Заряженных частиц по. Идентификация заряженных частиц

«Физика - 10 класс»

Вначале рассмотрим наиболее простой случай, когда электрически заряженные тела находятся в покое.

Раздел электродинамики, посвящённый изучению условий равновесия электрически заряженных тел, называют электростатикой .

Что такое электрический заряд?
Какие существуют заряды?

Со словами электричество, электрический заряд, электрический ток вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» Само понятие заряд - это основное, первичное понятие, которое не сводится на современном уровне развития наших знаний к каким-либо более простым, элементарным понятиям.

Попытаемся сначала выяснить, что понимают под утверждением: «Данное тело или частица имеет электрический заряд».

Все тела построены из мельчайших частиц, которые неделимы на более простые и поэтому называются элементарными .

Элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения. С увеличением расстояния между частицами сила тяготения убывает обратно пропорционально квадрату этого расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения.

Так в атоме водорода, изображённом схематически на рисунке 14.1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными .

Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействие заряженных частиц называется электромагнитным .

Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

Электрический заряд элементарной частицы - это не особый механизм в частице, который можно было бы снять с неё, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определённых силовых взаимодействий между ними.

Мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Эти законы непросты, и изложить их в нескольких словах невозможно. Поэтому нельзя дать достаточно удовлетворительное краткое определение понятию электрический заряд .


Два знака электрических зарядов.


Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам, означает, что в природе есть частицы с электрическими зарядами противоположных знаков; в случае зарядов одинаковых знаков частицы отталкиваются, а в случае разных притягиваются.

Заряд элементарных частиц - протонов , входящих в состав всех атомных ядер, называют положительным, а заряд электронов - отрицательным. Между положительными и отрицательными зарядами внутренних различий нет. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.


Элементарный заряд.


Кроме электронов и протонов, есть ещё несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно малое время, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в 11 классе.

К частицам, не имеющим электрического заряда, относится нейтрон . Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра. Если элементарная частица имеет заряд, то его значение строго определено.

Заряженные тела Электромагнитные силы в природе играют огромную роль благодаря тому, что в состав всех тел входят электрически заряженные частицы. Составные части атомов - ядра и электроны - обладают электрическим зарядом.

Непосредственно действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны.

Атом любого вещества нейтрален, так как число электронов в нём равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда. Так, отрицательный заряд тела обусловлен избытком числа электронов по сравнению с числом протонов, а положительный - недостатком электронов.

Для того чтобы получить электрически заряженное макроскопическое тело, т. е. наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного или перенести на нейтральное тело отрицательный заряд.

Это можно сделать с помощью трения. Если провести расчёской по сухим волосам, то небольшая часть самых подвижных заряженных частиц - электронов перейдёт с волос на расчёску и зарядит её отрицательно, а волосы зарядятся положительно.


Равенство зарядов при электризации


С помощью опыта можно доказать, что при электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

Возьмём электрометр, на стержне которого укреплена металлическая сфера с отверстием, и две пластины на длинных рукоятках: одна из эбонита, а другая из плексигласа. При трении друг о друга пластины электризуются.

Внесём одну из пластин внутрь сферы, не касаясь её стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберётся на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнётся от стержня электрометра (рис. 14.2, а).

Если внести внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки от стержня, причём на тот же угол, что и в первом опыте.

Опустив обе пластины внутрь сферы, мы вообще не обнаружим отклонения стрелки (рис. 14.2, б). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку.

Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

В типографиях происходит электризация бумаги при печати, и листы слипаются. Чтобы это не происходило, применяют специальные устройства для стекания заряда. Однако электризация тел при тесном контакте иногда используется, например, в различных электрокопировальных установках и др.


Закон сохранения электрического заряда.


Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для изолированной системы .

В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

q 1 + q 2 + q 3 + ... + q n = const. (14.1)

где q 1 , q 2 и т. д. - заряды отдельных заряженных тел.

Закон сохранения заряда имеет глубокий смысл. Если число заряженных элементарных частиц не меняется, то выполнение закона сохранения заряда очевидно. Но элементарные частицы могут превращаться друг в друга, рождаться и исчезать, давая жизнь новым частицам.

