Стандартный доверительный интервал. Доверительный интервал

Цель – научить студентов алгоритмам вычисления доверительных интервалов статистических параметров.

При статистической обработке данных вычисленные средняя арифметическая, коэффициент вариации, коэффициент корреляции, критерии различия и другие точечные статистики должны получить количественные границы доверия, которые обозначают возможные колебания показателя в меньшую и большую стороны в пределах доверительного интервала.

Пример 3.1 . Распределение кальция в сыворотке крови обезьян, как было установлено ранее, характеризуется следующими выборочными показателями: = 11,94 мг%;= 0,127 мг%;n = 100. Требуется определить доверительный интервал для генеральной средней () при доверительной вероятностиP = 0,95.

Генеральная средняя находится с определенной вероятностью в интервале:

, где – выборочная средняя арифметическая;t – критерий Стьюдента; – ошибка средней арифметической.

По таблице «Значения критерия Стьюдента» находим значение при доверительной вероятности 0,95 и числе степеней свободы k = 100-1 = 99. Оно равно 1,982. Вместе со значениями среднего арифметического и статистической ошибки подставляем его в формулу:

или 11,69
12,19

Таким образом, с вероятностью 95%, можно утверждать, что генеральная средняя данного нормального распределения находится между 11,69 и 12,19 мг%.

Пример 3.2 . Определите границы 95%-ного доверительного интервала для генеральной дисперсии () распределения кальция в крови обезьян, если известно, что
= 1,60, приn = 100.

Для решения задачи можно воспользоваться следующей формулой:

Где – статистическая ошибка дисперсии.

Находим ошибку выборочной дисперсии по формуле:
. Она равна 0,11. Значениеt - критерия при доверительной вероятности 0,95 и числе степеней свободы k = 100–1 = 99 известно из предыдущего примера.

Воспользуемся формулой и получим:

или 1,38
1,82

Более точно доверительный интервал генеральной дисперсии можно построить с применением (хи-квадрат) - критерия Пирсона. Критические точки для этого критерия приводятся в специальной таблице. При использовании критериядля построения доверительного интервала применяют двусторонний уровень значимости. Для нижней границы уровень значимости рассчитывается по формуле
, для верхней –
. Например, для доверительного уровня= 0,99= 0,010,= 0,990. Соответственно по таблице распределения критических значений, при рассчитанных доверительных уровнях и числе степеней свободыk = 100 – 1= 99, найдем значения
и
. Получаем
равно 135,80, а
равно70,06.

Чтобы найти доверительные границы генеральной дисперсии с помощью воспользуемся формулами: для нижней границы
, для верхней границы
. Подставим данные задачи найденные значенияв формулы:
= 1,17;
= 2,26. Таким образом, при доверительной вероятностиP = 0,99 или 99% генеральная дисперсия будет лежать в интервале от 1,17 до 2,26 мг% включительно.

Пример 3.3 . Среди 1000 семян пшеницы из поступившей на элеватор партии обнаружено 120 семян зараженных спорыньей. Необходимо определить вероятные границы генеральной доли зараженных семян в данной партии пшеницы.

Доверительные границы для генеральной доли при всех возможных ее значениях целесообразно определять по формуле:

,

Где n – число наблюдений; m – абсолютная численность одной из групп; t – нормированное отклонение.

Выборочная доля зараженных семян равна
или 12%. При доверительной вероятностиР = 95% нормированное отклонение (t -критерий Стьюдента при k =
)t = 1,960.

Подставляем имеющиеся данные в формулу:

Отсюда границы доверительного интервала равны= 0,122–0,041 = 0,081, или 8,1%;= 0,122 + 0,041 = 0,163, или 16,3%.

Таким образом, с доверительной вероятностью 95% можно утверждать, что генеральная доля зараженных семян находится между 8,1 и 16,3%.

Пример 3.4 . Коэффициент вариации, характеризующий варьирование кальция (мг%) в сыворотке крови обезьян, оказался равным 10,6%. Объем выборки n = 100. Необходимо определить границы 95%-ного доверительного интервала для генерального параметра Cv .

Границы доверительного интервала для генерального коэффициента вариации Cv определяются по следующим формулам:

и
, гдеK промежуточная величина, вычисляемая по формуле
.

Зная, что при доверительной вероятности Р = 95% нормированное отклонение (критерий Стьюдента при k =
)t = 1,960, предварительно рассчитаем величину К:

.

или 9,3%

или 12,3%

Таким образом, генеральный коэффициент вариации с доверительной вероятностью 95% лежит в интервале от 9,3 до 12,3%. При повторных выборках коэффициент вариации не превысит 12,3% и не окажется ниже 9,3% в 95 случаях из 100.

Вопросы для самоконтроля:

Задачи для самостоятельного решения.

1. Средний процент жира в молоке за лактацию коров холмогорских помесей был следующим: 3,4; 3,6; 3,2; 3,1; 2,9; 3,7; 3,2; 3,6; 4,0; 3,4; 4,1; 3,8; 3,4; 4,0; 3,3; 3,7; 3,5; 3,6; 3,4; 3,8. Установите доверительные интервалы для генеральной средней при доверительной вероятности 95% (20 баллов).

2. На 400 растениях гибридной ржи первые цветки появились в среднем на 70,5 день после посева. Среднее квадратическое отклонение было 6,9 дня. Определите ошибку средней и доверительные интервалы для генеральной средней и дисперсии при уровне значимости W = 0,05 и W = 0,01 (25 баллов).

3. При изучении длины листьев 502 экземпляров садовой земляники были получены следующие данные: = 7,86 см; σ = 1,32 см, =± 0,06 см. Определите доверительные интервалы для средней арифметической генеральной совокупности с уровнями значимости 0,01; 0,02; 0,05. (25 баллов).

4. При обследовании 150 взрослых мужчин средний рост был равен 167 см, а σ = 6 см. В каких пределах находится генеральная средняя и генеральная дисперсия с доверительной вероятностью 0,99 и 0,95? (25 баллов).

5. Распределение кальция в сыворотке крови обезьян характеризуется следующими выборочными показателями: = 11,94 мг%, σ = 1,27, n = 100. Постройте 95%-ный доверительный интервал для генеральной средней этого распределения. Рассчитайте коэффициент вариации (25 баллов).

6. Было изучено общее содержание азота в плазме крови крыс-альбиносов в возрасте 37 и 180 дней. Результаты выражены в граммах на 100 см 3 плазмы. В возрасте 37 дней 9 крыс имели: 0,98; 0,83; 0,99; 0,86; 0,90; 0,81; 0,94; 0,92; 0,87. В возрасте 180 дней 8 крыс имели: 1,20; 1,18; 1,33; 1,21; 1,20; 1,07; 1,13; 1,12. Установите доверительные интервалы для разницы с доверительной вероятностью 0,95 (50 баллов).

7. Определите границы 95%-ного доверительного интервала для генеральной дисперсии распределения кальция (мг%) в сыворотке крови обезьян, если для этого распределения объем выборки n = 100, статистическая ошибка выборочной дисперсии s σ 2 = 1,60 (40 баллов).

8. Определите границы 95%-ного доверительного интервала для генеральной дисперсии распределения 40 колосков пшеницы по длине (σ 2 = 40, 87 мм 2). (25 баллов).

9. Курение считают основным фактором, предрасполагающим к обструктивным заболеваниям легких. Пассивное курение таким фактором не считается. Ученые усомнились в безвредности пассивного курения и исследовали проходимость дыхательных путей у некурящих, пассивных и активных курильщиков. Для характеристики состояния дыхательных путей взяли один из показателей функции внешнего дыхания – максимальную объемную скорость середины выдоха. Уменьшение этого показателя – признак нарушения проходимости дыхательных путей. Данные обследования приведены в таблице.

Число обследованных

Максимальная объемная скорость середины выдоха, л/с

Стандартное отклонение

Некурящие

работают в помещении, где не курят

работают в накуренном помещении

Курящие

выкуривающие небольшое число сигарет

выкуривающие среднее число сигарет

выкуривающие большое число сигарет

По данным таблицы найдите 95% доверительные интервалы для генеральной средней и генеральной дисперсии для каждой из групп. В чем заключаются различия между группами? Результаты представьте графически (25 баллов).

10. Определите границы 95%-ного и 99%-ного доверительного интервала для генеральной дисперсии численности поросят в 64 опоросах, если статистическая ошибка выборочной дисперсии s σ 2 = 8, 25 (30 баллов).

11. Известно, что средняя масса кроликов составляет 2,1 кг. Определите границы 95%-ного и 99%-ного доверительного интервала для генеральной средней и дисперсии при n = 30, σ = 0,56 кг (25 баллов).

12. У 100 колосьев измеряли озерненность колоса (Х ), длину колоса (Y ) и массу зерна в колосе (Z ). Найти доверительные интервалы для генеральной средней и дисперсии при P 1 = 0,95, P 2 = 0,99, P 3 = 0,999, если = 19, = 6,766 см, = 0,554 г; σ x 2 = 29, 153, σ y 2 = 2, 111, σ z 2 = 0, 064. (25 баллов).

13. В отобранных случайным образом 100 колосьях озимой пшеницы подсчитывалось число колосков. Выборочная совокупность характеризовалась следующими показателями: = 15 колосков и σ = 2,28 шт. Определите, с какой точностью получен средний результат () и постройте доверительный интервал для генеральной средней и дисперсии при 95% и 99% уровнях значимости (30 баллов).

14. Число ребер на раковинах ископаемого моллюска Orthambonites calligramma :

Известно, что n = 19, σ = 4,25. Определите границы доверительного интервала для генеральной средней и генеральной дисперсии при уровне значимости W = 0,01 (25 баллов).

15. Для определения удоев молока на молочно-товарной ферме ежедневно определялась продуктивность 15 коров. По данным за год каждая корова давала в среднем в сутки следующее количество молока (л): 22; 19; 25; 20; 27; 17; 30; 21; 18; 24; 26; 23; 25; 20; 24. Постройте доверительные интервалы для генеральной дисперсии и средней арифметической. Можно ли ожидать, что среднегодовой удой на каждую корову составит 10000 литров? (50 баллов).

16. С целью определения урожая пшеницы в среднем по агрохозяйству были проведены укосы на пробных участках площадью 1, 3, 2, 5, 2, 6, 1, 3, 2, 11 и 2 га. Урожайность (ц/га) с участков составила 39,4; 38; 35,8; 40; 35; 42,7; 39,3; 41,6; 33; 42; 29 соответственно. Постройте доверительные интервалы для генеральных дисперсии и средней арифметической. Можно ли ожидать, что в среднем по агрохозяйству урожай составит 42 ц/га? (50 баллов).

В статистике существует два вида оценок: точечные и интервальные. Точечная оценка представляет собой отдельную выборочную статистику, которая используется для оценки параметра генеральной совокупности. Например, выборочное среднее - это точечная оценка математического ожидания генеральной совокупности, а выборочная дисперсия S 2 - точечная оценка дисперсии генеральной совокупности σ 2 . было показано, что выборочное среднее является несмещенной оценкой математического ожидания генеральной совокупности. Выборочное среднее называется несмещенным, поскольку среднее значение всех выборочных средних (при одном и том же объеме выборки n ) равно математическому ожиданию генеральной совокупности.

Для того чтобы выборочная дисперсия S 2 стала несмещенной оценкой дисперсии генеральной совокупности σ 2 , знаменатель выборочной дисперсии следует положить равным n – 1 , а не n . Иначе говоря, дисперсия генеральной совокупности является средним значением всевозможных выборочных дисперсий.

При оценке параметров генеральной совокупности следует иметь в виду, что выборочные статистики, такие как , зависят от конкретных выборок. Чтобы учесть этот факт, для получения интервальной оценки математического ожидания генеральной совокупности анализируют распределение выборочных средних (подробнее см. ). Построенный интервал характеризуется определенным доверительным уровнем, который представляет собой вероятность того, что истинный параметр генеральной совокупности оценен правильно. Аналогичные доверительные интервалы можно применять для оценки доли признака р и основной распределенной массы генеральной совокупности.

Скачать заметку в формате или , примеры в формате

Построение доверительного интервала для математического ожидания генеральной совокупности при известном стандартном отклонении

Построение доверительного интервала для доли признака в генеральной совокупности

В этом разделе понятие доверительного интервала распространяется на категорийные данные. Это позволяет оценить долю признака в генеральной совокупности р с помощью выборочной доли р S = Х/ n . Как указывалось , если величины n р и n (1 – р) превышают число 5, биномиальное распределение можно аппроксимировать нормальным. Следовательно, для оценки доли признака в генеральной совокупности р можно построить интервал, доверительный уровень которого равен (1 – α)х100% .


где p S - выборочная доля признака, равная Х/ n , т.е. количеству успехов, деленному на объем выборки, р - доля признака в генеральной совокупности, Z - критическое значение стандартизованного нормального распределения, n - объем выборки.

Пример 3. Предположим, что из информационной системы извлечена выборка, состоящая из 100 накладных, заполненных в течение последнего месяца. Допустим, что 10 из этих накладных составлены с ошибками. Таким образом, р = 10/100 = 0,1. Доверительному уровню 95% соответствует критическое значение Z = 1,96.

Таким образом, вероятность того, что от 4,12% до 15,88% накладных содержат ошибки, равна 95%.

Для заданного объема выборки доверительный интервал, содержащий долю признака в генеральной совокупности, кажется более широким, чем для непрерывной случайной величины. Это объясняется тем, что измерения непрерывной случайной величины содержат больше информации, чем измерения категорийных данных. Иначе говоря, категорийные данные, принимающие лишь два значения, содержат недостаточно информации для оценки параметров их распределения.

В ычисление оценок, извлеченных из конечной генеральной совокупности

Оценка математического ожидания. Поправочный коэффициент для конечной генеральной совокупности (fpc ) использовался для уменьшения стандартной ошибки в раз. При вычислении доверительных интервалов для оценок параметров генеральной совокупности поправочный коэффициент применяется в ситуациях, когда выборки извлекаются без возвращения. Таким образом, доверительный интервал для математического ожидания, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Пример 4. Чтобы проиллюстрировать применение поправочного коэффициента для конечной генеральной совокупности, вернемся к задаче о вычислении доверительного интервала для средней суммы накладных, рассмотренной выше в примере 3. Предположим, что за месяц в компании выписываются 5000 накладных, причем =110,27долл., S = 28,95 долл., N = 5000, n = 100, α = 0,05, t 99 = 1,9842. По формуле (6) получаем:

Оценка доли признака. При выборе без возвращения доверительный интервал для доли признака, имеющий доверительный уровень, равный (1 – α)х100% , вычисляется по формуле:

Доверительные интервалы и этические проблемы

При выборочном исследовании генеральной совокупности и формулировании статистических выводов часто возникают этические проблемы. Основная из них - как согласуются доверительные интервалы и точечные оценки выборочных статистик. Публикация точечных оценок без указания соответствующих доверительных интервалов (как правило, имеющих 95%-ный доверительный уровень) и объема выборки, на основе которых они получены, может породить недоразумения. Это может создать у пользователя впечатление, что точечная оценка - именно то, что ему необходимо, чтобы предсказать свойства всей генеральной совокупности. Таким образом, необходимо понимать, что в любых исследованиях во главу угла должны быть поставлены не точечные, а интервальные оценки. Кроме того, особое внимание следует уделять правильному выбору объемов выборки.

Чаще всего объектами статистических манипуляций становятся результаты социологических опросов населения по тем или иным политическим проблемам. При этом результаты опроса выносят на первые страницы газет, а ошибку выборочного исследования и методологию статистического анализа печатают где-нибудь в середине. Чтобы доказать обоснованность полученных точечных оценок, необходимо указывать объем выборки, на основе которой они получены, границы доверительного интервала и его уровень значимости.

Следующая заметка

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 448–462

Центральная предельная теорема утверждает, что при достаточно большом объеме выборок выборочное распределение средних можно аппроксимировать нормальным распределением. Это свойство не зависит от вида распределения генеральной совокупности.

В предыдущих подразделах мы рассмотрели вопрос об оценке неизвестного параметра а одним числом. Такая оценка называется «точечной». В ряде задач требуется не только найти для параметра а подходящее численное значение, но и оценить его точность и надежность. Требуется знать, к каким ошибкам может привести замена параметра а его точечной оценкой а и с какой степенью уверенности можно ожидать, что эти ошибки не выйдут за известные пределы?

Такого рода задачи особенно актуальны при малом числе наблюдений, когда точечная оценка а в значительной мере случайна и приближенная замена а на а может привести к серьезным ошибкам.

Чтобы дать представление о точности и надежности оценки а ,

в математической статистике пользуются так называемыми доверительными интервалами и доверительными вероятностями.

Пусть для параметра а получена из опыта несмещенная оценка а. Мы хотим оценить возможную при этом ошибку. Назначим некоторую достаточно большую вероятность р (например, р = 0,9, 0,95 или 0,99) такую, что событие с вероятностью р можно считать практически достоверным, и найдем такое значение s, для которого

Тогда диапазон практически возможных значений ошибки, возникающей при замене а на а , будет ± s; большие по абсолютной величине ошибки будут появляться только с малой вероятностью а = 1 - р. Перепишем (14.3.1) в виде:

Равенство (14.3.2) означает, что с вероятностью р неизвестное значение параметра а попадает в интервал

При этом необходимо отметить одно обстоятельство. Ранее мы неоднократно рассматривали вероятность попадания случайной величины в заданный неслучайный интервал. Здесь дело обстоит иначе: величина а не случайна, зато случаен интервал / р. Случайно его положение на оси абсцисс, определяемое его центром а ; случайна вообще и длина интервала 2s, так как величина s вычисляется, как правило, по опытным данным. Поэтому в данном случае лучше будет толковать величину р не как вероятность «попадания» точки а в интервал / р, а как вероятность того, что случайный интервал / р накроет точку а (рис. 14.3.1).

Рис. 14.3.1

Вероятность р принято называть доверительной вероятностью , а интервал / р - доверительным интервалом . Границы интервала If. а х =а- s и а 2 = а + а называются доверительными границами.

Дадим еще одно истолкование понятию доверительного интервала: его можно рассматривать как интервал значений параметра а, совместимых с опытными данными и не противоречащих им. Действительно, если условиться считать событие с вероятностью а = 1-р практически невозможным, то те значения параметра а, для которых а - а > s, нужно признать противоречащими опытным данным, а те, для которых |а - а a t na 2 .

Пусть для параметра а имеется несмещенная оценка а. Если бы нам был известен закон распределения величины а , задача нахождения доверительного интервала была бы весьма проста: достаточно было бы найти такое значение s, для которого

Затруднение состоит в том, что закон распределения оценки а зависит от закона распределения величины X и, следовательно, от его неизвестных параметров (в частности, и от самого параметра а).

Чтобы обойти это затруднение, можно применить следующий грубо приближенный прием: заменить в выражении для s неизвестные параметры их точечными оценками. При сравнительно большом числе опытов п (порядка 20...30) этот прием обычно дает удовлетворительные по точности результаты.

В качестве примера рассмотрим задачу о доверительном интервале для математического ожидания.

Пусть произведено п X, характеристики которой - математическое ожидание т и дисперсия D - неизвестны. Для этих параметров получены оценки:

Требуется построить доверительный интервал / р, соответствующий доверительной вероятности р, для математического ожидания т величины X.

При решении этой задачи воспользуемся тем, что величина т представляет собой сумму п независимых одинаково распределенных случайных величин X h и согласно центральной предельной теореме при достаточно большом п ее закон распределения близок к нормальному. На практике даже при относительно небольшом числе слагаемых (порядка 10...20) закон распределения суммы можно приближенно считать нормальным. Будем исходить из того, что величина т распределена по нормальному закону. Характеристики этого закона - математическое ожидание и дисперсия - равны соответственно т и

(см. главу 13 подраздел 13.3). Предположим, что величина D нам известна и найдем такую величину Ер, для которой

Применяя формулу (6.3.5) главы 6, выразим вероятность в левой части (14.3.5) через нормальную функцию распределения

где - среднее квадратичное отклонение оценки т.

Из уравнения

находим значение Sp:

где arg Ф* (х) - функция, обратная Ф* (х), т.е. такое значение аргумента, при котором нормальная функция распределения равна х.

Дисперсия D, через которую выражена величина а 1П, нам в точности не известна; в качестве ее ориентировочного значения можно воспользоваться оценкой D (14.3.4) и положить приближенно:

Таким образом, приближенно решена задача построения доверительного интервала, который равен:

где gp определяется формулой (14.3.7).

Чтобы избежать при вычислении s p обратного интерполирования в таблицах функции Ф* (л), удобно составить специальную таблицу (табл. 14.3.1), где приводятся значения величины

в зависимости от р. Величина (р определяет для нормального закона число средних квадратических отклонений, которое нужно отложить вправо и влево от центра рассеивания для того, чтобы вероятность попадания в полученный участок была равна р.

Через величину 7 р доверительный интервал выражается в виде:

Таблица 14.3.1

Пример 1. Проведено 20 опытов над величиной X; результаты приведены в табл. 14.3.2.

Таблица 14.3.2

Требуется найти оценку от для математического ожидания от величины X и построить доверительный интервал, соответствующий доверительной вероятности р = 0,8.

Решение. Имеем:

Выбрав за начало отсчета л: = 10, по третьей формуле (14.2.14) находим несмещенную оценку D :

По табл. 14.3,1 находим

Доверительные границы:

Доверительный интервал:

Значения параметра т, лежащие в этом интервале, являются совместимыми с опытными данными, приведенными в табл. 14.3.2.

Аналогичным способом может быть построен доверительный интервал и для дисперсии.

Пусть произведено п независимых опытов над случайной величиной X с неизвестными параметрами от и Л, и для дисперсии D получена несмещенная оценка:

Требуется приближенно построить доверительный интервал для дисперсии.

Из формулы (14.3.11) видно, что величина D представляет собой

сумму п случайных величин вида . Эти величины не являются

независимыми, так как в любую из них входит величина т, зависящая от всех остальных. Однако можно показать, что при увеличении п закон распределения их суммы тоже приближается к нормальному. Практически при п = 20...30 он уже может считаться нормальным.

Предположим, что это так, и найдем характеристики этого закона: математическое ожидание и дисперсию. Так как оценка D - несмещенная, то М[D] = D.

Вычисление дисперсии D D связано со сравнительно сложными выкладками, поэтому приведем ее выражение без вывода:

где ц 4 - четвертый центральный момент величины X.

Чтобы воспользоваться этим выражением, нужно подставить в него значения ц 4 и D (хотя бы приближенные). Вместо D можно воспользоваться его оценкой D . В принципе четвертый центральный момент тоже можно заменить его оценкой, например величиной вида:

но такая замена даст крайне невысокую точность, так как вообще при ограниченном числе опытов моменты высокого порядка определяются с большими ошибками. Однако на практике часто бывает, что вид закона распределения величины X известен заранее: неизвестны лишь его параметры. Тогда можно попытаться выразить ц 4 через D.

Возьмем наиболее часто встречающийся случай, когда величина X распределена по нормальному закону. Тогда ее четвертый центральный момент выражается через дисперсию (см. главу 6 подраздел 6.2);

и формула (14.3.12) дает или

Заменяя в (14.3.14) неизвестное D его оценкой D , получим: откуда

Момент ц 4 можно выразить через D также и в некоторых других случаях, когда распределение величины X не является нормальным, но вид его известен. Например, для закона равномерной плотности (см. главу 5) имеем:

где (а, Р) - интервал, на котором задан закон.

Следовательно,

По формуле (14.3.12) получим: откуда находим приближенно

В случаях, когда вид закона распределения величины 26 неизвестен, при ориентировочной оценке величины а /} рекомендуется все же пользоваться формулой (14.3.16), если нет специальных оснований считать, что этот закон сильно отличается от нормального (обладает заметным положительным или отрицательным эксцессом).

Если ориентировочное значение а /} тем или иным способом получено, то можно построить доверительный интервал для дисперсии аналогично тому, как мы строили его для математического ожидания:

где величина в зависимости от заданной вероятности р находится по табл. 14.3.1.

Пример 2. Найти приближенно 80%-й доверительный интервал для дисперсии случайной величины X в условиях примера 1, если известно, что величина X распределена по закону, близкому к нормальному.

Решение. Величина остается той же, что в табл. 14.3.1:

По формуле (14.3.16)

По формуле (14.3.18) находим доверительный интервал:

Соответствующий интервал значений среднего квадратичного отклонения: (0,21; 0,29).

14.4. Точные методы построения доверительных интервалов для параметров случайной величины, распределенной по нормальному закону

В предыдущем подразделе мы рассмотрели грубо приближенные методы построения доверительных интервалов для математического ожидания и дисперсии. Здесь мы дадим представление о точных методах решения той же задачи. Подчеркнем, что для точного нахождения доверительных интервалов совершенно необходимо знать заранее вид закона распределения величины X, тогда как для применения приближенных методов это не обязательно.

Идея точных методов построения доверительных интервалов сводится к следующему. Любой доверительный интервал находится из условия, выражающего вероятность выполнения некоторых неравенств, в которые входит интересующая нас оценка а. Закон распределения оценки а в общем случае зависит от неизвестных параметров величины X. Однако иногда удается перейти в неравенствах от случайной величины а к какой-либо другой функции наблюденных значений Х п Х 2 , ..., X п. закон распределения которой не зависит от неизвестных параметров, а зависит только от числа опытов и и от вида закона распределения величины X. Такого рода случайные величины играют большую роль в математической статистике; они наиболее подробно изучены для случая нормального распределения величины X.

Например, доказано, что при нормальном распределении величины X случайная величина

подчиняется так называемому закону распределения Стъюдента с п - 1 степенями свободы; плотность этого закона имеет вид

где Г (х) - известная гамма-функция:

Доказано также, что случайная величина

имеет «распределение % 2 » с п - 1 степенями свободы (см. главу 7), плотность которого выражается формулой

Не останавливаясь на выводах распределений (14.4.2) и (14.4.4), покажем, как их можно применить при построении доверительных интервалов для параметров ти D .

Пусть произведено п независимых опытов над случайной величиной X, распределенной по нормальному закону с неизвестными параметрами тиО. Для этих параметров получены оценки

Требуется построить доверительные интервалы для обоих параметров, соответствующие доверительной вероятности р.

Построим сначала доверительный интервал для математического ожидания. Естественно этот интервал взять симметричным относительно т ; обозначим s p половину длины интервала. Величину s p нужно выбрать так, чтобы выполнялось условие

Попытаемся перейти в левой части равенства (14.4.5) от случайной величины т к случайной величине Т, распределенной по закону Стьюдента. Для этого умножим обе части неравенства |m-w?|

на положительную величину: или, пользуясь обозначением (14.4.1),

Найдем такое число / р, что Величина / р найдется из условия

Из формулы (14.4.2) видно, что (1) - четная функция, поэтому (14.4.8) дает

Равенство (14.4.9) определяет величину / р в зависимости от р. Если иметь в своем распоряжении таблицу значений интеграла

то величину / р можно найти обратным интерполированием в таблице. Однако удобнее составить заранее таблицу значений / р. Такая таблица дается в приложении (табл. 5). В этой таблице приведены значения в зависимости от доверительной вероятности р и числа степеней свободы п - 1. Определив / р по табл. 5 и полагая

мы найдем половину ширины доверительного интервала / р и сам интервал

Пример 1. Произведено 5 независимых опытов над случайной величиной X, распределенной нормально с неизвестными параметрами т и о. Результаты опытов приведены в табл. 14.4.1.

Таблица 14.4.1

Найти оценку т для математического ожидания и построить для него 90%-й доверительный интервал / р (т.е. интервал, соответствующий доверительной вероятности р = 0,9).

Решение. Имеем:

По таблице 5 приложения для п - 1 = 4 и р = 0,9 находим откуда

Доверительный интервал будет

Пример 2. Для условий примера 1 подраздела 14.3, предполагая величину X распределенной нормально, найти точный доверительный интервал.

Решение. По таблице 5 приложения находим при п - 1 = 19ир =

0,8 / р =1,328; отсюда

Сравнивая с решением примера 1 подраздела 14.3 (е р = 0,072), убеждаемся, что расхождение весьма незначительно. Если сохранить точность до второго знака после запятой, то доверительные интервалы, найденные точным и приближенным методами, совпадают:

Перейдем к построению доверительного интервала для дисперсии. Рассмотрим несмещенную оценку дисперсии

и выразим случайную величину D через величину V (14.4.3), имеющую распределение х 2 (14.4.4):

Зная закон распределения величины V, можно найти интервал / (1 , в который она попадает с заданной вероятностью р.

Закон распределения k n _ x {v) величины I 7 имеет вид, изображенный на рис. 14.4.1.

Рис. 14.4.1

Возникает вопрос: как выбрать интервал / р? Если бы закон распределения величины V был симметричным (как нормальный закон или распределение Стьюдента), естественно было бы взять интервал /р симметричным относительно математического ожидания. В данном случае закон к п _ х (v) несимметричен. Условимся выбирать интервал /р так, чтобы вероятности выхода величины V за пределы интервала вправо и влево (заштрихованные площади на рис. 14.4.1) были одинаковы и равны

Чтобы построить интервал / р с таким свойством, воспользуемся табл. 4 приложения: в ней приведены числа у} такие, что

для величины V, имеющей х 2 -распределение с г степенями свободы. В нашем случае г = п - 1. Зафиксируем г = п - 1 и найдем в соответствующей строке табл. 4 два значения х 2 - одно, отвечающее вероятности другое - вероятности Обозначим эти

значения у 2 и xl ? Интервал имеет у 2 , своим левым, а у ~ правым концом.

Теперь найдем по интервалу / р искомый доверительный интервал /|, для дисперсии с границами D, и D 2 , который накрывает точку D с вероятностью р:

Построим такой интервал / (, = (?> ь А), который накрывает точку D тогда и только тогда, когда величина V попадает в интервал / р. Покажем, что интервал

удовлетворяет этому условию. Действительно, неравенства равносильны неравенствам

а эти неравенства выполняются с вероятностью р. Таким образом, доверительный интервал для дисперсии найден и выражается формулой (14.4.13).

Пример 3. Найти доверительный интервал для дисперсии в условиях примера 2 подраздела 14.3, если известно, что величинаX распределена нормально.

Решение. Имеем . По таблице 4 приложения

находим при г = п - 1 = 19

По формуле (14.4.13) находим доверительный интервал для дисперсии

Соответствующий интервал для среднего квадратичного отклонения: (0,21; 0,32). Этот интервал лишь незначительно превосходит полученный в примере 2 подраздела 14.3 приближенным методом интервал (0,21; 0,29).

  • На рисунке 14.3.1 рассматривается доверительный интервал, симметричный относительно а. Вообще, как мы увидим дальше, это необязательно.

Оценка доверительных интервалов

Цели обучения

Статистика рассматривает следующие две основные задачи :

    У нас есть некоторая оценка, построенная на выборочных данных, и мы хотим сделать некоторое вероятностное утверждение относительно того, где находится истинное значение оцениваемого параметра.

    У нас есть конкретная гипотеза, которую необходимо проверить на основе выборочных данных.

В данной теме мы рассматриваем первую задачу. Введем также определение доверительного интервала.

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Изучив материал данной темы, Вы:

    узнаете, что такое доверительный интервал оценки;

    научитесь классифицировать статистические задачи;

    освоите технику построения доверительных интервалов, как по статистическим формулам, так и с помощью программного инструментария;

    научитесь определять необходимые размеры выборок для достижения определенных параметров точности статистических оценок.

Распределения выборочных характеристик

Т-распределение

Как обсуждали выше распределение случайной величины близко к стандартизованному нормальному распределению с параметрами 0 и 1. Поскольку нам не известна величина σ, мы заменяем ее на некоторую оценку s . Величина уже имеет другое распределение, а именно или Распределение Стьюдента , которое определяется параметром n -1 (число степеней свободы). Это распределение близко к нормальному распределению (чем больше n , тем распределения ближе).

На рис. 95
представлено распределение Стьюдента с 30 степенями свободы. Как видно, оно весьма близко к нормальному распределению.

Аналогично функциям для работы с нормальным распределением НОРМРАСП и НОРМОБР имеются функции для работы с t-распределением - СТЬЮДРАСП (TDIST) и СТЬЮДРАСПОБР (TINV) . Пример использования этих функций можно посмотреть в файле СТЬЮДРАСП.XLS (шаблон и решение ) и на рис. 96
.

Распределения других характеристик

Как мы уже знаем, для определения точности оценивания математического ожидания нам необходимо t-распределение. Для оценивания других параметров, например, дисперсии, требуются другие распределения. Два из них - это F-распределение и x 2 -распределение .

Доверительный интервал для среднего значения

Доверительный интервал - это интервал, который строится вокруг оценочного значения параметра и показывает, где находится истинное значение оцениваемого параметра с априори заданной вероятностью.

Построение доверительного интервала для среднего значения происходит следующим образом :

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать 40 посетителей из тех, кто уже попробовал его и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. Как это осуществить? (см. файл СЭНДВИЧ1.XLS (шаблон и решение ).

Решение

Для решения данной задачи можно воспользоваться . Результаты представлены на рис. 97
.

Доверительный интервал для суммарного значения

Иногда по выборочным данным требуется оценить не математическое ожидание, а общую сумму значений. Например, в ситуации с аудитором интерес может представлять оценка не средней величины счета, а суммы всех счетов.

Пусть N - общее количество элементов, n - размер выборки, T 3 - сумма значений в выборке, T" - оценка для суммы по всей совокупности, тогда , а доверительный интервал вычисляется по формуле , где s - оценка стандартного отклонения для выборки, - оценка среднего для выборки.

Пример

Допустим, некоторая налоговая служба хочет оценить размер суммарных налоговых возвратов для 10 000 налогоплательщиков. Налогоплательщик либо получает возврат, либо доплачивает налоги. Найдите 95%-й доверительный интервал для суммы возврата при условии, что размер выборки составляет 500 человек (см. файл СУММА ВОЗВРАТОВ.XLS (шаблон и решение ).

Решение

В StatPro нет специальной процедуры для этого случая, однако можно заметить, что границы можно получить из границ для среднего исходя из вышеприведенных формул (рис. 98
).

Доверительный интервал для пропорции

Пусть p - математическое ожидание доли клиентов, а р в - оценка этой доли, полученная по выборке размера n. Можно показать, что для достаточно больших распределение оценки будет близко к нормальному с математическим ожиданием p и стандартным отклонением . Стандартная ошибка оценки в данном случае выражается как , а доверительный интервал как .

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом выбрал 40 посетителей из тех, кто уже попробовал его и предложил им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемую долю клиентов, которые оценивают новый продукт не менее чем в 6 баллов (он ожидает, что именно эти клиенты и будут потребителями нового продукта).

Решение

Первоначально создаем новый столбец по признаку 1, если оценка клиента была больше 6 баллов и 0 иначе (см. файл СЭНДВИЧ2.XLS (шаблон и решение ).

Способ 1

Подсчитывая количество 1, оцениваем долю, а далее используем формулы.

Значение z кр берется из специальных таблиц нормального распределения (например, 1,96 для 95%-го доверительного интервала).

Используя данный подход и конкретные данные для построения 95%-го интервала, получим следующие результаты (рис. 99
). Критическое значение параметра z кр равно 1,96. Стандартная ошибка оценки - 0,077. Нижняя граница доверительного интервала - 0,475. Верхняя граница доверительного интервала - 0,775. Таким образом, менеджер вправе полагать с 95%-й долей уверенности, что процент клиентов, оценивших новый продукт на 6 баллов и выше, будет между 47,5 и 77,5.

Способ 2

Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно заметить, что доля в данном случае совпадает со средним значением столбца Тип . Далее применим StatPro/Statistical Inference/One-Sample Analysis для построения доверительного интервала среднего значения (оценки математического ожидания) для столбца Тип . Полученные в этом случае результат, будут весьма близок к результату 1-го способа (рис. 99).

Доверительный интервал для стандартного отклонения

В качестве оценки стандартного отклонения используется s (формула приведена в разделе 1). Функцией плотности распределения оценки s является функция хи-квадрат , которая, как и t-распределение, имеет n-1 степень свободы. Имеются специальные функции для работы с этим распределением ХИ2РАСП (CHIDIST) и ХИ2ОБР (CHIINV) .

Доверительный интервал в этом случае уже будет не симметричным. Условная схема границ представлена на рис. 100 .

Пример

Станок должен производить детали диаметром 10 см. Однако в силу различных обстоятельств происходят ошибки. Контролера по качеству волнуют два обстоятельства: во-первых, среднее значение должно равняться 10 см; во-вторых, даже в этом случае, если отклонения будут велики, то многие детали будут забракованы. Ежедневно он делает выборку из 50 деталей (см. файл КОНТРОЛЬ КАЧЕСТВА.XLS (шаблон и решение ). Какие выводы может дать такая выборка?

Решение

Построим 95%-й доверительные интервалы для среднего и для стандартного отклонения с помощью StatPro/Statistical Inference/ One-Sample Analysis (рис. 101
).

Далее, используя предположение о нормальном распределении диаметров, рассчитаем долю бракованных изделий, задавшись предельным отклонением 0,065. Используя возможности таблицы подстановки (случай двух параметров), построим зависимость доли брака от среднего значения и стандартного отклонения (рис. 102
).

Доверительный интервал для разности двух средних значений

Это одно из наиболее важных применений статистических методов. Примеры ситуаций.

    Менеджер магазина одежды хотел бы знать, на сколько больше или меньше тратит в магазине средняя женщина-покупатель, чем мужчина.

    Две авиакомпании летают аналогичными маршрутами. Организация-потребитель хотела бы сравнить разницу между среднеожидаемыми временами задержек рейсов по обеим авиакомпаниям.

    Компания рассылает купоны на отдельные виды товаров в одном городе и не рассылает в другом. Менеджеры хотят сравнить средние объемы покупок этих товаров в ближайшие два месяца.

    Автомобильный дилер часто имеет дело на презентациях с замужними парами. Чтобы понять их персональную реакцию на презентацию, пары часто опрашивают отдельно. Менеджер хочет оценить разницу в рейтингах указываемых мужчинами и женщинами.

Случай независимых выборок

Разность средних значений будет иметь t-распределение с n 1 + n 2 - 2 степенями свободы. Доверительный интервал для μ 1 - μ 2 выражается соотношением:

Данная задача допускает решение не только по вышеприведенным формулам, но и стандартными средствами StatPro . Для этого достаточно применить

Доверительный интервал для разности между пропорциями

Пусть - математическое ожидание долей. Пусть - их выборочные оценки, построенные по выборкам размера n 1 и n 2 соответственно. Тогда является оценкой для разности . Следовательно, доверительный интервал этой разности выражается как:

Здесь z кр является значением, полученным из нормального распределения по специальным таблицам (например, 1,96 для 95%-й доверительного интервала).

Стандартная ошибка оценки выражается в данном случае соотношением:

.

Пример

Магазин, готовясь к большой распродаже, предпринял следующие маркетинговые исследования. Были выбраны 300 лучших покупателей, которые в свою очередь были случайным образом поделены на две группы по 150 членов в каждой. Всем из отобранных покупателей были разосланы приглашения для участия в распродаже, но только для членов первой группы был приложен купон, дающий право на скидку 5%. В ходе распродажи покупки всех 300 отобранных покупателей фиксировались. Каким образом менеджер может интерпретировать полученные результаты и сделать заключение об эффективности предоставления купонов? (см. файл КУПОНЫ.XLS (шаблон и решение )).

Решение

Для нашего конкретного случая из 150 покупателей, получивших купон на скидку, 55 сделали покупку на распродаже, а среди 150, не получивших купон, покупку сделали только 35 (рис. 103
). Тогда значения выборочных пропорций соответственно 0,3667 и 0,2333. А выборочная разность между ними равна соответственно 0,1333. Полагая доверительный интервал 95%-м, находим по таблице нормального распределения z кр = 1,96. Вычисление стандартной ошибки выборочной разности равно 0,0524. Окончательно получаем, что нижняя граница 95%-го доверительного интервала равна 0,0307, а верхняя граница 0,2359 соответственно. Полученные результаты можно интерпретировать таким образом, что на каждых 100 покупателей, получивших купон со скидкой, можно ожидать от 3 до 23 новых покупателей. Однако надо иметь в виду, что этот вывод сам по себе еще не означает эффективности применения купонов (поскольку, предоставляя скидку, мы теряем в прибыли!). Продемонстрируем это на конкретных данных. Предположим, что средний размер покупки равен 400 руб., из которых 50 руб. есть прибыль магазина. Тогда ожидаемая прибыль на 100 покупателях, не получивших купон, равна:

50 0,2333 100 = 1166,50 руб.

Аналогичные вычисления для 100 покупателей получивших купон, дают:

30 0,3667 100 = 1100,10 руб.

Уменьшение средней прибыли до 30 объясняется тем, что, используя скидку, покупатели, получившие купон, в среднем будут делать покупку на 380 руб.

Таким образом, итоговый вывод говорит о неэффективности использования таких купонов в данной конкретной ситуации.

Замечание. Данная задача допускает решение стандартными средствами StatPro . Для этого достаточно свести данную задачу к задаче оценки разности двух средних способом, а далее применить StatPro/Statistical Inference/Two-Sample Analysis для построения доверительного интервала разности двух средних значений.

Управление длиной доверительного интервала

Длина доверительного интервала зависит от следующих условий :

    непосредственно данных (стандартное отклонение);

    уровня значимости;

    размера выборки.

Размер выборки для оценки среднего значения

Сначала рассмотрим задачу в общем случае. Обозначим данное нам значение половины длины доверительного интервала за В (рис. 104
). Нам известно, что доверительный интервал для среднего значения некоторой случайной величины X выражается как , где . Полагая:

и выражая n , получим .

К сожалению, точное значение дисперсии случайной величины X нам не известно. Кроме этого, нам неизвестно и значение t кр , так как оно зависит от n через количество степеней свободы. В данной ситуации мы можем поступить следующим образом. Вместо дисперсии s используем какую-либо оценку дисперсии, по каким-либо имеющимся реализациям исследуемой случайной величины. Вместо значения t кр используем значение z кр для нормального распределения. Это вполне допустимо, поскольку функции плотности распределений для нормального и t-распределения очень близки (за исключением случая малых n ). Таким образом, искомая формула принимает вид:

.

Поскольку формула дает, вообще говоря, нецелочисленные результат, в качестве искомого размера выборки берется округление с избытком результата.

Пример

В ресторане быстрого обслуживания планируется расширить ассортимент новым видом сэндвича. Для того чтобы оценить спрос на него, менеджер случайным образом планирует выбрать некоторое количество посетителей из тех, кто уже попробовал его, и предложить им оценить их отношение к новому продукту в баллах от 1 до 10. Менеджер хочет оценить ожидаемое количество баллов, которое получит новый продукт и построить 95%-й доверительный интервал этой оценки. При этом он хочет, чтобы половина ширины доверительного интервала не превышала 0,3. Какое количество посетителей ему необходимо опросить?

выглядит следующим образом:

Здесь р оц - оценка доли p , а В есть заданная половина длины доверительного интервала. Завышенное значение для n можно получить, используя значение р оц = 0,5. В этом случае длина доверительного интервала не будет превосходить заданного значения В при любом истинном значении p .

Пример

Пусть менеджер из предыдущего примера планирует оценить долю клиентов, отдавших предпочтение новому виду продукции. Он хочет построить 90%-й доверительный интервал, половина длины которого не превосходила бы 0,05. Сколько клиентов должно войти в случайную выборку?

Решение

В нашем случае значение z кр = 1,645. Поэтому искомое количество вычисляется как .

Если бы менеджер имел основания полагать, что искомое значение p составляет, например, примерно 0,3, то, подставляя это значение в вышеприведенную формулу, мы получили бы меньшее значение величины случайной выборки, а именно 228.

Формула для определения размеров случайной выборки в случае разности между двумя средними значениями записывается как:

.

Пример

Некоторая компьютерная компания имеет сервисный центр по обслуживанию клиентов. В последнее время увеличилось количество жалоб клиентов на плохое качество обслуживания. В сервисном центре в основном работают сотрудники двух типов: не имеющие большого опыта, но закончившие специальные подготовительные курсы, и имеющие большой практический опыт, но не закончившие специальных курсов. Компания хочет проанализировать нарекания клиентов за последние полгода и сравнить их средние количества, приходящиеся на каждую из двух групп сотрудников. Предполагается, что количества в выборках по обеим группам будут одинаковые. Какое количество сотрудников необходимо включить в выборку, чтобы получить 95%-й интервал с половиной длины не более 2?

Решение

Здесь σ оц есть оценка стандартного отклонения обеих случайных переменных в предположении, что они близки. Таким образом, в нашей задаче нам необходимо каким-то образом получить эту оценку. Это можно сделать, например, следующим образом. Просмотрев данные по нареканиям клиентов за последние полгода, менеджер может заметить, что на каждого сотрудника в основном приходится от 6 до 36 нареканий. Зная, что для нормального распределения практически все значения удалены от среднего значения не более чем на три стандартных отклонения, он может с определенным основанием полагать, что:

, откуда σ оц = 5.

Подставляя это значение в формулу, получаем .

Формула для определения размера случайной выборки в случае оценки разности между долями имеет вид:

Пример

Некоторая компания имеет две фабрики по производству аналогичной продукции. Менеджер компании хочет сравнить доли бракованной продукции на обеих фабриках. По имеющейся информации процент брака на обеих фабриках составляет от 3 до 5%. Предполагается построить 99%-й доверительный интервал с половиной длины не более 0,005 (или 0,5%). Какое количество изделий необходимо отобрать с каждой фабрики?

Решение

Здесь р 1оц и р 2оц являются оценками двух неизвестных долей брака на 1-й и 2-й фабрике. Если положить р 1оц = р 2оц = 0,5, то мы получим завышенное значение для n . Но поскольку в нашем случае мы имеем некоторую априорную информацию об этих долях, то мы берем верхнюю оценку этих долей, а именно 0,05. Получаем

Когда делается оценка некоторых параметров совокупности по выборочным данным, полезно дать не только точечную оценку параметра, но и указать доверительный интервал, который показывает, где может находиться точное значение оцениваемого параметра.

В данной главе мы также познакомились с количественными соотношениями, позволяющими строить такие интервалы для различных параметров; узнали способы управления длиной доверительного интервала.

Отметим также, что задачу оценки размеров выборки (задача планирования эксперимента) можно решить, используя стандартные средства StatPro , а именно StatPro/Statistical Inference/Sample Size Selection .

Ум заключается не только в знании, но и в умении прилагать знание на деле. (Аристотель)

Доверительные интервалы

Общий обзор

Взяв выборку из популяции, мы получим точечную оценку интересующего нас параметра и вычислим стандартную ошибку для того, чтобы указать точность оценки.

Однако, для большинства случаев стандартная ошибка как такова не приемлема. Гораздо полезнее объединить эту меру точности с интервальной оценкой для параметра популяции.

Это можно сделать, используя знания о теоретическом распределении вероятности выборочной статистики (параметра) для того, чтобы вычислить доверительный интервал (CI - Confidence Interval, ДИ - Доверительный интервал) для параметра.

Вообще, доверительный интервал расширяет оценки в обе стороны некоторой величиной, кратной стандартной ошибке (данного параметра); два значения (доверительные границы), определяющие интервал, обычно отделяют запятой и заключают в скобки.

Доверительный интервал для среднего

Использование нормального распределения

Выборочное среднее имеет нормальное распределение, если объем выборки большой, поэтому можно применить знания о нормальном распределении при рассмотрении выборочного среднего.

В частности, 95% распределения выборочных средних находится в пределах 1,96 стандартных отклонений (SD) среднего популяции.

Когда у нас есть только одна выборка, мы называем это стандартной ошибкой среднего (SEM) и вычисляем 95% доверительного интервала для среднего следующим образом:

Если повторить этот эксперимент несколько раз, то интервал будет содержать истинное среднее популяции в 95% случаев.

Обычно это доверительный интервал как, например, интервал значений, в пределах которого с доверительной вероятностью 95% находится истинное среднее популяции (генеральное среднее).

Хотя это не вполне строго (среднее в популяции есть фиксированное значение и поэтому не может иметь вероятность, отнесённую к нему) таким образом интерпретировать доверительный интервал, но концептуально это удобнее для понимания.

Использование t- распределения

Можно использовать нормальное распределение, если знать значение дисперсии в популяции. Кроме того, когда объем выборки небольшой, выборочное среднее отвечает нормальному распределению, если данные, лежащие в основе популяции, распределены нормально.

Если данные, лежащие в основе популяции, распределены ненормально и/или неизвестна генеральная дисперсия (дисперсия в популяции), выборочное среднее подчиняется t-распределению Стьюдента .

Вычисляем 95% доверительный интервал для генерального среднего в популяции следующим образом:

Где - процентная точка (процентиль) t- распределения Стьюдента с (n-1) степенями свободы, которая даёт двухстороннюю вероятность 0,05.

Вообще, она обеспечивает более широкий интервал, чем при использовании нормального распределения, поскольку учитывает дополнительную неопределенность, которую вводят, оценивая стандартное отклонение популяции и/или из-за небольшого объёма выборки.

Когда объём выборки большой (порядка 100 и более), разница между двумя распределениями (t-Стьюдента и нормальным) незначительна. Тем не менее всегда используют t- распределение при вычислении доверительных интервалов, даже если объем выборки большой.

Обычно указывают 95% ДИ. Можно вычислить другие доверительные интервалы, например 99% ДИ для среднего.

Вместо произведения стандартной ошибки и табличного значения t- распределения, которое соответствует двусторонней вероятности 0,05, умножают её (стандартную ошибку) на значение, которое соответствует двусторонней вероятности 0,01. Это более широкий доверительный интервал, чем в случае 95%, поскольку он отражает увеличенное доверие к тому, что интервал действительно включает среднее популяции.

Доверительный интервал для пропорции

Выборочное распределение пропорций имеет биномиальное распределение. Однако если объём выборки n разумно большой, тогда выборочное распределение пропорции приблизительно нормально со средним .

Оцениваем выборочным отношением p=r/n (где r - количество индивидуумов в выборке с интересующими нас характерными особенностями), и стандартная ошибка оценивается:

95% доверительный интервал для пропорции оценивается:

Если объём выборки небольшой (обычно когда np или n(1-p) меньше 5 ), тогда необходимо использовать биномиальное распределение для того, чтобы вычислить точные доверительные интервалы.

Заметьте, что если p выражается в процентах, то (1-p) заменяют на (100-p) .

Интерпретация доверительных интервалов

При интерпретации доверительного интервала нас интересуют следующие вопросы:

Насколько широк доверительный интервал?

Широкий доверительный интервал указывает на то, что оценка неточна; узкий указывает на точную оценку.

Ширина доверительного интервала зависит от размера стандартной ошибки, которая, в свою очередь, зависит от объёма выборки и при рассмотрении числовой переменной от изменчивости данных дают более широкие доверительные интервалы, чем исследования многочисленного набора данных немногих переменных.

Включает ли ДИ какие-либо значения, представляющие особенный интерес?

Можно проверить, ложится ли вероятное значение для параметра популяции в пределы доверительного интервала. Если да, то результаты согласуются с этим вероятным значением. Если нет, тогда маловероятно (для 95% доверительного интервала шанс почти 5%), что параметр имеет это значение.