Загрязнение атмосферы автотранспортом в россии. Транспортные средства – источник загрязнения окружающей среды

Загрязнение воздуха;

Загрязнение окружающей среды;

Шум, вибрация;

Выделение тепла (рассеяние энергии).

Влияние основных вредных веществ, выбрасываемых в атмосферу автотранспортом на природную среду и человека

Оксид углерода

Высоко токсичное вещество. Уже при концентрации СО в воздухе порядка 0,01 - 0,02 % при вдыхании в течение нескольких часов возможно отравление, а концентрация 2,4 мг/м3 через 30 мин. приводит к обморочному состоянию. Оксид углерода вступает в реакцию с гемоглобином крови, наступает кислородное голодание, поражающее кору головного мозга и вызывающее расстройство высшей нервной деятельности

Твердые частицы

Проникают в дыхательные пути человека, что вызывает их различные заболевания. Из неорганической пыли наиболее отрицательное воздействие оказывает пыль, содержащая большое количество диоксида кремния, которое может вызвать – селикоз. Попадая в глаза, вызывает глазной травматизм и другие заболевания. Раздражает кожные покровы, подкожные нервы, засоряет кожные железы и бывает причиной гнойничковых заболеваний. Оседая на зеленой части растений, неорганическая пыль и особенно сажа ухудшают условия дыхания, замедляет рост и развитие растений. Все виды пыли засоряют водоемы, а кроме того, сажа образует на поверхности пленку, препятствующую воздухообмену.

Оксиды азота

Общий характер действия на теплокровных зависит от содержания в газовых смесях различных оксидов азота. При контакте с влажной поверхностью легких образуется азотная и азотистая кислоты, поражающие альвеолярную ткань, что приводит к отеку легких и сложным рефлекторным расстройствам. Действуя на кровеносную систему, приводит к кислородной недостаточности, оказывает прямое действие на центральную нервную систему.

Сернистый ангидрид

Оказывает многостороннее общетоксичное действие на теплокровных, вызывает острое и хронические отравления. Вызывает расстройство сердечно-сосудистой системы, легочно-сердечную недостаточность, нарушает деятельность почек.

Сероводород

Сероводород разрушающий и удушливый газ, вызывает поражение нервной системы, дыхательных путей и глаз. Может вызвать острое и хроническое отравление с разного рода последствиями.

Ароматические углеводороды

В условиях острого воздействия на теплокровных поражают центральную нервную систему, вызывая сонливость, вялость, судороги. В условиях хронической интоксикации оказывают политронное действие, поражая ряд органов и систем.

Бензапирен

Оказывает сильное канцерогенное, мутационное, тератогенное действие.

Формальдегид

Оказывает общетоксичное (поражение центральной нервной системы, органов зрения, печени, почек) сильное раздражающее аллергенное, канцерогенное, мутагенное действие.

Классификация автомобилей

По назначению автомобили делятся на:

Легковые автомобили по рабочему объему двигателя и сухой массе разделены на следующие классы:

Особо малый (1.2 дм3; 850 кг);

Малый (1.2- 1.8 дм3; 850 - 1150 кг);

Средний (1.8 - 3.5дм3 ; 1150 - 1500 кг);

Большой (свыше 3.5 дм3; до 1700 кг).

Автобусы предназначенные для внутри городского и пригородного общественного транспорта, называют городскими, а предназначенные для междугородних перевозок – междугородными. Число мест в автобусах в зависимости от назначения составляет 10 - 80. По длине автобусы разделены на следующие классы:

Особо малый до 5м;

Малый 6 - 7.5м;

Средний 8 - 9.5м;

Большой 10.5 - 12м.

Грузовые автомобили делят по грузоподъемности, т. е. по массе груза (т), который можно перевести в кузове. По грузоподъемности они делятся на классы:

Особо малый 0.3 - 1т;

Малый 1 - 3т;

Средний 3 -5т;

Большой 5 - 8т;

Особо большой 8т и более.

Автомобили специального назначения выполняют не транспортные работы. К ним относятся коммунальные автомобили для очистки и поливки улиц, пожарные, автокраны и т.д.

  1. Практическая часть

Выбор улиц для проведения практической деятельности

Для проведения мониторинга состояния атмосферы в микрорайоне нашей школы наиболее оптимально подходят пересечения ул.11-Линия – ул.Кочубея, ул.11-Линия – ул. Ленина и ул.11-Линия – ул.Мира. Данный вариант позволит оценить уровень загруженности перекрестков в районе школы и степень опасности, исходящей от них для жителей микрорайона (в т.ч. школьников).

Определение загруженности улиц автотранспортом

Интенсивность движения автотранспорта производится методом подсчета автомобилей разных типов (3 раза за день по 60 мин).

Полученные результаты оформлены в Таблице 1.

Таблица 1 . Интенсивность движения автотранспорта на исследуемых участках дорог.

Тип автомобиля

Число автомобильных единиц

ул.11-ая Линия – ул.Кочубея

ул.11-ая Линия – ул.Мира

ул.11-ая Линия – ул.Ленина

Легкий грузовой

Средний грузовой

Тяжелый грузовой

Автобус

Легковой

Загруженность

в час

Интенсивность движения

Низкая

Средняя

Средняя

Интенсивность выражается суммарной оценкой загруженности улиц автотранспортом согласно ГОСТ 17.2.2.03 – 87:

низкая интенсивность движения – 2,7 - 3.6 тыс. автомобилей в сутки;

средняя интенсивность движения – 8 - 17 тыс. автомобилей в сутки;

высокая интенсивность движения – 18 - 27 тыс. автомобилей в сутки.

Таким образом, полученный уровень интенсивности движения на исследуемых участках дороги может быть выражен в виде диаграммы.

Диаграмма 1. Уровень интенсивности движения автотранспорта на исследуемых участках дорог.

Метод оценки уровня загрязнения приземного слоя атмосферы выбросами автотранспортных средств (по концентрации углерода)

Загрязнение атмосферного воздуха отработавшими газами автомобилей удобно оценивать по концентрации окиси углерода , которая рассчитывается оп формуле:

Где

0,5 – фоновое загрязнение атмосферного воздуха не транспортного происхождения, мг/м3;

N – суммарная интенсивность движения автомобилей на городской дороге, автомобилей в час;

К т – коэффициент токсичности автомобилей по выбросам в атмосферу СО, определяется как средневзвешенный для потока автомобилей по формуле:

Где

Р i – состав движения в долях единиц.

Значение К п определяется по Таблице 2

Таблица 2. Значение коэффициента К П

К С – коэффициент изменения концентрации СО в зависимости от скорости ветра – определяется по Таблице 3.

Таблица 3. Значение коэффициента К С

Скорость ветра

Коэффициент К С

2,70

2,00

1,50

1,20

1,05

1,00

К В – коэффициент изменения концентрации СО в зависимости от относительной влажности воздуха определяется по Таблице 4.

Таблица 4. Значение коэффициента К В

Относительная влажность, %

Коэффициент К В

1,45

1,30

1,15

1,00

0,85

0,75

0,60

К П – коэфициент увеличения загрязнения атмосферного воздуха СО у пересечений определяется по Таблице 5.

Таблица 5. Значение коэффициента К П

Тип пересечения

Коэффициент К П

Регулируемое пересечение:

Светофорами (обычное)

Светофорами управляемое

Саморегулируемое

Не регулируемое:

Со снижением скорости

Кольцевое

С обязательной остановкой

Оценка уровня загрязнения приземного слоя атмосферы выбросами автотранспортных средств (по концентрации углерода)

Загрязнение атмосферного воздуха ул.11-ая Линия – ул.Кочубея:

Где

N = 198

Т П

Тип автомобиля

Коэффициент К П

Кол-во транспорта

Вес транспорта

легкий грузовой

4,6%

0,11

средний грузовой

0,06

тяжелый грузовой (дизельный)

0,00

автобус

0,5%

0,02

легковой автомобиль

0,93

Средневзвешенное значение К Т

1,12

К т = 1,12

К С =

К В =

К П = 1,9 (не регулируемый перекресток со снижением скорости)

Загрязнение атмосферного воздуха ул.11-ая Линия – ул.Мира:

Где

N = 540

Для того чтобы рассчитать средневзвешенное значение К Т необходимо вычислить вес каждого транспорта в его общем объеме, перемножить веса на коэффициент К П из таблицы и сложить полученные произведения. Расчет данного показателя можно представить в таблице:

Тип автомобиля

Коэффициент К П

Кол-во транспорта

Вес транспорта

Произведение Вес на коэффициент

легкий грузовой

0,6%

0,01

средний грузовой

3,1%

0,09

тяжелый грузовой (дизельный)

2,2%

0,004

автобус

14,1%

0,52

легковой автомобиль

80,0%

Средневзвешенное значение К Т

1,424

К т = 1,424

К С = 1,00 (скорость ветра при проведении подсчета = 6 м/с)

К В = 1,00 (относительная влажность воздуха при проведении подсчета = 71%)

К П = 2,0 (саморегулируемое движение)

Загрязнение атмосферного воздуха ул.11-ая Линия – ул.Ленина:

Где

N = 604

Для того чтобы рассчитать средневзвешенное значение К Т необходимо вычислить вес каждого транспорта в его общем объеме, перемножить веса на коэффициент К П из таблицы и сложить полученные произведения. Расчет данного показателя можно представить в таблице:

Тип автомобиля

Коэффициент К П

Кол-во транспорта

Вес транспорта

Произведение Вес на коэффициент

легкий грузовой

2,98%

0,07

средний грузовой

4,3%

0,12

тяжелый грузовой (дизельный)

1,32%

0,003

автобус

7,95%

0,29

легковой автомобиль

83,45%

0,83

Средневзвешенное значение К Т

1,313

К т = 1,313

К С = 1,00 (скорость ветра при проведении подсчета = 6 м/с)

К В = 1,00 (относительная влажность воздуха при проведении подсчета = 71%)

К П = 1,8 (регулируемый светофором перекресток)

Динамика выбросов оксида углерода

Таблица 6. Динамика выбросов оксида углерода

ул.11-ая Линия – ул.Кочубея

ул.11-ая Линия – ул.Мира

ул.11-ая Линия – ул.Ленина

5,16 мг/м 3

16,38 мг/м 3

15,17 мг/м 3

≈ ПДК

в 3,3 раза > ПДК

в 3 раза > ПДК

Выводы

По результатам проведенной работы можно сделать следующие выводы:

  • Из анализа литературного обзора видно, что информации по загрязнению окружающей среды г.Армавира автомобильным транспортом нет.
  • Исследуемый объект находится в микрорайоне школы, которая расположена в жилом районе района Линии. Вследствие этого выбросы автотранспортных средств неблагоприятно влияют на здоровье школьников, населения, проживающего в этом районе и на окружающую среду в целом.
  • Из таблицы 1 «Интенсивность движения автотранспорта на исследуемых участках дорог» видно, согласно ГОСТ 17.2.2.03 – 87, что на перекрестках улиц Ленина – 11-ая Линия и Мира – 11-ая Линия средняя интенсивность движения автотранспорта, а на перекрестке улиц Кочубея – 11-ая Линия – низкая.
  • Из Таблицы 6 «Динамика выбросов оксида углерода» видно, что наиболее высокая концентрация СО наблюдается на перекрестке улиц Мира – 11-ая Линия (превышает ПДК СО в 3,3 раза) и на перекрестке улиц Ленина – 11-ая Линия (превышает ПДК СО в 3 раза). На перекрестке улиц Кочубея – 11-ая Линия выбросы оксида углерода примерно соответствуют ПДК (превышает ПДК СО на 0,16 мг/м 3 ).
  • Из Таблицы 1 «Интенсивность движения автотранспорта» видно, что наибольший процент (более 80) на всех участках дорог занимает легковой транспорт, который и влияет на превышение показателей загруженности и выбросов оксида углерода. Данная проблема говорит о том, что не проведена оптимизация движения автотранспорта в данном районе.
  • Организация мероприятий по защите окружающей среды от влияния автотранспортных средств зависит от общей экономической ситуации, т. к. любые мероприятия – вывод из эксплуатации изношенного парка, замена топлива, внедрение систем, снижающих выбросы, требуют значительных материальных затрат.

Мероприятия по защите окружающей среды от влияния автотранспортных средств

Ограничение загрязнения атмосферы при использовании автотранспортных средств сводится к выполнению трех основных положений:

  • совершенствование автомобиля и его техническое состояние (применение новых типов топлива и поддержание технического состояния автомобиля – строгий контроль со стороны инспекторов ГАИ);
  • рациональная организация перевозок и движения (совершенствование дорог, выбора парка подвижного состава и его структуры, оптимальная маршрутизация автомобильных перевозок, организация и регулирование дорожного движения);
  • ограничение распространения загрязнения от источника к человеку (увеличение расстояния между автомобильной дорогой и жилым комплексом, максимальное озеленение территорий микрорайонов и разделительных полос (тополь, каштан).
  1. Заключение

Данное исследование было посвящено проведению мониторинга загрязнения атмосферы выбросами производимыми автотранспортом в микрорайоне школы № 2 г.Армавира. В начале работы была поставлена цель провести оценку уровня загрязнения атмосферы выбросами автотранспортных средств в микрорайоне школы № 2 г.Армавира. В процессе работы данная цель достигнута полностью. В результате исследования гипотеза, выдвинутая в начале работы, была подтверждена на 66%. Действительно выбросы автотранспорта на перекрестках улиц Мира – 11-ая Линия и Ленина – 11-ая Линия превышают допустимые нормы ПДК. В то время как на перекрестке улиц Кочубея – 11-ая Линия наблюдается относительная норма количества выбросов (на 0,13 мг/м 3 больше нормы). Таким образом, можно предположить, что исследуемый участок нуждается в мерах по снижению загруженности транспортом и снижения количества выбросов, загрязняющих атмосферу (меры по защите окружающей среды от этого фактора предложены в работе).

В ходе работы я:

Научилась : проводить расчеты для определения уровня загрязненности окружающей среды, выполнять математические действия для достижения поставленной цели, рассчитывать средневзвешенное значение;

Узнала : о разнообразии вредных веществ, выбрасываемых автомобильным транспортом и их вреде для окружающей среды и человека.

В дальнейшем я планирую продолжить свое исследование, связанное с изучением вреда автотранспорта и провести мониторинг состояния атмосферы исследуемой территории на основе биоиндикации.

  • Промышленная экология. Влияние автотранспорта на атмосферу / http://prom-ecologi.ru/
  • Свободная энциклопедия ВикипедиЯ / http://ru.wikipedia.org/wiki/Классификацияавтомобилей
  • ГОСТ 17.2.2.03 – 87 Охрана природы. Атмосфера. Нормы и методы измерений содержания оксида углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями. Требования безопасности.
  • Распоряжение Комитета по природопользованию, охране окружающей среды и обеспечению экологической безопасности Правительства Санкт-Петербурга от 10.12.2007 N 140-р об утверждении Методики расчета выбросов автотранспорта вблизи регулируемого перекрестка и оценки их воздействия на атмосферный воздух Санкт-Петербурга / http://www.bestpravo.ru/leningradskaya/xg-dokumenty/u6n.htm 4

    0301

    Азота диоксид (Азот (IV) оксид)

    ПДКм.р.

    0,200

    0304

    Азот (II) оксид (Азота оксид)

    ПДКм.р.

    0,400

    0328

    Углерод (Сажа)

    ПДКм.р.

    0,150

    0330

    Сера диоксид (Ангидрид сернистый)

    ПДКм.р.

    0,500

    0337

    Углерод оксид

    ПДКм.р.

    5,000

    0703

    Бенз/а/пирен

    (3,4-Бензпирен) x 10 -4

    ПДКс.с.

    1,000

    1325

    Формальдегид

    ПДКм.р.

    0,035

    2704

    Бензин (нефтяной, малосернистый) (в пересчете на углерод)

    ПДКм.р.

    5,000

    2732

    Керосин

    ОБУВ

    1,200

    Для 7 веществ приведены значения предельно допустимой максимально разовой концентрации (ПДКм.р.), для 1 вещества – значения ориентировочно безопасного уровня воздействия (ОБУВ), для 1 вещества – значения среднесуточной предельно допустимой концентрации (ПДКс.с.).

  • Среди отраслей экономики России транспортный комплекс является крупнейшим загрязнителем окружающей среды. В масштабах страны доля транспорта в суммарных выбросах загрязняющих веществ в атмосферу от всех источников достигает 45%, в выбросах парниковых газов - примерно 10%, в массе промышленных отходов - 2%, в сбросах вредных веществ со сточными водами - около 3%, в потреблении озоноразрушающих веществ - не более 5%. Доля транспорта в шумовом воздействии на население составляет 85-95% на различных территориях.

    Объем выбросов загрязняющих веществ в атмосферный воздух от автомобильного транспорта превышает таковой от всех других источников, особенно в крупных городах. Данное обстоятельство отрицательно сказывается на здоровье городского населения.

    Для России экологические проблемы автомобильного транспорта стали особенно актуальными в последнее десятилетие. В 1998 г. автомобильный парк России составил уже 23,7 млн. машин. Особенно напряженной экологическая обстановка оказалась в Москве, где автомобильный парк на начало 1999 г. насчитывал 2,2 млн. единиц. По сравнению с 1998 г. прирост составил 120 тыс. автомобилей или 6 %.

    Эксплуатируемые в стране автомобили не соответствуют современным европейским ограничениям по токсичности и выбрасывают вредных веществ существенно больше чем зарубежные аналоги. Существует несколько наиболее важных причин отставания России в этой сфере:

    • - низкая культура эксплуатации автомобилей. Количество неисправных автомобилей, находящихся в эксплуатации до сих пор весьма велико даже в Москве
    • - отсутствие жестких законодательных требований к экологическим качествам автомобилей. С начала 90-х годов стандарты, сохранившиеся в течение 10 лет почти без изменений, начали существенно отставать от европейских норм. В отсутствие достаточно жестких требований по токсичности выбросов, потребитель не заинтересован покупать экологически более чистые, но при этом более дорогие автомобили, а производитель не склонен их выпускать.
    • - неподготовленность инфраструктуры эксплуатации автомобилей, оборудованных в соответствии с современными экологическими требованиями.
    • - в отличие от европейских стран, у нас в стране до сих пор затруднено внедрение нейтрализаторов.

    Ежегодный экологический ущерб от транспортного комплекса составляет около 1,5% валового национального продукта (ВНП) России.

    Наибольший вклад в экологический ущерб (62,7%) вносит автотранспортный комплекс, вклад железнодорожного транспорта достигает 27,7%, воздушного - 4,5%, морского - 3,6% и речного -1,5%. Во всех видах негативного воздействия «лидирует» автомобильный транспорт (шум - 49,5%, воздействие на климат - 68%, загрязнение атмосферного воздуха - 71%), за ним следует железнодорожный транспорт.

    Один легковой автомобиль поглощает ежегодно из атмосферы в среднем больше 4 т кислорода, выбрасывая с выхлопными газами примерно 800 кг окиси углерода, около 40 кг окислов азота и почти 200 кг различных углеводородов.

    Причинами загрязнения воздуха от автотранспорта являются:

    плохое состояние технического обслуживания автомобилей,

    низкое качество применяемого топлива,

    наличие свинцовых добавок в бензине,

    неразвитость системы управления транспортными потоками,

    низкий процент использования экологически чистых видов транспорта.

    Каждый автомобиль выбрасывает в атмосферу с отработавшими газами около 200 различных компонентов. В выхлопных газах содержатся углеводороды - несгоревшие или не полностью сгоревшие компоненты топлива, доля которых резко возрастает, если двигатель работает на малых оборотах или в момент увеличения скорости на старте, т. е. во время заторов и у красного сигнала светофора. Именно в этот момент, когда нажимают на акселератор, выделяется больше всего несгоревших частиц: примерно в 10 раз больше, чем при работе двигателя в нормальном режиме.

    К несгоревшим газам относят и обычную окись углерода, образующуюся в том или ином количестве повсюду, где что-то сжигают. В выхлопных газах двигателя, работающего на нормальном бензине и при нормальном режиме, содержится в среднем 2,7 % оксида углерода. При снижении скорости эта доля увеличивается до 3,9 %, а на малом ходу - до 6,9 %. Оксид углерода, углекислый газ и большинство других газовых выделений двигателей тяжелее воздуха, поэтому все они скапливаются у земли.

    В выхлопных газах содержатся также альдегиды, обладающие резким запахом и раздражающим действием. К ним относятся акролены и формальдегид; последний обладает особенно сильным действием. В автомобильных выбросах содержатся также оксиды азота. Двуокись азота играет большую роль в образовании продуктов превращения углеводородов в атмосферном воздухе. В выхлопных газах присутствуют неразложившиеся углеводороды топлива. Среди них особое место занимают непредельные углеводороды этиленового ряда, в частности гексен и пентен.

    Из-за неполного сгорания топлива в двигателе автомашины часть углеводородов превращается в сажу, содержащую смолистые вещества. Особенно много сажи и смол образуется при технической неисправности мотора и в моменты, когда водитель, форсируя работу двигателя, уменьшает соотношение воздуха и горючего, стремясь получить так называемую "богатую смесь". В этих случаях за машиной тянется видимый хвост дыма, который содержит полициклические углеводороды и, в частности, бенз(а)пирен.

    В целом при определенном уровне интенсивности выхлопов автомобилей на территории города появляются устойчивые накопления двух типов загрязнений:

    Аэрозоли автотранспортного происхождения, задерживающиеся в атмосфере на длительный срок, адсорбирующие канцерогенные вещества и попадающие с воздухом в дыхательные пути, способны аккумулироваться организмом, попадая в него не только через дыхательные пути, но и через кожу. Эти соединения поражают центральную нервную систему и кроветворные органы. Шумовое воздействие от автотранспорта сравнимо с болевыми воздействиями от шума при работе отбойного молотка и трактора, но к тому же для городского жителя является более чувствительным по суммарному времени влияния.

    Глобальная автомобилизация кроме загрязнения воздуха преподнесла человечеству ещё одну проблему: куда девать машины, отслужившие свой срок? Из огромного мирового парка автомобилей таких машин ежегодно оказывается несколько миллионов. В Западной Европе в 1995 г. пришлось ликвидировать около 15 млн. автомобилей, в США - порядка 12 млн. В результате, во всем мире ежегодно оказывается до 7 млн. т. неиспользуемых отходов.

    экологический проблема загрязнение здоровье

    Если в начале 70-х годов доля загрязнений, вносимых автомобильным транспортом в атмосферный воздух, составляла 10 - 13 %, то в настоящее время эта величина достигла 50 -60 % и продолжает расти.

    По данным государственного доклада "О состоянии окружающей природной среды Российской Федерации в 1995 году" автомобильным транспортом выброшено в атмосферу 10955 тыс. тонн загрязняющих веществ. Автотранспорт относится к основным источникам загрязнения окружающей среды в большинстве крупных городов, при этом на 90 % воздействие на атмосферу связано с работой автотранспортных средств на магистралях, остальной вклад вносят стационарные источники (цеха, участки, станции технического обслуживания, стоянки и т.д.)

    В крупных городах России доля выбросов от автотранспорта соизмерима с выбросами от промышленных предприятий (Москва и Московская область, Санкт-Петербург, Краснодар, Екатеринбург, Уфа, Омск и др. В городах с менее развитой промышленностью вклад автотранспорта в суммарное загрязнение атмосферного воздуха возрастает и в отдельных случаях достигает 80 % 90 % (Нальчик, Якутск, Махачкала, Армавир, Элиста, Горно-Алтайск и др).

    Основной вклад в загрязнение воздушной среды Москвы вносит автотранспорт, доля которого в суммарном выбросе загрязняющих веществ от стационарных и передвижных источников возросла с 83,2 % в 1994 году, до 89,8 % - в 1995 году.

    Автопарк Московской области насчитывает примерно 750 тысяч автомобилей (из них 86% находятся в индивидуальном пользовании), выброс загрязняющих веществ от которых, составляет около 60% суммарных выбросов в атмосферный воздух.

    Вклад автотранспорта в загрязнение воздушного бассейна Санкт-Петербурга превышает 200 тыс.т/год, а доля его в суммарных выбросах достигает 60 %.

    Отработанные газы автомобильных двигателей содержит около 200 веществ, большинство из которых токсичны. В выбросах карбюраторных;двигателей основная доля вредных продуктов приходится на оксид углерода, углеводороды и окислы азота, а в дизельных - на оксиды азота и сажу.

    Главной причиной неблагоприятного воздействия автотранспорта на окружающую природную среду остается низкий технический уровень эксплуатируемого подвижного состава и отсутствия системы нейтрализации отработавших газов.

    Показа тельной является структура источников первичных загрязнений США, представленная в таблице 1, из которой видно, что выбросы автомобильного транспорта по многим полютантам являются доминирующими.

    Воздействие отработанных газов автомобилей на здоровье населения. Отходящие газы двигателей внутреннего сгорания (ОГ ДВС) содержат сложную смесь, насчитывающую более 200 соединений. В основном это газообразные вещества и небольшое количество твердых частиц, находящихся во взвешенном состоянии. Газовая смесь твердых частиц, находящихся во взвешенном состоянии. Газовая смесь состоит из инертных газов, проходящих через камеру сгорания без изменения, продуктов сгорания и несгоревшего окислителя. Твердые частицы это продукты дегидрирования топлива, металлы, а также другие вещества, которые содержатся в топливе и не могут сгореть. По химическим свойствам, характеру воздействия на организм человека вещества, составляющие ОГ, разделяют на нетоксичные (N 2 , О 2 , СО 2 , Н 2 O, H 2) и токсичные (СО, C m H n , H 2 S, альдегиды и др).

    Многообразие соединений выхлопа ДВС можно свести к нескольким группам, каждая из которых объединяет вещества, в той или иной мере сходные по характеру воздействия на организм человека или родственные по химической структуре и свойствам.

    Нетоксичные вещества вошли в первую группу.

    Ко второй ipyrare отнесен оксид углерода, присутствие которого в больших количествах до 12 % характерно для ОГ бензиновых двигателей (БД) при работе на богатых топливовоздушных смесях.

    Третью группу образуют оксиды азота: оксид (NO) и диоксид (NO:). Из общего количества оксидов азота в ОГ БД содержится 98 - 99 % NO и только 12 % N02 , а дизельных двигателейсоответственно 90 и 100%.

    Четвертая, самая многочисленная группа, включает углеводороды, среди которых обнаружены представители всех гомологических рядов: алканы, алкены, алкадиены, циклические и в том числе ароматические углеводороды, среди которых немало канцерогенов.

    Пятую группу составляют альдегиды, причем на долю формальдегида приходится 60%, алифатических альдегидов 32 % , ароматических3 %.

    К шестой группе отнесены частицы, основная часть которых сажатвердые углеродные частицы, образующиеся в пламени.

    Из общего количества органических компонентов, содержащихся в ОГ ДВС в объеме более 1 %, на долю предельных углеводородов приходится 32 %, непредельных 27,2 %, ароматических 4 %, альдегидов, кетонов 2,2 %.Следует отметить, что в зависимости от качества топлива состав ОГ ДВС дополняется весьма токсичными соединениями, такими, как диоксид серы и соединения свинца (при использовании тетраэтилсвинца (ТЭС) в качестве антидетонатора).

    До настоящего времени около 75 % выпускаемых в России бензинов являются этилированными и содержат от 0,17 до 0,37 г/л свинца. В выбросах дизельного транспорта отсутствует свинец, однако содержание в дизельном топливе некоторого количества серы обуславливает в ОГ наличие 0,0030,05 % сернистого ангидрида. Таким образом, автотранспорт источник эмиссии в атмосферу сложной смеси химических соединений, состав которых зависит не только от вида топлива, типа двигателя и условий его эксплуатации, но и от эффективности контроля выбросов. Последнее особенно стимулирует мероприятия по сокращению или обезвреживанию токсичных компонентов ОГ.

    Попадая в атмосферу, компоненты ОГ ДВС, с одной стороны, смешиваются с имеющимися в воздухе загрязнителями, с другой претерпевают ряд сложных превращений, приводящих к образованию новых соединений. Одновременно идут процессы разбавления и удаления загрязнителей из атмосферного воздуха путем мокрого и сухого высаживания на землю. В связи с огромным многообразием химических превращений загрязнителей в атмосферном воздухе состав их чрезвычайно динамичен.

    Риск вреда, наносимого организму токсическим соединением, зависит от трех факторов: физических и химических свойств соединения, дозы, взаимодействующей с тканями органа-мишени (органа, которому токсикантом причинен вред), и времени воздействия, а также биологического отклика организма на воздействие токсиканта.

    Если физическое состояние загрязнителей воздуха определяет их распределение в атмосфере, а при ингалировании с воздухом - в респираторном тракте индивидуума, то химические свойства в конечном счете, мутагенный потенциал токсиканта. Так, растворимость токсиканта обуславливает различное размещение его в организме. Растворимые в биологических жидкостях соединения быстро переносятся из респираторного тракта по всему телу, а нерастворимые задерживаются в респираторном тракте, в легочной ткани, прилегающих лимфатических узлах, или, продвигаясь к глотке, проглатываются.

    Внутри организма соединения подвергаются метаболизму, в процессе которого облегчается их экскреция, а также проявляется токсичность. Следует отметить, что токсичность образующихся метаболитов может иногда превышать токсичность исходного соединения, а в целом дополняет ее. Баланс между метаболическими процессами, усиливающими токсичность, уменьшающими ее или благоприятствующими элиминированию соединений важный фактор чувствительности индивидуума к токсичным соединениям.

    Понятие "доза" в большей степени может быть отнесено к концентрации токсиканта в тканях органа-мишени. Ее аналитическое определение достаточно затруднено, т.к необходимо наряду с идентификацией органа-мишени понимание механизма взаимодействия токсиканта на клеточном и молекулярном уровне.

    Биологический отклик на действие токсикантов ОГ включает многочисленные биохимические процессы, находящиеся в то же время под сложным генетическим контролем. Суммируя такие процессы, определяют индивидуальную восприимчивость и соответственно результат воздействия токсичных веществ.

    Ниже представлены данные исследований воздействия отдельных компонентов ОГ ДВС на здоровье человека.

    Угарный газ (СО) является одним из преобладающих компонентов в сложной композиции ОГ автомобилей. Оксид углерода бесцветный газ, не имеющий запаха. Токсическое действие СО на организм человека и теплокровных животных заключается в том, что он взаимодействует с гемоглобином (НЬ) крови и лишает его возможности выполнять физиологическую функцию переноса кислорода, т.е. протекающая в организме при воздействии на него избыточной концентрации СО альтернативная реакция приводит прежде всего к нарушению тканевого дыхания. Таким образом, происходит конкуренция О 2 и СО за одно и то же количество гемоглобина, но сродство гемоглобина к СО примерно в 300 раз больше чем к О 2 , поэтому СО способен вытеснять кислород из оксигемоглобина. Обратный процесс диссоциации карбоксигемоглобина протекает в 3600 раз медленнее, чем оксигемоглобина. В целом эти процессы приводят к нарушению обмена кислорода в организме, кислородному голоданию тканей, особенно клеток центральной нервной системы, т.е отравлению организма угарным газом.

    Первые признаки отравления (головная боль в области лба, усталость, раздражительность, обморок) появляются при 20 30 % превращения НЬ в НЬСО. Когда превращение достигает 40 - 50 %, пострадавший падает в обморок, а при 80 % наступает смерть. Таким образом, длительное вдыхание СО в концентрации более 0,1 % опасно, а концентрация 1 % смертельна при воздействии в течение нескольких минут.

    Полагают, что воздействие ОГ ДВС, основную долю которых составляет СО, является фактором риска в развитии атеросклероза и болезней сердца. Аналогия связана с повышенной заболеваемостью и смертностью курящих, подвергающих организм продолжительному воздействию дыма сигарет, содержащего, как и ОГ ДВС, значительное количество СО.

    Оксиды азота. Из всех известных оксидов азота в воздухе автомагистралей и прилегающей к ним зоне в основном определяются оксид (NO) и диоксид (NO 2). В процессе сгорания топлива в ДВС сначала образуется N0, концентрации NО 2 значительно ниже. При сгорании топлива возможны три пути образования N0:

    При высоких температурах, присущих пламени, атмосферный азот реагирует с кислородом, образуя термический N0, скорость образования термического N0 гораздо меньше скорости горения топлива и увеличивается она с обогащением топливовоздушной смеси;

    Наличие в топливе соединений с химически связанным азотом (в асфалменовых фракциях очищенного топлива содержание азота 2,3% по массе, в тяжелых топливах 1,4 %, в сырой нефти среднее содержание азота по массе составляет 0,65 %) обуславливает образование при горении топливного N0. Окисление азотосодержащих соединений (в частности простых NH3, HCN) происходи! быстро, за время, сравнимое с временем реакции горения. Выход топливного N0 мало зависит от температуры;

    Образующийся на фронтах пламени N0 (не из атмосферных N2 и Oi) называется быстрым. Считается, что режим протекает через промежуточные вещества, содержащие группы CN, быстрое исчезновение которых вблизи зоны реакции приводит к образованию N0.

    Таким образом, N0 образуется в основном по первому пути, поэтому в общей массе содержащегося в ОГ N0 составляет термический оксид азота. Относительно высокие концентрации N02 могут возникать в зоне горения с последующим превращением N02 обратно в N0 в послепламенной зоне, хотя быстрое перемешивание горячих и холодных областей потока в турбулентном пламени может быть причиной появления в ОГ относительно высоких концентраций N02. Попадая в атмосферу воздуха с ОГ N0 достаточно легко окисляется до N0 2:

    2 NO + O2 -» 2NO 2 ; NO + Оз

    В то же время в солнечный полдень происходит фотолиз N02 с образованием N0:

    N0 2 + h -> N0 + О.

    Таким образом, в атмосферном воздухе существует конверсия N0 и N02, которая вовлекает во взаимодействие с оксидами азота органические соединения загрязнители с образованием весьма токсичных соединений. например, нитросоединений, нитро-ПАУ (полициклические ароматические углеводороды) и др.

    Воздействие окислов азота в основном связано с раздражением слизистых оболочек. Длительное воздействие приводит к возникновению острых заболеваний органов дыхания. При остром отравлении оксидами азота может возникнуть отек легких. Диоксид серы. Доля диоксида серы (SO2) в ОГ ДВС невелика по сравнению с оксидами углерода и азота и зависит от содержания серы в используемом топливе, при сгорании которого она образуется. Особенно следует отметить вклад автотранспорта с дизельными двигателями в загрязнение атмосферы соединениями серы, т.к. содержание сернистых соединений в топливе относительно велико, масштабы его потребления огромны и увеличиваются с каждым годом. Повышенное содержание диоксида серы чаще можно ожидать вблизи автотранспорта, работающего на холостом ходу, а именно на автостоянках, вблизи регулируемых перекрестков.

    Диоксид серы -- бесцветный газ, с характерным удушливым запахом горящей серы, достаточно легко растворим в воде. В атмосфере диоксид серы вызывает конденсацию водяных паров в виде тумана даже в условиях, когда давление паров меньше требуемого для конденсации. Растворяясь в имеющейся на растениях влаге, диоксид серы образует кислый раствор, губительно действующий на растения. Особенно от этого страдают хвойные породы деревьев, расположенные вблизи городов. На высших животных и человека диоксид серы действует в первую очередь как местный раздражитель слизистой оболочки верхних дыхательных путей. Изучение процесса поглощения SO2 в респираторном тракте ингалированием воздуха, содержащего определенные дозы данного токсиканта, показало, что противоточный процесс адсорбции, десорбции и удаления из организма SO2 после десорбции при выдохе, уменьшает общую нагрузку его в верхних дыхательных путях. В процессе дальнейших исследований в этом направлении было установлено, что повышение специфического отклика (в виде бронхоспазма) на воздействие SO2 коррелирует с размером площади респираторного тракта (в облаете зева), адсорбировавшей двуоксид серы.

    Следует отметить, что люди с респираторными заболеваниями очень чувствительны к эффектам воздействия воздуха, загрязненного SO2. Особенно чувствительны к ингаляции даже самых низших доз SO2 астматики, у которых развивается острый, порой симптоматический бронхоспазм в процессе даже краткого воздействия низких доз диоксида серы.

    Изучение синергического эффекта воздействия оксидантов, в частности, озона и диоксида серы выявило значительно большую токсичность смеси по сравнению с отдельными компонентами.

    Свинец. Использование свинецсодержащих антидетонациониых добавок к топливу привело к тому, что автотранспорт является основным источником выброса в атмосферу свинца в виде аэрозоля неорганических солей и оксидов. Доля свинцовых соединений в ОГ ДВС составляет от 20 до 80% массы выбрасываемых частиц и меняется она в зависимости от размера частиц и режима работы двигателя.

    Использование этилированного бензина при интенсивном транспортном потоке приводит к значительному загрязнению свинцом атмосферного воздуха, а также почвы и растительности на площадях, прилегающих к автострадам.

    Замена ТЭС (тетраэтилсвинца) на другие более безвредные соединения антидетонаторы и последующий постепенный переход на неэтилированный бензин способствуют уменьшению содержания свинца в атмосферном воздухе.

    В нашей стране, к сожалению, продолжается выпуск этилированного бензина, хотя и предусмотрен в ближайшее время переход на использование автотранспортом неэтилированного бензина.

    Свинец поступает в организм либо с продуктами питания, либо с воздухом. Симптомы свинцовой интоксикации известны давно. Так в условиях длительного производственного контакта со свинцом основные жалобы были на головную боль, головокружение, повышенную раздражительность, быструю утомляемость, нарушение сна. В легкие могут поступать частицы соединений свинца, имеющие величину, менее 0,001 мм. Более крупные задерживаются в носоглотке и бронхах.

    По данным от 20 до 60 % ингалированного свинца размещается в респираторном тракте. Большая часть его затем выводится из респираторного тракта потоком биологических жидкостей. Из всего количества абсорбированного организмом свинца на долю атмосферного приходится 7-40 %.

    О механизме действия свинца на организм пока нет единого представления. Полагают, что соединения свинца действуют как протоплазм атический яд. В раннем возрасте воздействие свинца наносит необратимый вред центральной нервной системе.

    Органические соединения. Среди многих органических соединений, идентифицированных в ОГ ДВС, в токсикологическом отношении выделяются 4 класса:

    алифатические углеводороды и продукты их окисления (спирты, альдегиды, кислоты);

    ароматические соединения, включая гетероциклы и их окисленные продукты (фенолы, хиноны);

    алкилзамещенные ароматические соединения и их окисленные

    продукты (алкилфенолы, алкилхиноны, ароматические карбоксиальдегиды, карбоновые кислоты);

    Нитроароматические соединения (нитро-ПАУ). Из названных классов соединений, характерных для бензиновых и дизельных двигателей, незамещенные ПАУ, а также нитро-ПАУ в последнее десятилетие особенно привлекают внимание исследователей, т.к. многие из них известны как мутагены или канцерогены. Высокий уровень онкологических заболеваний среди населения, проживающего в промышленно развитых районах с интенсивным транспортным движением, связывают в первую очередь с ПАУ.

    Следует отметить, что токсикологические исследования большинства ингалируемых соединений, входящих в перечень атмосферных загрязнителей, проводились в основном в чистом виде, хотя большинство выбрасываемых в атмосферу, органических соединений адсорбируется на твердых относительно инертных и нерастворимых частицах. Твердые частицы это сажа продукт неполного сгорания топлива, частицы металлов, их оксидов или солей, а также частицы пыли, всегда присутствующие в атмосфере. Известно, что 20 30 % твердых взвешенных частиц в городском воздухе составляют микрочастицы (размером менее 10 мкм), выбрасываемые с ОГ ДД грузовых автомобилей и автобусов.

    Выброс твердых частиц с ОГ зависит от многих факторов, среди которых особо следует выделить конструктивные особенности двигателя, режим его работы, техническое состояние, и состав используемого топлива. Адсорбция органических соединений, содержащихся в ОГ ДВС, на твердых частицах зависит от химических свойств взаимодействующих компонентов. В дальнейшем степень токсикологического воздействия на организм будет зависеть от скорости разделения ассоциированных органических соединений и твердых частиц, скорости мегаболизма и нейтрализации органических токсикантов. Твердые частицы также могут воздействовать на организм, и токсический эффект может быть не менее опасным, чем рак.

    Окислители. Композицию соединений ОГ, попавших в атмосферу, нельзя рассматривать изолированно из-за происходящих физических и химических превращений и взаимодействий, которые приводят, с одной стороны, к трансформации химических соединений, с другой стороны к их удалению из атмосферы. Комплекс процессов, происходящих с первичными выбросами ДВС включает:

    • - сухое и мокрое высаживание газов и частиц;
    • - химические реакции газообразных эмиссий ОГ ДВС с ОН, 1ЧОз, радикалами, Оз, N2O5 и газообразной HNO3; фотолиз;

    реакции органических соединений, адсорбированных на частицах с соединениями в газовой фазе или в адсорбированном виде; - реакции различных реакционноспособных соединений в водной фазе, приводящие к образованию кислотных осадков.

    Процесс сухого и мокрого высаживания химических соединений выбросов ДВС зависит от размера частиц, адсорбционной способностью соединений (константы адсорбции и десорбции), их растворимости. Последнее особенно важно для хорошо растворимых в воде соединений, концентрация которых в атмосферном воздухе во время дождя может быть доведена до нуля.

    Физические и химические процессы, происходящие в атмосфере с исходными соединениями ОГ ДВС, а также их воздействие на людей и животных тесно связаны с их временем жизни в атмосферном воздухе.

    Таким образом, при гигиенической оценке воздействия ОГ ДВС на здоровье населения следует учитывать то, что соединения первичного состава ОГ в атмосферном воздухе претерпевают различные трансформации. При фотолизе ОГ ДВС происходит диссоциация многих соединений (N02, Ог, Оз, НСНО и др.) с образованием высо-кореакционноспособных радикалов и ионов, взаимодействующих как между собой, так и с более сложными молекулами, в частности, с соединениями ароматического ряда, которых достаточно много в ОГ.

    В итоге, среди вновь образующихся в атмосфере соединений появляются такие опасные загрязнители воздуха, как озон, различные неорганические и органические перекисные соединения, амино-, нитро- и нитрозосоединения, альдегиды, кислоты и др. Многие из них сильные канцерогены.

    Несмотря на обширную информацию об атмосферных трансформациях химических соединений, входящих в состав ОГ, к настоящему времени эти процессы в полной мере не изучены, а следовательно, не идентифицированы многие продукты этих реакций. Однако даже то, что известно, в частности, о воздействии фотооксидантов на здоровье населения, особенно на астматиков и ослабленных хроническими легочными заболеваниями людей подтверждает токсичность ОГ ДВС.

    Нормативы выбросов вредных веществ с отработанными газами автомобилей - одно из основных мероприятий снижение токсичности автомобильных выбросов, постоянно возрастающее количество которых оказывает угрожающее влияние на уровень загрязнения атмосферного воздуха крупных городов и соответственно на здоровье человека. Впервые внимание к автомобильным выбросам было привлечено при исследовании химии атмосферных процессов (1960-е г.г., США, Лос-Анжелес), когда было показано, что фотохимические реакции углеводородов и окиси азота способны образовывать многие вторичные загрязнители, раздражающие слизистые оболочки глаз, дыхательных путей и ухудшающие видимость.

    В связи с тем, что основной вклад в общее загрязнение атмосферного воздуха углеводородами и оксидами азота вносят ОГ ДВС, последние были признаны причиной фотохимического смога, а перед обществом появилась проблема законодательного ограничения вредных автомобильных выбросов.

    В связи с этим в конце 50-х годов в Калифорнии была начата разработка стандартов на выброс загрязнителей, содержащихся в ГО автомобилей, как часть законодательства штата, касающаяся качества атмосферного воздуха.

    Целью стандарта было "установление максимально допустимых норм содержания загрязнителей в автомобильных выбросах, увязанных с охраной здоровья населения, предотвращением раздражения органов чувств, ухудшения видимости и ущерба растительности".

    В 1959 г. в Калифорнии были установлены первые в мире стандарты -предельные значения в ОГ СО и СmНn, в 1965 г. - принят в США закон о контроле за загрязнением воздуха автотранспортом, а в 1966 г. - утвержден государственный стандарт США.

    Государственный стандарт был в сущности техническим заданием для автомобильной промышленности, стимулируя разработку и внедрение многих мероприятий, направленных на совершенствование автомобилестроения.

    Одновременно это позволяло Агентству по охране окружающей среды США регулярно ужесточать стандарты, снижающие количественное содержание токсичных компонентов в ОГ.

    В нашей стране первый государственный стандарт по ограничению вредных веществ в ОГ автомобилей с бензиновыми двигателями был принят в 1970 г.

    В последующие годы были разработаны и действуют различные нормативные и технические документы, в том числе отраслевые и государственные стандарты, в которых отражено поэтапное снижение норм выброса вредных компонентов ОГ.

    Существенна роль транспорта в загрязнении водных объектов. Кроме того, транспорт является одним из основных источников шума в городах и вносит значительный вклад в тепловое загрязнение придорожные полосы и водные объекты окружающей среды.

    Пути решения

    Вредные вещества при эксплуатации подвижных транспортных средств поступают в воздух с отработавшими газами, испарениями из топливных систем и при заправке, а так же с картерными газами. На выбросы оксида углерода значительное влияние оказывает рельеф дороги и режим движения автомашины. Так, например, при ускорении и торможении в отработавших газах увеличивается содержание оксида углерода почти в 8 раз. Минимальное количество оксида углерода выделяется при равномерной скорости автомобиля 60 км/ч. Выбросы оксидов азота максимальны при отношении воздух - топливо 16:1.

    Таким образом, значения выбросов вредных веществ в отработавших газах автотранспорта зависят от целого ряда факторов: отношения в смеси воздуха и топлива, режимов движения автотранспорта, рельефа и качества дорог, технического состояния автотранспорта и др. Состав и объёмы выбросов зависят также от типа двигателя.Выбросы основных загрязняющих веществ значительно ниже в дизельных двигателях. Поэтому принято считать их более экологически чистыми. Однако дизельные двигатели отличаются повышенными выбросами сажи, образующейся вследствие перегрузки топлива. Сажа насыщена канцерогенными углеводородами и микроэлементами; их выбросы в атмосферу недопустимы.

    В связи с тем, что отработавшие газы автомобилей поступают в нижний слой атмосферы, а процесс их рассеяния значительно отличается от процесса рассеяния высоких стационарных источников, вредные вещества находятся практически в зоне дыхания человека. Поэтому автомобильный транспорт следует отнести к категории наиболее опасных источников загрязнения атмосферного воздуха вблизи автомагистралей.

    Загрязнение воздуха ухудшает качество среды обитания всего населения придорожных территорий и контрольные санитарные и природоохранные органы обоснованно обращают на него первоочередное внимание. Однако распространение вредных газов имеет все же кратковременный характер и с уменьшением или прекращением движения также снижается. Все виды загрязнения воздуха через сравнительно короткое время переходят в более безопасные формы.

    Загрязнение поверхности земли транспортными и дорожными выбросами накапливается постепенно, в зависимости от числа проходов транспортных средств и сохраняется очень долго даже после ликвидации дороги. Для будущего поколения, которое, вероятно, откажется от автомобилей в их современном виде, транспортное загрязнение почвы останется тяжелым наследством прошлого. Не исключено, что при ликвидации построенных нами дорог загрязненную неокислившимися металлами почву придется убирать с поверхности.

    Накапливающиеся в почве химические элементы, особенно металлы, охотно усваиваются растениями и через них по пищевой цепи переходят в организм животных и человека. Часть их растворяется и выносится стоковыми водами, попадает затем в реки, водоемы и уже через питьевую воду также может оказаться в организме человека. Действующие нормативные документы требуют пока сбора и очистки стоков только в городах и водоохранных зонах. Учет транспортного загрязнения почвы и водоемов на территории прилегающей к дороге, необходим при проектировании дорог 1 и 2 экологического класса для оценки состава загрязнения почвы сельскохозяйственных и селитебных земель, а также для проектирования очистки дорожных стоков.

    Исследований загрязнений почвы до сих пор выполнено немного: процесс выброса и распределения загрязняющих частиц на поверхности почти также сложен, как и в воздухе, а натурные измерения с использованием методов микроанализа не всем доступны и дороги. Поэтому данные натурных измерений представляют особую ценность. Наиболее полные исследования на высоком для того времени уровне были проведены в Институте биологии Латвии в конце 70-х годов. Их авторы Дз.Ж. Бериня, И.М. Лапиня, Л.В. Карелина и др. получили большой объем данных о наличии в придорожной почве и растениях тяжелых металлов и других элементов с учетом различных влияющих факторов. В отношении выбросов свинца получили известность исследования Р.Х. Измайлова, выполненные в МАДИ в конце 70-х годов, работы В.И. Пуркина, Т.С. Самойловой.

    Наиболее распространенным и токсичным транспортным загрязнителем, считается свинец. Он относится к распространенным элементам: его среднемировой кларк (фоновое содержание) в почве считается 10 мг/кг. Примерно такого же уровня достигает содержание свинца в растениях (на сухую массу). Общесанитарный показатель ПДК свинца в почве с учетом фона - 32 мг/кг.

    По некоторым данным содержание свинца на поверхности почвы на краю полосы отвода обычно составляет до 1000 мг/кг, но в пыли городских улиц с очень большим движением может быть в 5 раз больше. Большинство растений легко переносят повышенное содержание в почве тяжелых металлов, только при содержании свинца более 3000 мг/кг возникает заметное угнетение. Для животных опасность вызывает уже 150 мг/кг свинца в пище.

    В США в конце 70-х годов были опубликованы данные исследований, свидетельствующие, что в каждом погонном метре защитной полосы шириной 100 м дороги с интенсивностью движения 90 тыс. авт./сут за 10 лет эксплуатации аккумулировалось 3 кг свинца. Это послужило действенным аргументом в пользу ограничения применения свинцовых добавок. По данным, полученным в Голландии, при общем фоновом содержании свинца в траве 5 мг/кг сухого веса, на обочинах его оказалось в 40 раз, а на разделительной полосе - в 100 раз больше. Эти данные дали основание запретить использование дня фуража травы в полосе 150 м от автомагистралей.

    Согласно выполненных латвийскими учеными замеров концентрация металлов в почве на глубине 5-10 см вдвое меньше, чем в поверхностном слое до 5 см. Наибольшее количество отложений обнаружено на расстоянии 7-15 м от края проезжей части. Установлено, что через 25 м концентрация снижается примерно вдвое и через 100 м приближается к фоновой. Учитывая, однако, что до половины свинцовых частиц не выпадает сразу на землю, разносится с аэрозолями, выбросы свинца, хоть и в меньшей концентрации, могут откладываться на больших расстояниях от дороги.

    Выше было отмечено, что контроль за отложениями выбросов других металлов, вследствие их не токсичности (железо, медь) или малого содержания нормативными документами, не установлен. При необходимости, имея данные об эмиссии, можно без большой ошибки использовать изложенную методику и для других тяжелых металлов. Реальное распределение загрязнений в основном подтверждает возможность применения упрощенных способов расчета, основанных на статистической обработке натурных замеров. Но из-за неучета многих влияющих факторов объективная точность таких расчетов невелика и для случаев, когда назначение защитной полосы или строительство специальных защитных сооружений связано со значительными затратами; следовало бы применять более надежные методы.

    По данным ряда наблюдений из общего количества выбросов твердых частиц, включая металлы, примерно 25 % остается до смыва на проезжей части, 75 % распределяется на поверхности прилегающей территории, включая обочины. В зависимости от конструктивного профиля и площади покрытия в сточные дождевые или смывные воды попадает от 25 % до 50 % твердых частиц.

    В странах с высоким уровнем автомобилизации озабоченность вызывает загрязнение придорожной полосы остатками аварий, выброшенными старыми автомобилями. Только во Франции их число в 70-х годах достигало 1-1,5 млн. в год. Наряду с уборкой придорожной полосы за счет эксплуатационного финансирования установлены высокие штрафы за покинутый автомобиль. Введение компьютерного учета всех транспортных средств сделало невозможным сокрытие их владельцев и проблема после этого потеряла актуальность. Очень жестко наказывается и выбрасывание на дорогах банок, бутылок и другого мусора. Конечно, результативность борьбы с загрязнением придорожных земель пользователями дороги зависит от общего порядка и качества содержания. Известно, например, что в США средние по штатам расходы на уборку дорог от мусора достигают 1 млн. долларов в год.

    Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

    Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

    С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

    Отправить

    Влияние транспорта на окружающую среду – одна из самых актуальных проблем современности. И чтобы её решить, нужно вникнуть в суть воздействия и разработать меры, направленные на устранение негативных последствий.

    Актуальность проблемы

    Существует несколько видов транспорта, но наиболее опасным с точки зрения негативного воздействия на окружающую среду считается автомобильный. И если несколько десятков лет назад личную машину мог позволить себе далеко не каждый, то сегодня она стала необходимым и вполне доступным средством передвижения для многих людей.

    В связи с этим доля загрязняющих веществ, выбрасываемых в атмосферу автомобилями, достигла 50%, в то время как в 70-е годы прошлого века она составляла всего 10-15%. А в крупных городах и современных мегаполисах данный показатель может достигать 65-70%. Кроме того, ежегодно количество выбросов возрастает примерно на 3%, и это вызывает серьезные опасения.

    Интересный факт: автомобильный транспорт занимает лидирующие позиции с точки зрения ущерба, наносимого окружающей среде, это . На его долю приходится более 90% загрязнения воздуха, чуть меньше 50% шумового воздействия, а также около 65-68% влияния на климат.

    Вредные вещества, образующиеся в процессе эксплуатации транспорта

    Экологические проблемы автомобильного транспорта очень актуальны и связаны с особенностями работы современных моделей. Если брать усреднённые показатели, то одна машина в течение года поглощает около четырёх тонн кислорода, необходимого для запуска процессов сгорания топлива. В результате работы двигателя автомобиля образуются отработанные газы, состоящие из множества вредных компонентов.

    Так, в год выбрасывается порядка 800 кг угарного газа, 180-200 килограммов углеродов и примерно 35-40 кг оксидов азота. Также в атмосферу выделяются и канцерогенные соединения: порядка пяти тысяч тонн свинца, около полутора тонн бензапилена, свыше 27 тонн бензола и более 17 тысяч тонн формальдегида. А общее количество всех вредных и опасных веществ, выделяемых в процессе эксплуатации автомобильного транспорта, составляет около 20 миллионов тонн. И такие цифры огромные и пугающие.

    Всего в состав отработанных газов, выделяемых автомобильным транспортом, входит свыше 200 различных компонентов и соединений, и подавляющее их большинство обладает токсичными свойствами. А некоторые вещества образуются в результате эксплуатации машин и их взаимодействия с окружающими поверхностями, например, из-за трения резины об асфальт.

    Нельзя недооценивать и вред различных автомобильных деталей, утилизации которых не уделяется должного внимания. В итоге образуются стихийные свалки с миллионами запчастей транспорта, изготовленных из резины и металлов, которые также выделяют опасные пары в атмосферу.

    Процесс работы двигателя автомобильного транспорта очень сложен и включает массу различных реакций. В ходе последних образуются многочисленные вещества, основными среди которых являются:

    • Углеводороды являются соединениями, состоящими из изначальных или подвергшихся распаду элементов топлива.
    • Сажа представляет собой образующийся в результате пиролиза твёрдый углерод и основную составляющую нерастворимых частиц, выделяемых двигателем автотранспорта.
    • Оксиды серы образуются в процессе входящей в состав автомобильного топлива серы.
    • Оксид углерода – это не имеющий запаха и цвета газ, имеющий невысокую плотность и быстро распространяющийся по атмосфере.
    • Углеводородные соединения. Они изучены довольно плохо, но учёным уже удалось выяснить, что эти компоненты выхлопных газов могут служить исходными продуктами для формирования так называемых фотооксидантов.
    • Оксид азота является бесцветным газом, а диоксид приобретает насыщенный бурый оттенок и характерный неприятный запах.
    • Сернистый ангидрид представляет собой газ без цвета, но с очень едким запахом.

    Интересный факт: состав выхлопных отработанных газов, выделяемых в атмосферу в ходе эксплуатации автомобильного транспорта, зависит от особенностей работы машины, её состояния, используемого топлива, а также опыта водителя.

    Негативные последствия

    Воздействие автомобильного транспорта на окружающую среду крайне негативно. И стоит рассмотреть несколько основных угроз.

    Парниковый эффект

    О нём говорят все экологи, и последствия такого глобального явления уже начинают проявляться. Возникающие в процессе эксплуатации автомобилей компоненты отработанных выхлопных газов проникают в атмосферу, повышают плотность её нижних слоёв и создают эффект парника. В итоге солнечные лучи попадают на поверхность Земли и нагревают её, но тепло не может уходить обратно в космос (примерно такие процессы наблюдаются в теплицах).

    Парниковый эффект – это реальная угроза. К его возможным последствиям относятся повышение уровня мирового океана, глобальное потепление, природные катаклизмы, хозяйственный кризис, губительное влияние на фауну и флору.

    Изменение экосистемы

    Из-за загрязнения окружающей среды транспортом страдает практически всё живое на земле. вдыхают животные, из-за чего ухудшается функционирование их дыхательной системы. В результате нарушения дыхания и нехватки кислорода страдают другие органы.

    Животные испытывают стресс, из-за которого могут вести себя неестественно. Также заметно снижаются темпы размножения, в результате чего одни виды становятся малочисленными, а другие начинают относиться к редким и вымирающим. Сильно страдает и флора, ведь отработанные газы автомобильного транспорта практически сразу попадают на растения, образуя на них плотный налёт и нарушая процессы естественного дыхания.

    Кроме того, вредные соединения проникают в почву и из неё всасываются корнями, что также негативно сказывается на состоянии и росте представителей флоры. Связанные с негативным влиянием автотранспорта перемены с каждым годом становятся всё более масштабными и глобальными, а со временем они могут привести к краху существующей на планете Земля экосистемы, что повлияет на жизнь человечества, воздух, атмосферу.

    Экологические проблемы из-за автотранспорта

    Экологические проблемы автотранспорта — актуальные вопросы. Активная и повсеместная эксплуатация автомобилей сильно ухудшает экологию, загрязняет воздух, водоёмы, осадки, атмосферу. И такая ситуация может привести к многочисленным проблемам со здоровьем.

    Так, сильно страдает дыхательная система, ведь вредные вещества выхлопных газов практически сразу попадают в неё, раздражают слизистые оболочки, засоряют лёгкие и бронхи. Из-за нарушения дыхания возникает дефицит кислорода во всех тканях человеческого организма. Кроме того, опасные выбрасываемые автомобильным транспортом соединения разносятся с кровью и оседают в различных органах, и последствия такого загрязнения могут проявляться спустя годы в виде хронических или даже онкологических заболеваний.

    Кислотные дожди

    Ещё одна опасность активного использования автомобильного транспорта – , возникающие из-за воздействия выхлопных газов и загрязнения атмосферы. Они влияют на растительный мир и здоровье людей, меняют состав почвы, разрушают здания и памятники, а также сильно загрязняют водоёмы и делают их воду непригодной для использования и проживания.

    Пути решения проблемы

    Экологические проблемы автомобильного транспорта в современном мире неизбежны. Но всё же их можно решить, если действовать комплексно и глобально. Рассмотрим основные пути решения проблем, связанных с эксплуатацией автомобилей:

    1. Чтобы сократить выбросы выхлопных газов, негативно влияющих на окружающую среду, следует использовать качественное очищенное топливо. Зачастую попытки сэкономить приводят к покупке бензина, содержащего опасные соединения.
    2. Разработка принципиально новых типов двигателей автомобильного транспорта, использование альтернативных источников энергии. Так, в продаже стали появляться электромобили и гибриды, работающие на электричестве. И хотя пока таких моделей немного, возможно, в будущем они станут более популярными.
    3. Соблюдение правил эксплуатации автомобиля. Важно вовремя устранять неполадки, обеспечить постоянное и комплексное обслуживание, не превышать допустимые нагрузки, придерживаться касающихся управления рекомендаций.
    4. Экологическая обстановка наверняка улучшится, если разработать и использовать очистное и фильтрующее оборудование, которое сократит объёмы вредных соединений, выделяемых автомобильным транспортом.
    5. Реконструкция двигателя автомобиля с целью повышения КПД и сокращения объёмов расходуемого топлива.
    6. Использование других видов транспорта, например, троллейбусов и трамваев.

    Используйте автотранспорт рационально и старайтесь сокращать его негативное влияние на окружающую среду.