Однако во всех случаях заряженные частицы рождаются только парами с одинаковыми по модулю и противоположными по знаку зарядами; исчезают заряженные частицы тоже только парами, превращаясь в нейтральные. И во всех этих случаях алгебраическая сумма зарядов остаётся одной и той же.

Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.

Использование: ядерная техника, а именно разделение заряженных частиц по энергиям, например, на одной из стадий выделения изотопов из их естественной смеси. Сущность изобретения: предварительно осуществляют формирование смеси заряженных частиц путем ионизации, затем производят вытягивание электрическим полем смеси заряженных частиц. После этого проводят разделение заряженных частиц путем воздействия центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории, и электрическим полем, а именно силовыми электрическими барьерами с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие, при замене одних барьеров другими, или при изменении формы барьеров, или при изменении положения электрических барьеров в зависимости от энергии разделяемых заряженных частиц. Технический результат: повышение селективности при разделении заряженных частиц по энергиям и сокращение расхода материалов на изготовление устройств, реализующих заявляемый способ, путем уменьшения длины зоны разделения заряженных частиц. 3 ил.

Изобретение относится к ядерной технике и предназначено для использования при разделении заряженных частиц по энергиям, например, на одной из стадий выделения изотопов из их естественной смеси. Ранее известные способы разделения заряженных частиц по энергиям разработаны в процессе поиска надежных способов разделения изотопов, способов реализации управляемого ядерного и термоядерного синтеза, способов формирования пучков заряженных частиц в ионно-пучковых и электронно-пучковых устройствах и управления пучками заряженных частиц в ускорительной технике. Известен способ разделения заряженных частиц по энергиям, включающий формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия непрерывным электрическим полем и центробежной силой и прием разделенных заряженных частиц. Разделение заряженных частиц осуществляют путем воздействия электрической составляющей силы Лоренца непрерывного электростатического поля конденсатора и центробежной силой, действующей на разделяемые заряженные частицы при движении частиц по дуговой траектории [см. , например, А.В. Блинов. Ускорительная масс-спектрометрия космогенных нуклидов / Соросовский общеобразовательный журнал, 1999 г., 8, с. 71-75]. Наиболее близким по технической сущности и достигаемому результату (прототипом) заявляемого изобретения является способ разделения заряженных частиц по энергиям, включающий формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия непрерывным электрическим полем и центробежной силой и прием разделенных заряженных частиц. Разделение заряженных частиц производят путем воздействия электрической составляющей силы Лоренца непрерывного электрического поля в изогнутом цилиндрическом конденсаторе и центробежной силы, действующей на заряженные частицы при движении частиц по дуговой траектории [см. В.Т. Коган, А.К. Павлов, М.И. Савченко, О. Е. Добычин. Портативный масс-спектрометр для экспресс-анализа растворенных в воде веществ // Приборы и техника эксперимента, 1999, 4, с. 145-149]. Электрическая сила F, действующая на заряженную частицу с электрическим зарядом q, движущуюся со скоростью v в непрерывном электрическом поле напряженностью Е, определяется по формуле

Разделяемые заряженные частицы, имеющие равные массы и равные электрические заряды, двигаются в непрерывном электрическом поле по окружным орбитам, радиусы которых вычисляются из балансов действующих сил. Радиус R 1 орбиты высокоэнергетических заряженных частиц в непрерывном электрическом поле изогнутого конденсатора определяют по формуле:

Где m - масса одной высокоэнергетической или одной низкоэнергетической заряженной частицы,

E 1 - напряженность электрического поля в месте нахождения высокоэнергетической заряженной частицы при полете. Радиус R 2 орбиты низкоэнергетической заряженной частицы в непрерывном электрическом поле изогнутого конденсатора определяют по формуле:

Где m - масса одной низкоэнергетической или одной высокоэнергетической заряженной частицы,

E 2 - напряженность непрерывного электрического поля в месте нахождения низкоэнергетической заряженной частицы при полете. Для прохождения высокоэнергетической заряженной частицы по дуге окружной траектории с радиусом R 1 необходима полоса непрерывного электрического поля, изогнутость которой соответствует радиусу R 1 . Для прохождения низкоэнергетической заряженной частицы по дуге окружной траектории с радиусом R 2 необходима полоса непрерывного электрического поля, изогнутость которой соответствует радиусу R 2 . В итоге ширина изогнутой полосы непрерывного электрического поля должна быть такой, чтобы обе траектории укладывались в пределах непрерывного электрического поля. Разделенные в непрерывном электрическом поле частицы направляют для приема заряженных частиц или на следующую ступень разделения. Общим недостатком описанных способов разделения заряженных частиц по энергиям является низкая селективность разделения вследствие ограниченных возможностей расщепления пучков заряженных частиц в непрерывном электрическом поле. В непрерывном поле одновременно находятся все разделяемые заряженные частицы и поэтому изменением параметров этого поля невозможно избирательно воздействовать на моноэнергетические заряженные частицы. Использование описанных способов разделения заряженных частиц по энергиям в непрерывном электрическом поле не позволяет выполнять следующие операции по управлению траекториями заряженных частиц:

1. Закручивать по круговой орбите только пучок низкоэнергетических заряженных частиц, причем закручивать по такой круговой орбите, когда радиус орбиты низкоэнергетических заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути легких заряженных частиц в электрическом поле, а положением электрического поля в пространстве при достаточной величине электрического поля. Высокоэнергетические заряженные частицы при этом продолжают полет в исходном направлении, т.е. практически по прямолинейной траектории;

2. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по таким различным круговым орбитам, когда достигнутое расщепление одного пучка на несколько пучков заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением участков электрического поля при достаточной величине участков электрического поля;

3. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по такой единой круговой орбите, когда радиус единой орбиты смеси заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением электрического поля в пространстве при достаточной величине электрического поля;

12. Осуществлять максимальное расщепление пучков заряженных частиц на минимальной длине зоны разделения пучков. Общим недостатком описанных способов разделения заряженных частиц по энергиям также является большая протяженность зоны разделения заряженных частиц из-за медленного расщепления пучков заряженных частиц, приводящая в конечном счете к необходимости изготавливать крупногабаритные устройства для разделения заряженных частиц по энергиям. Сущность изобретения заключается в том, что в способе разделения заряженных частиц по энергиям, включающем формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия электрическим полем и центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории, и прием разделенных заряженных частиц, разделение заряженных частиц производят путем воздействия силовых электрических барьеров с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие, при замене одних барьеров другими, или при изменении формы барьеров, или при изменении положения электрических барьеров в зависимости от энергии разделяемых заряженных частиц. Техническим результатом является повышение селективности при разделении заряженных частиц по энергиям и уменьшение длины зоны разделения заряженных частиц, приводящее к снижению размеров устройств для разделения заряженных частиц по энергиям, реализующих заявляемый способ, следовательно, к сокращению расхода материалов на изготовление этих устройств. Повышение селективности при разделении заряженных частиц обеспечивается с помощью силовых электрических барьеров вследствие увеличения возможностей расщепления пучков заряженных частиц, так как способность заряженных частиц преодолеть электрический барьер зависит от их энергии. Изменение параметров электрических барьеров (уменьшение высоты барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие) дает возможность избирательно воздействовать на моноэнергетические заряженные частицы и позволяет для сепарации веществ проводить многие ранее невозможные операции по управлению траекториями заряженных частиц во время полета частиц в электрическом поле, а именно:

1. Закручивать по круговой орбите только пучок низкоэнергетических заряженных частиц, причем закручивать по такой круговой орбите, когда радиус орбиты низкоэнергетических заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути легких заряженных частиц в электрическом поле, а положением электрического барьера в пространстве, при достаточной величине электрического барьера. Высокоэнергетические заряженные частицы при этом продолжают полет в исходном направлении, т.е. практически по прямолинейной траектории;

2. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по таким различным круговым орбитам, когда достигнутое расщепление одного пучка на несколько пучков заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением расщепленных электрических барьеров при достаточной величине каждого из электрических барьеров;

3. Закручивать пучки низкоэнергетических и высокоэнергетических заряженных частиц по такой единой круговой орбите, когда радиус единой орбиты смеси заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением электрического барьера в пространстве при достаточной величине электрического барьера;

4. Отпускать пучок высокоэнергетических заряженных частиц с круговой орбиты, общей с орбитой низкоэнергетических заряженных частиц, на первоначально направленную прямолинейную траекторию, оставляя пучок низкоэнергетических заряженных частиц на прежней круговой орбите;

5. Отпускать пучок высокоэнергетических заряженных частиц с круговой орбиты, общей с орбитой низкоэнергетических заряженных частиц, на другую круговую орбиту, оставляя пучок низкоэнергетических заряженных частиц на прежней круговой орбите;

6. Отпускать оба пучка заряженных частиц в любой точке орбиты с единой круговой орбиты на единую прямолинейную траекторию;

7. Отпускать оба пучка заряженных частиц с единой круговой орбиты на различные прямолинейные траектории;

8. Отпускать пучок высокоэнергетических заряженных частиц в любой точке с круговой орбиты, отдельной от орбиты низкоэнергетических заряженных частиц, на прямолинейную траекторию, оставляя пучок низкоэнергетических заряженных частиц на круговой орбите;

9. Отпускать оба пучка заряженных частиц с различных круговых орбит на различные прямолинейные траектории;

10. Отпускать оба пучка заряженных частиц с различных круговых орбит на единую прямолинейную траекторию;

12. Осуществлять максимальное расщепление пучков заряженных частиц на минимальной длине зоны разделения пучков. Уменьшение длины зоны разделения заряженных частиц достигается вследствие того, что предлагаемый способ позволяет производить максимальное расщепление пучков заряженных частиц на минимальной длине. Максимальное расщепление на малой длине зоны разделения получено потому, что уменьшающаяся высота электрического барьера в его поперечном сечении позволяет высокоэнергетическим заряженным частицам пролетать через барьер без изменения своего направления движения и в то же время позволяет барьеру избирательно захватывать и выводить на круговую траекторию только низкоэнергетические частицы. Изобретение поясняется чертежами, где на фиг.1 изображены график зависимости 1 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты высокоэнергетических заряженных частиц с равными массами, график зависимости 2 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты низкоэнергетических заряженных частиц с равными массами и график зависимости 3 электрической силы Лоренца, действующей на заряженные частицы с равными массами и равными зарядами в электрическом поле, от радиуса круговой орбиты заряженных частиц. На фиг.2 изображен график зависимости 4 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты высокоэнергетических заряженных частиц, график зависимости 5 центробежной силы, действующей на заряженные частицы, от радиуса круговой орбиты низкоэнергетических заряженных частиц и график зависимости 6 электрической силы Лоренца, действующей на заряженные частицы с равными массами и равными зарядами в электрическом поле, от радиуса круговой орбиты заряженных частиц с электрическими барьерами 7, 8. На фиг.3 изображен электрический барьер 7 и электрический барьер 8, траектория 9 преодолевших оба барьера 7, 8 высокоэнергетических заряженных частиц, траектория 10 низкоэнергетических заряженных частиц вдоль электрического барьера 7, траектория 11 высокоэнергетических заряженных частиц вдоль электрического барьера 8. Способ разделения заряженных частиц по энергиям осуществляют следующим образом. Предварительно осуществляют формирование смеси заряженных частиц путем ионизации, затем производят вытягивание электрическим полем смеси заряженных частиц, после чего проводят разделение заряженных частиц путем воздействия электрическим полем и центробежной силой. Для разделения заряженных частиц по энергиям используют электрическое поле, имеющее особую топографию. Особенностью топографии электрического поля для разделения заряженных частиц является наличие силовых электрических барьеров. Электрическими барьерами являются повышенные значения напряженности электрического поля в протяженных областях пространства. Разделение заряженных частиц по энергиям производят путем воздействия электрических барьеров электрического поля, изогнутых по дугам круговых орбит заряженных частиц, и центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории. