Закон гука для деформации пружины. Деформации

Падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья.

Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силой , равной силе тяжести, но направленной в противоположную сторону. Что это за сила?
На рисунке 34, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34,б). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости .

Рисунок 34. Сила упругости.

Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб . Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры.

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Сила упругости возникает и при сжатии . Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27,б).
Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем.Закон Гука гласит:

Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т. е. изменение его длины, обозначить через х, а силу упругости - через F упр, то закону Гука можно придать следующую математическую форму:
F упр = kx
где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид
ceiiinosssttuv .
Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:
tu tensio, sic vis
(что в переводе с латинского означает: каково растяжение, такова и сила). "Сила любой пружины,- писал Гук,- пропорциональна ее растяжению".

Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими .

Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.

Для пластических деформаций закон Гука не выполняется.

В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно б миллионов!

Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за "лучное разоружение" не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.

Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.

В наше время стрельба из лука является лишь одним из видов спорта.

Вопросы.

1. В каких случаях возникает сила упругости?

2. Что называют деформацией? Приведите примеры деформаций.

3. Сформулируйте закон Гука.

4. Что такое жесткость?

5. Чем отличаются упругие деформации от пластических?

Отослано читателями из интернет-сайтов

Учебники и книги по всем предметам, планы конспектов уроков с физики 7 класс, рефераты и конспекты уроков физика 7 класс, скачать учебники бесплатно, готовые домашние задания

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Закон Гука был открыт в XVII веке англичанином Робертом Гуком. Это открытие о растяжении пружины является одним из законов теории упругости и выполняет важную роль в науке и технике.

Определение и формула закона Гука

Формулировка этого закона выглядит следующим образом: сила упругости, которая появляется в момент деформации тела, пропорциональна удлинению тела и направлена противоположно движению частиц этого тела относительно других частиц при деформации.

Математическая запись закона выглядит так:

Рис. 1. Формула закона Гука

где Fупр – соответственно сила упругости, x – удлинение тела (расстояние, на которое изменяется исходная длина тела), а k – коэффициент пропорциональности, называемый жесткостью тела. Сила измеряется в Ньютонах, а удлинение тела – в метрах.

Для раскрытия физического смысла жесткости, нужно в формулу для закона Гука подставить единицу, в которой измеряется удлинение – 1 м, заранее получив выражение для k.

Рис. 2. Формула жесткости тела

Эта формула показывает, что жесткость тела численно равна силе упругости, которая возникает в теле (пружине), когда оно деформируется на 1 м. Известно, что жесткость пружины зависит от ее формы, размера и материала, из которого произведено данное тело.

Сила упругости

Теперь, когда известно, какая формула выражает закон Гука, необходимо разобраться в его основной величине. Основной величиной является сила упругости. Она появляется в определенный момент, когда тело начинает деформироваться, например, когда пружина сжимается или растягивается. Она направлена в обратную сторону от силы тяжести. Когда сила упругости и сила тяжести, действующие на тело, становятся равными, опора и тело останавливаются.

Деформация – это необратимые изменения, происходящие с размерами тела и его формой. Они связанны с перемещением частиц относительно друг друга. Если человек сядет в мягкое кресло, то с креслом произойдет деформация, то есть изменятся его характеристики. Она бывает разных типов: изгиб, растяжение, сжатие, сдвиг, кручение.

Так как сила упругости относится по своему происхождению к электромагнитным силам, следует знать, что возникает она из-за того, что молекулы и атомы – наименьшие частицы, из которых состоят все тела, притягиваются друг другу и отталкиваются друг от друга. Если расстояние между частицами очень мало, значит, на них влияет сила отталкивания. Если же это расстояние увеличить, то на них будет действовать сила притяжения. Таким образом, разность сил притяжения и сил отталкивания проявляется в силах упругости.

Сила упругости включает в себя силу реакции опоры и вес тела. Сила реакции представляет особый интерес. Это такая сила, которая действует на тело, когда его кладут на какую-либо поверхность. Если же тело подвешено, то силу, действующую на него, называют, силой натяжения нити.

Особенности сил упругости

Как мы уже выяснили, сила упругости возникает при деформации, и направлена она на восстановление первоначальных форм и размеров строго перпендикулярно к деформируемой поверхности. У сил упругости также есть ряд особенностей.

  • они возникают во время деформации;
  • они появляются у двух деформируемых тел одновременно;
  • они находятся перпендикулярно поверхности, по отношению к которой тело деформируется.
  • они противоположны по направлению смещению частиц тела.

Применение закона на практике

Закон Гука применяется как в технических и высокотехнологичных устройствах, так и в самой природе. Например, силы упругости встречаются в часовых механизмах, в амортизаторах на транспорте, в канатах, резинках и даже в человеческих костях. Принцип закона Гука лежит в основе динамометра – прибора, с помощью которого измеряют силу.

Виды деформаций

Деформацией называют изменение формы, размеров или объема тела. Деформация может быть вызвана действием на тело приложенных к нему внешних сил. Деформации, полностью исчезающие после прекращения действия на тело внешних сил, называют упругими , а деформации, сохраняющиеся и после того, как внешние силы перестали действовать на тело, - пластическими . Различают деформации растяжения или сжатия (одностороннего или всестороннего), изгиба , кручения и сдвига .

Силы упругости

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела. Природа упругих сил электрическая.

Мы рассмотрим случай возникновения сил упругости при одностороннем растяжении и сжатии твердого тела.

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид:

где f - сила упругости; х - удлинение (деформация) тела; k - коэффициент пропорциональности, зависящий от размеров и материала тела, называемый жесткостью. Единица жесткости в СИ - ньютон на метр (Н/м).

Закон Гука для одностороннего растяжения (сжатия) формулируют так: сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Рассмотрим опыт, иллюстрирующий закон Гука. Пусть ось симметрии цилиндрической пружины совпадает с прямой Ах (рис. 20, а). Один конец пружины закреплен в опоре в точке А, а второй свободен и к нему прикреплено тело М. Когда пружина не деформирована, ее свободный конец находится в точке С. Эту точку примет за начало отсчета координаты х, определяющей положение свободного конца пружины.


Растянем пружину так, чтобы ее свободный конец находился в точке D, координата которой х > 0: В этой точке пружина действует на тело М упругой силой

Сожмем теперь пружину так, чтобы ее свободный конец находился в точке В, координата которой х

Из рисунка видно, что проекция силы упругости пружины на ось Ах всегда имеет знак, противоположный знаку координаты х, так как сила упругости направлена всегда к положению равновесия С. На рис. 20, б изображен график закона Гука. На оси абсцисс откладывают значения удлинения х пружины, а на оси ординат - значения силы упругости. Зависимость fх от х линейная, поэтому график представляет собой прямую, проходящую через начало координат.

Рассмотрим еще один опыт .

Пусть один конец тонкой стальной проволоки закреплен на кронштейне, а к другому концу подвешен груз, вес которого является внешней растягивающей силой F, действующей на проволоку перпендикулярно ее поперечному сечению (рис. 21).

Действие этой силы на проволоку зависит не только от модуля силы F, но и от площади поперечного сечения проволоки S.

Под действием приложенной к ней внешней силы проволока деформируется, растягивается. При не слишком большом растяжении эта деформация является упругой. В упруго деформированной проволоке возникает сила упругости f уп. Согласно третьему закону Ньютона, сила упругости равна по модулю и противоположна по направлению внешней силе, действующей на тело, т. е.

f уп = -F (2.10)

Состояние упруго деформированного тела характеризуют величиной s, называемой нормальным механическим напряжением (или, для краткости, просто нормальным напряжением ). Нормальное напряжение s равно отношению модуля силы упругости к площади поперечного сечения тела:

s = f уп /S (2.11)

Пусть первоначальная длина нерастянутой проволоки составляла L 0 . После приложения силы F проволока растянулась и ее длина стала равной L. Величину DL = L - L 0 называют абсолютным удлинением проволоки . Величину e = DL/L 0 (2.12) называют относительным удлинением тела . Для деформации растяжения e>0, для деформации сжатия e < 0.

Наблюдения показывают, что при небольших деформациях нормальное напряжение s пропорционально относительному удлинению e:

s = E|e|. (2.13)

Формула (2.13) является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным. Коэффициент пропорциональности Е в законе Гука называется модулем продольной упругости (модулем Юнга).

Установим физический смысл модуля Юнга . Как видно из формулы (2.12), e = 1 и L = 2L 0 при DL = L 0 . Из формулы (2.13) следует, что в этом случае s = Е. Следовательно, модуль Юнга численно равен такому нормальному напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза. (если бы для такой большой деформации выполнялся закон Гука). Из формулы (2.13) видно также, что в СИ модуль Юнга выражают в паскалях (1 Па = 1 Н/м 2).

Закон пропорциональности удлинения пружины приложенной силе был открыт английским физиком Робертом Гуком (1635-1703г.)

Научные интересы Гука были столь широки, что он часто не успевал доводить свои исследования до конца. Это давало повод к острейшим спорам о приоритете в открытии тех или иных законов с крупнейшими учеными (Гюйгенс, Ньютоном и др.). Однако закон Гука был настолько убедительно обоснован многочисленными периментами, что тут приоритет Гука никогда не оспаривался.

Теория пружины Роберта Гука:

В этом и состоит закон Гука!


РЕШЕНИЕ ЗАДАЧ

Определить жесткость пружины, которая под действием силы 10 Н удлинилась на 5 см.

Дано:
g = 10 H/кг
F = 10H
X = 5см = 0,05м
Найти:
k = ?

Груз находится в равновесии.

Ответ: жесткость пружины k = 200H/м.


ЗАДАЧА НА "5"

(сдаем на листочке).

Объясните, почему безопасен прыжок акробата на сетку батута с большой высоты? (призываем на помощь Роберта Гука)
С нетерпением жду ответа!


МАЛЕНЬКИЙ ОПЫТ

Поставьте вертикально резиновую трубку, на которую предварительно туго надето металлическое кольцо, и растяните трубку. Что при этом произойдет с кольцом?



Динамика - Класс!ная физика

Министерство образования АР Крым

Таврический Национальный Университет им. Вернадского

Исследование физического закона

ЗАКОН ГУКА

Выполнил: студент 1 курса

физического факультета гр. Ф-111

Потапов Евгений

Симферополь-2010

План:

    Связь между какими явлениями или величинами выражает закон.

    Формулировка закона

    Математическое выражение закона.

    Каким образом был открыт закон: на основе опытных данных или теоретически.

    Опытные факты на основе которого был сформулирован закон.

    Опыты, подтверждающие справедливость закона, сформулированного на основе теории.

    Примеры использования закона и учета действия закона на практике.

    Литература.

Связь между какими явлениями или величинами выражает закон:

Закон Гука связывает такие явления, как напряжение и деформацию твердого тела, модуль силы упругости и удлинение. Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению. Удлинением называется характеристика деформативности материала, оцениваемая по увеличению длины образца из этого материала при растяжении. Си́ла упру́гости - сила, возникающая при деформации тела и противодействующая этой деформации. Напряжение - это мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Деформа́ция - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Эти понятия связаны так называемым коэффициентом жесткости. Он зависит от упругих свойств материала и размеров тела.

Формулировка закона:

Зако́н Гу́ка - уравнение теории упругости, связывающее напряжение и деформацию упругой среды.

Формулировка закона - сила упругости прямо пропорциональна деформации.

Математическое выражение закона:

Для тонкого растяжимого стержня закон Гука имеет вид:

Здесь F сила натяжения стержня, Δl - его удлинение(сжатие), а k называется коэффициентом упругости (или жёсткостью). Минус в уравнении указывает на то, что сила натяжения всегда направлена в сторону, противоположную деформации.

Если ввести относительное удлинение

инормальное напряжение в поперечном сечении

то закон Гука запишется так

В такой форме он справедлив для любых малых объёмов вещества.

В общем случае напряжения и деформации являются тензорами второго ранга в трёхмерном пространстве (имеют по 9 компонент). Связывающий их тензор упругих постоянных является тензором четвёртого ранга C ijkl и содержит 81 коэффициент. Вследствие симметрии тензора C ijkl , а также тензоров напряжений и деформаций, независимыми являются только 21 постоянная. Закон Гука выглядит следующим образом:

где σ ij - тензор напряжений, -тензор деформаций. Для изотропного материала тензор C ijkl содержит только два независимых коэффициента.

Каким образом был открыт закон: на основе опытных данных или теоретически:

Закон был открыт в 1660 году английским учёным Робертом Гуком (Хуком) на основе наблюдений и экспериментов. Открытие, как утверждал Гук в своём сочинении «De potentia restitutiva», опубликованном в 1678, сделано им за 18 лет до этого времени, а в 1676 было помещено в другой его книге под видом анаграммы «ceiiinosssttuv», означающей «Ut tensio sic vis». По объяснению автора, вышесказанный закон пропорциональности применяется не только к металлам, но и к дереву, камням, рогу, костям, стеклу, шёлку, волосу и проч.

Опытные факты на основе которых был сформулирован закон:

История об этом умалчивает..

Опыты, подтверждающие справедливость закона, сформулированного на основе теории:

Закон сформулирован на основе опытных данных. Действительно, при растягивании тела (проволоки) с определенным коэффициентом жесткости k на расстояние Δl, то их произведение будет равно по модулю силе, растягивающей тело (проволоку). Такое соотношение будет выполняться, однако, не для всех деформаций, а для небольших. При больших деформациях закон Гука перестает действовать, тело разрушается.

Примеры использования закона и учета действия закона на практике:

Как следует из закона Гука, по удлинению пружины можно судить о силе, действующей на нее. Этот факт используется для измерения сил с помощью динамометра – пружины с линейной шкалой, проградуированной на разные значения сил.

Литература.

1. Интернет-ресурсы: - сайт Википедия (http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D0%93%D1%83%D0%BA%D0%B0).

2. учебник по физике Перышкин А.В. 9 класс

3. учебник по физике В.А. Касьянов 10 класс

4. лекции по механике Рябушкин Д.С.