитальные энергии. Состояния с заданным / нумеруются числами п = l + 1, l + 2,... В сферич. системе координат с центром на ядре АО имеет форму , где и -полярные углы, r-расстояние от до ядра. R nl (r)наз. радиальной частью АО (радиальной ф-цией), a Y lm (q, j)-сферич. гармоникой. При поворотах системы координат сферич. гармоника заменяется на линейную комбинацию гармоник с одним и тем же значением l; радиальная часть АО при поворотах не меняется, и соответствующий этой АО энергетич. уровень (21 + 1)-кратно вырожден. Обычно - показатель орбитальной экспоненты, а Р пl - полином степени (п - l - 1). В сокращенной записи АО описывают символом nl m , причем п обозначают цифрами 1, 2, 3,..., значениям l = 0, 1, 2, 3, 4,... отвечают буквы s, p, d, f, g,...; m указывают справа внизу, напр. 2p +1 , 3d -2 .

Более удобны АО, содержащие не комплексные сферич. гармоники, а их линейные комбинации, имеющие . значения. Такие АО наз. кубическими (тессераль-ными). Они имеют вид , где (х, y, z) - однородный полином (угловая ф-ция) степени l относительно декартовых координат х, у, z с центром на ядре (направление осей произвольно); АО обозначают символами , напр.

Если полином P nl (r)определяется решением ур-ния Шрёдингера для в кулоновском поле ядра, АО наз. водородоподобными. Наиб. употребительные водоро-доподобные кубич. АО приведены в таблице.

ВОДОРОДОПОДОБНЫЕ ОРБИТАЛИ s. p, d, f-ТИПОВ


В хим. приложениях нередко приводят контуры АО, к-рые м. б. построены по-разному. Наиб. распространены т. наз. фазовые пов-сти, на к-рых изображают значения кубич. (или сферич.) гармоник: при заданных полярных углах модуль угловой части АО равен расстоянию до начала координат. На рис. 1 приведены другие, более наглядные пов-сти, на к-рых абс. величины нек-рых АО имеют постоянное значение. Оба способа изображения АО практически не различаются лишь вблизи начала координат. Во всех случаях знаками + и - (или штриховкой) указывают, какой знак имеет АО в данной области. Как и все волновые ф-ции, АО можно умножить на - 1, что приведет к изменению знака ф-ции, однако смысл имеют не знаки АО сами по себе, а чередование знаков для системы АО при описании мол. орбиталей. Графич. изображение АО не всегда имеет смысл. Так, квадраты модулей сферич. гармоник не зависят от угла , поэтому изображение, напр., АО 2р х и 2р у будет совсем не похоже на изображение АО 2р + и 2p - , хотя обе АО полностью эквивалентны.


Молекулярные орбитали (МО) описывают в поле всех ядер и усредненном поле остальных . Как правило, МО не имеют простого аналит. представления и для них используют (см. ). В методах мол. орбиталей многоэлектронная волновая ф-ция строится как произведение или определитель, составленный из спин-орбиталей, т.е. орбиталей, умноженных на спин-функцию или (см. ).

где 0 = 0,372, b = 0,602, -атомная орбиталь 2p z С i (i=1, 2, 3, 4). 1-орбиталь имеет одну узловую плоскость (ху), 2-орбиталь имеет дополнит. узловую плоскость, перпендикулярную этой плоскости и проходящую между

ОРБИТАЛЬ - область наиболее вероятного местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).

К настоящему моменту описано пять типов орбиталей: s, p, d, f и g.
Названия первых трех сложились исторически, далее был выбран алфавитный принцип. Формы орбиталей вычислены методами квантовой химии.

s-Орбитали - имеют сферическую форму и одинаковую электронную плотность в направлении каждой оси трехмерных координат
s- орбиталь - орбиталь сфера

Каждая р-орбиталь расположена вдоль одной из трех взаимоперпендикулярных осей, в соответствии с этим в названии р-орбитали указывают с помощью соответствующего индекса ту ось, вдоль которой располагается ее максимальная электронная плотность:
p- орбиталь - орбиталь гантель

d- орбиталь - орбиталь сложной формы

Энергия электронных уровней


Квантовые числа электронов

Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел:

n - энергетический уровень электрона (удаленность уровня от ядра)
l - по какого вида орбитали он движется (s,p,d...)
m- магнитного (на какой из p (из трех возможных), d (из 5-ти возможных) и т.д.
s - спинового (движение электрона вокруг собственной оси).

Принципы заполнения орбиталей

1. В атоме не может быть двух электронов, у которых значения всех квантовых чисел (n, l, m, s) были бы одинаковы, т.е. на каждой орбитали может находиться не более двух электронов (c противоположными спинами) (принцип Паули).

2. В основном состоянии каждый электрон располагается так, чтобы его энергия была минимальной.
Энергия орбиталей возрастает в ряду:
1S < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d » 4f < 6p < 7s.
Нет никакой необходимости запоминать эту последовательность. Ее можно извлечь из Периодической таблицы Д.И.Менделеева

3. Электроны предпочитают расселяться на одинаковых по энергии орбиталях (например, на трех p-орбиталях) сначала по одиночке, и лишь когда в каждой такой орбитали уже находится по одному электрону, начинается заполнение этих орбиталей вторыми электронами. Когда орбиталь заселяется двумя электронами, такие электроны называют спаренными .(правило Хунда)

Полная электронная формула элемента

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням и подуровням, называется электронной конфигурацией этого атома. В основном (невозбужденном) состоянии атома все электроны удовлетворяют принципу минимальной энергии. Это значит, что сначала заполняются подуровни, для которых:

1. Число n минимально
2. Внутри уровня сначала заполняется s- подуровень, затем p- и лишь затем d- (l минимально)
3. Один подуровень содержит наибольшее число неспаренных электронов.
4. При заполнении электронных атомных орбиталей выполняется принцип Паули. Его следствием является, что энергетическому уровню с номером n может принадлежать не более чем 2n2 электронов, расположенных на n2 подуровнях.

Электронная формула элемента с порядковым номером 7 (это элемент азот, имеющий символ “N”) выглядит так.

Электронная конфигурация атома - это численное представление его электронных орбиталей. Электронные орбитали - это области различной формы, расположенные вокруг атомного ядра, в которых математически вероятно нахождение электрона. Электронная конфигурация помогает быстро и с легкостью сказать читателю, сколько электронных орбиталей есть у атома, а также определить количество электронов, находящихся на каждой орбитали. Прочитав эту статью, вы освоите метод составления электронных конфигураций.

Шаги

Распределение электронов с помощью периодической системы Д. И. Менделеева

    Найдите атомный номер вашего атома. Каждый атом имеет определенное число электронов, связанных с ним. Найдите символ вашего атома в таблице Менделеева . Атомный номер - это целое положительное число, начинающееся от 1 (у водорода) и возрастающее на единицу у каждого последующего атома. Атомный номер - это число протонов в атоме, и, следовательно, это еще и число электронов атома с нулевым зарядом.

    Определите заряд атома. Нейтральные атомы будут иметь столько же электронов, сколько показано в таблице Менделеева. Однако заряженные атомы будут иметь большее или меньшее число электронов - в зависимости от величины их заряда. Если вы работаете с заряженным атомом, добавляйте или вычитайте электроны следующим образом: добавляйте один электрон на каждый отрицательный заряд и вычитайте один на каждый положительный.

    • Например, атом натрия с зарядом -1 будет иметь дополнительный электрон в добавок к своему базовому атомному числу 11. Иначе говоря, в сумме у атома будет 12 электронов.
    • Если речь идет об атоме натрия с зарядом +1, от базового атомного числа 11 нужно отнять один электрон. Таким образом, у атома будет 10 электронов.
  1. Запомните базовый список орбиталей. По мере того, как у атома увеличивается число электронов, они заполняют различные подуровни электронной оболочки атома согласно определенной последовательности. Каждый подуровень электронной оболочки, будучи заполненным, содержит четное число электронов. Имеются следующие подуровни:

    Разберитесь в записи электронной конфигурации. Электронные конфигурации записываются для того, чтобы четко отразить количество электронов на каждой орбитали. Орбитали записываются последовательно, причем количество атомов в каждой орбитали записывается как верхний индекс справа от названия орбитали. Завершенная электронная конфигурация имеет вид последовательности обозначений подуровней и верхних индексов.

    • Вот, например, простейшая электронная конфигурация: 1s 2 2s 2 2p 6 . Эта конфигурация показывает, что на подуровне 1s имеется два электрона, два электрона - на подуровне 2s и шесть электронов на подуровне 2p. 2 + 2 + 6 = 10 электронов в сумме. Это электронная конфигурация нейтрального атома неона (атомный номер неона - 10).
  2. Запомните порядок орбиталей. Имейте в виду, что электронные орбитали нумеруются в порядке возрастания номера электронной оболочки, но располагаются по возрастанию энергии. Например, заполненная орбиталь 4s 2 имеет меньшую энергию (или менее подвижна), чем частично заполненная или заполненная 3d 10 , поэтому сначала записывается орбиталь 4s. Как только вы будете знать порядок орбиталей, вы сможете с легкостью заполнять их в соответствии с количеством электронов в атоме. Порядок заполнения орбиталей следующий: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p.

    • Электронная конфигурация атома, в котором заполнены все орбитали, будет иметь следующий вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 10 6p 6 7s 2 5f 14 6d 10 7p 6
    • Обратите внимание, что приведенная выше запись, когда заполнены все орбитали, является электронной конфигурацией элемента Uuo (унуноктия) 118, атома периодической системы с самым большим номером. Поэтому данная электронная конфигурация содержит все известные в наше время электронные подуровни нейтрально заряженного атома.
  3. Заполняйте орбитали согласно количеству электронов в вашем атоме. Например, если мы хотим записать электронную конфигурацию нейтрального атома кальция, мы должны начать с поиска его атомного номера в таблице Менделеева. Его атомный номер - 20, поэтому мы напишем конфигурацию атома с 20 электронами согласно приведенному выше порядку.

    • Заполняйте орбитали согласно приведенному выше порядку, пока не достигнете двадцатого электрона. На первой 1s орбитали будут находится два электрона, на 2s орбитали - также два, на 2p - шесть, на 3s - два, на 3p - 6, и на 4s - 2 (2 + 2 + 6 +2 +6 + 2 = 20.) Иными словами, электронная конфигурация кальция имеет вид: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .
    • Обратите внимание: орбитали располагаются в порядке возрастания энергии. Например, когда вы уже готовы перейти на 4-й энергетический уровень, то сначала записывайте 4s орбиталь, а затем 3d. После четвертого энергетического уровня вы переходите на пятый, на котором повторяется такой же порядок. Это происходит только после третьего энергетического уровня.
  4. Используйте таблицу Менделеева как визуальную подсказку. Вы, вероятно, уже заметили, что форма периодической системы соответствует порядку электронных подуровней в электронных конфигурациях. Например, атомы во второй колонке слева всегда заканчиваются на "s 2 ", а атомы на правом краю тонкой средней части оканчиваются на "d 10 " и т.д. Используйте периодическую систему как визуальное руководство к написанию конфигураций - как порядок, согласно которому вы добавляете к орбиталям соответствует вашему положению в таблице. Смотрите ниже:

    • В частности, две самые левые колонки содержат атомы, чьи электронные конфигурации заканчиваются s-орбиталями, в правом блоке таблицы представлены атомы, чьи конфигурации заканчиваются p-орбиталями, а в нижней части атомы заканчиваются f-орбиталями.
    • Например, когда вы записываете электронную конфигурацию хлора, размышляйте следующим образом: "Этот атом расположен в третьем ряду (или "периоде") таблицы Менделеева. Также он располагается в пятой группе орбитального блока p периодической системы. Поэтому, его электронная конфигурация будет заканчиваться на...3p 5
    • Обратите внимание: элементы в области орбиталей d и f таблицы характеризуются энергетическими уровнями, которые не соответствуют периоду, в котором они расположены. Например, первый ряд блока элементов с d-орбиталями соответствует 3d орбиталям, хотя и располагается в 4 периоде, а первый ряд элементов с f-орбиталями соответствует орбитали 4f, несмотря на то, что он находится в 6 периоде.
  5. Выучите сокращения написания длинных электронных конфигураций. Атомы на правом краю периодической системы называются благородными газами. Эти элементы химически очень устойчивы. Чтобы сократить процесс написания длинных электронных конфигураций, просто записывайте в квадратных скобках химический символ ближайшего благородного газа с меньшим по сравнению с вашим атомом числом электронов, а затем продолжайте писать электронную конфигурацию последующих орбитальных уровней. Смотрите ниже:

    • Чтобы понять эту концепцию, полезно будет написать пример конфигурации. Давайте напишем конфигурацию цинка (атомный номер 30), используя сокращение, включающее благородный газ. Полная конфигурация цинка выглядит так: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 . Однако мы видим, что 1s 2 2s 2 2p 6 3s 2 3p 6 - это электронная конфигурация аргона, благородного газа. Просто замените часть записи электронной конфигурации цинка химическим символом аргона в квадратных скобках (.)
    • Итак, электронная конфигурация цинка, записанная в сокращенном виде, имеет вид: 4s 2 3d 10 .
    • Учтите, если вы пишете электронную конфигурацию благородного газа, скажем, аргона, писать нельзя! Нужно использовать сокращение благородного газа, стоящего перед этим элементом; для аргона это будет неон ().

    С помощью периодической таблицы ADOMAH

    1. Освойте периодическую таблицу ADOMAH. Данный метод записи электронной конфигурации не требует запоминания, однако требует наличия переделанной периодической таблицы, поскольку в традиционной таблице Менделеева, начиная с четвертого периода, номер периода не соответствует электронной оболочке. Найдите периодическую таблицу ADOMAH - особый тип периодической таблицы, разработанный ученым Валерием Циммерманом. Ее легко найти посредством короткого поиска в интернете.

      • В периодической таблице ADOMAH горизонтальные ряды представляют группы элементов, такие как галогены, инертные газы, щелочные металлы, щелочноземельные металлы и т.д. Вертикальные колонки соответствуют электронным уровням, а так называемые "каскады" (диагональные линии, соединяющие блоки s,p,d и f) соответствуют периодам.
      • Гелий перемещен к водороду, поскольку оба этих элемента характеризуются орбиталью 1s. Блоки периодов (s,p,d и f) показаны с правой стороны, а номера уровней приведены в основании. Элементы представлены в прямоугольниках, пронумерованных от 1 до 120. Эти номера являются обычными атомными номерами, которые представляют общее количество электронов в нейтральном атоме.
    2. Найдите ваш атом в таблице ADOMAH. Чтобы записать электронную конфигурацию элемента, найдите его символ в периодической таблице ADOMAH и вычеркните все элементы с большим атомным номером. Например, если вам нужно записать электронную конфигурацию эрбия (68), вычеркните все элементы от 69 до 120.

      • Обратите внимание на номера от 1 до 8 в основании таблицы. Это номера электронных уровней, или номера колонок. Игнорируйте колонки, которые содержат только вычеркнутые элементы. Для эрбия остаются колонки с номерами 1,2,3,4,5 и 6.
    3. Посчитайте орбитальные подуровни до вашего элемента. Смотря на символы блоков, приведенные справа от таблицы (s, p, d, and f), и на номера колонок, показанные в основании, игнорируйте диагональные линии между блоками и разбейте колонки на блоки-колонки, перечислив их по порядку снизу вверх. И снова игнорируйте блоки, в которых вычеркнуты все элементы. Запишите блоки-колонки, начиная от номера колонки, за которым следует символ блока, таким образом: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s (для эрбия).

      • Обратите внимание: Приведенная выше электронная конфигурация Er записана в порядке возрастания номера электронного подуровня. Ее можно также записать в порядке заполнения орбиталей. Для этого следуйте по каскадам снизу вверх, а не по колонкам, когда вы записываете блоки-колонки: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 6 6s 2 4f 12 .
    4. Посчитайте электроны для каждого электронного подуровня. Подсчитайте элементы, в каждом блоке-колонке которые не были вычеркнуты, прикрепляя по одному электрону от каждого элемента, и запишите их количество рядом с символом блока для каждого блока-колонки таким образом: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 12 5s 2 5p 6 6s 2 . В нашем примере это электронная конфигурация эрбия.

    5. Учитывайте неправильные электронные конфигурации. Существует восемнадцать типичных исключений, относящихся к электронным конфигурациям атомов в состоянии с наименьшей энергией, также называемом основным энергетическим состоянием. Они не подчиняются общему правилу только по последним двум-трем положениям, занимаемым электронами. При этом действительная электронная конфигурация предполагает нахождение электронов в состоянии с более низкой энергией в сравнении со стандартной конфигурацией атома. К атомам-исключениям относятся:

      • Cr (..., 3d5, 4s1); Cu (..., 3d10, 4s1); Nb (..., 4d4, 5s1); Mo (..., 4d5, 5s1); Ru (..., 4d7, 5s1); Rh (..., 4d8, 5s1); Pd (..., 4d10, 5s0); Ag (..., 4d10, 5s1); La (..., 5d1, 6s2); Ce (..., 4f1, 5d1, 6s2); Gd (..., 4f7, 5d1, 6s2); Au (..., 5d10, 6s1); Ac (..., 6d1, 7s2); Th (..., 6d2, 7s2); Pa (..., 5f2, 6d1, 7s2); U (..., 5f3, 6d1, 7s2); Np (..., 5f4, 6d1, 7s2) и Cm (..., 5f7, 6d1, 7s2).
      • Чтобы найти атомный номер атома, когда он записан в форме электронной конфигурации, просто сложите все числа, которые идут за буквами (s, p, d, и f). Это работает только для нейтральных атомов, если вы имеете дело с ионом, то ничего не получится - вам придется добавить или вычесть количество дополнительных или потерянных электронов.
      • Число, идущее за буквой - это верхний индекс, не сделайте ошибку в контрольной.
      • "Стабильности полузаполненного" подуровня не существует. Это упрощение. Любая стабильность, которая относится к "наполовину заполненным" подуровням, имеет место из-за того, что каждая орбиталь занята одним электроном, поэтому минимизируется отталкивание между электронами.
      • Каждый атом стремится к стабильному состоянию, а самые стабильные конфигурации имеют заполненные подуровни s и p (s2 и p6). Такая конфигурация есть у благородных газов, поэтому они редко вступают в реакции и в таблице Менделеева расположены справа. Поэтому, если конфигурация заканчивается на 3p 4 , то для достижения стабильного состояния ей необходимо два электрона (чтобы потерять шесть, включая электроны s-подуровня, потребуется больше энергии, поэтому потерять четыре легче). А если конфигурация оканчивается на 4d 3 , то для достижения стабильного состояния ей необходимо потерять три электрона. Кроме того, полузаполненные подуровни (s1, p3, d5..) являются более стабильными, чем, например, p4 или p2; однако s2 и p6 будут еще более устойчивыми.
      • Когда вы имеете дело с ионом, это значит, что количество протонов не равно количеству электронов. Заряд атома в этом случае будет изображен сверху справа (как правило) от химического символа. Поэтому атом сурьмы с зарядом +2 имеет электронную конфигурацию 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 1 . Обратите внимание, что 5p 3 изменилось на 5p 1 . Будьте внимательны, когда конфигурация нейтрального атома заканчивается на подуровни, отличные от s и p. Когда вы забираете электроны, вы можете забрать их только с валентных орбиталей (s и p орбиталей). Поэтому, если конфигурация заканчивается на 4s 2 3d 7 и атом получает заряд +2, то конфигурация будет заканчиваться 4s 0 3d 7 . Обратите внимание, что 3d 7 не меняется, вместо этого теряются электроны s-орбитали.
      • Существуют условия, когда электрон вынужден "перейти на более высокий энергетический уровень". Когда подуровню не хватает одного электрона до половинной или полной заполненности, заберите один электрон из ближайшего s или p- подуровня и переместите его на тот подуровень, которому необходим электрон.
      • Имеется два варианта записи электронной конфигурации. Их можно записывать в порядке возрастания номеров энергетических уровней или в порядке заполнения электронных орбиталей, как было показано выше для эрбия.
      • Также вы можете записывать электронную конфигурацию элемента, записав лишь валентную конфигурацию, которая представляет собой последний s и p подуровень. Таким образом, валентная конфигурация сурьмы будет иметь вид 5s 2 5p 3 .
      • Ионы не то же самое. С ними гораздо сложнее. Пропустите два уровня и действуйте по той же схеме в зависимости от того, где вы начали, и от того, насколько велико количество электронов.

После завершения формального описания квантово-механического движения стало ясно, что в атомном пространстве каждый объект имеет такую характеристику, как атомная орбиталь.

Атомная орбиталь (АО) - область пространства вокруг ядра атома, в которой по законам квантовой механики с наибольшей вероятностью находится электрон с заданной энергией.

Энергетическое состояние электрона описывается функцией трех целочисленных параметров п } I, т 1У которые называются квантовыми числами. При определенных значениях квантовых чисел можно получить характеристики области, где может находиться электрон.

Квантовые числа имеют следующий физический смысл :

  • п - главное квантовое число , характеризует энергетический уровень и размер орбитали;
  • / - орбитальное квантовое число , характеризует энергетический подуровень и форму орбитали;
  • т { - магнитное квантовое число , учитывает влияние внешнего магнитного поля на энергетическое состояние электрона.

Главное квантовое число п является натуральным и соответствует номерам периодов в таблице Д. И. Менделеева (1, 2, 3, 4, 5, 6, 7). Главное квантовое число определяет основную долю энергии электрона, находящегося на данной орбитали. Это квантовое число называют также номером энергетического уровня. Чем больше п , тем больше размер орбитали.

Атомы, в которых электроны находятся на орбиталях с большим значением п (п > 8), называются ридберговскими атомами. Первые экспериментальные данные по ридберговским атомам в радиоастрономии были получены в 1964 г. сотрудниками ФИАПа (Р. С. Сороченко и др.) на 22-метровом зеркальном радиотелескопе. При ориентации телескопа на туманность Омега в спектре ее радиоизлучения была обнаружена линия излучения с длиной волны X = 3,4 см. Эта длина волны соответствует переходу между ридберговскими состояниями п = 90 и п = 91 в спектре атома водорода. Сегодня в лаборатории получены ридберговские атомы с п ~ 600! Это почти макроскопические объекты размером около 0,1 мм и временем жизни ~1 с. Изучение ридберговских состояний атомов оказалось полезным в работах по созданию квантовых компьютеров.

При этом увеличение размера не меняет формы орбитали. Чем больше п у тем больше энергия электрона. Электроны с одинаковым значением главного квантового числа находятся на одном энергетическом уровне. Номер п энергетического уровня указывает на число подуровней, входящих в состав данного уровня.

Орбитальное квантовое число I может принимать значения / = 0, 1,2,... до (п - 1), т.е. при данном главном квантовом числе п орбитальное квантовое число / может принять п значений. Орбитальное квантовое число определяет геометрическую форму орбиталей и определяет орбитальный момент количества движения (импульс) электрона, т.е. вклад данного подуровня в общую энергию электрона. Кроме численных значений, орбитальное квантовое число / имеет и буквенное обозначение:

Формы 5-, р-, (1-, /-орбиталей приведены на рис. 1.1. Знаки, проставленные на геометрических элементах орбиталей, не являются знаками заряда, а относятся к значениям волновой функции у для этих элементов. Поскольку при расчете вероятности рассматривается | н/| 2 - квадрат величины по модулю, то области орбиталей волновой функции у со знаками «+» и «-» становятся равнозначными.

Рис. 1.1.

Сложная форма большинства орбиталей обусловлена тем, что волновая функция электрона в полярных координатах имеет две составляющие - радиальную и угловую. При этом вероятность нахождения электрона в данной точке зависит как от ее расстояния до ядра, так и от направления в пространстве вектора, связывающего ядро с этой точкой. Эти функции зависят как от / (для 5- и р-орбиталей), так и от т 1 (для с1 - и /-орбиталей).

Например, абрисом (внешним контуром) всех 5-орбиталей является сфера. По оказывается, что вероятность обнаружения электрона внутри этой сферы не равномерна, а напрямую зависит от расстояния данной орбитали от ядра. На рис. 1.2 показана внутренняя структура 15- и 25-орбиталей. Как следует из рисунка, 25-орбиталь подобна «двухслойной луковице» с внутренними оболочками, расположенными на расстоянии 1 и 4 радиуса боровской орбиты. Как правило, в химии факт сложности внутреннего строения орбиталей не играет значительной роли и в данном курсе нс рассматривается.


Рис. 1.2. Распределение вероятности обнаружения электрона в атоме водорода в состояниях is и 2s. г { = 5,29*10 11 м - радиус первой боровской орбиты

Источник : wvw.college.ru/enportal/physics/content/chapter9/section/paragraph3/theory.html

Орбитальное магнитное квантовое число m t может принимать значения от -/ до +/, включая нуль. Это квантовое число определяет ориентацию орбитали в пространстве при воздействии внешнего магнитного поля и характеризует изменение энергии электрона, находящегося на этой орбитали, под влиянием внешнего магнитного поля. Количество орбиталей с данным значением т 1 составляет (2/ + 1).

Рассмотренные три квантовых числа п, /, т { являются следствием решения волнового уравнения Шредингера и позволяют определить энергию электрона через описание его волновых свойств. При этом не учитывался двойственный характер природы элементарных частиц, их корпускулярноволновой дуализм в описании энергетического состояния электрона.

Собственное магнитное квантовое число электрона m s {спин). Как следствие корпускулярных свойств электрона , в описании его энергетического состояния играет роль еще одно число - собственное квантовое число m s электрона {спин). Это квантовое число характеризует не орбиталь, а свойство самого электрона, находящегося на этой орбитали.

Спин (от англ, spin - вертеть[-ся], вращение) - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Часто используемая аналогия для описания спина как свойства, связанного с вращением электрона вокруг своей оси, оказалась несостоятельной. Такое описание приводит к противоречию со специальной теорией относительности - экваториальная скорость вращения электрона в этой модели превышает скорость света. Введение спина явилось удачным применением новой физической идеи: постулируется, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Необходимость введения такого пространства состояний свидетельствует о необходимости рассмотрения и более общего вопроса о реальности физического многомирия.

Электрон проявляет свои собственные магнитные свойства в том, что во внешнем электрическом иоле собственный момент импульса электрона ориентируется либо по полю, либо против ноля. В первом случае принимается, что собственное квантовое число электрона m s = +1/2, а во втором m s = -1/2. Отметим, что спин - единственное дробное число среди набора квантовых характеристик, определяющих состояние электрона в атоме.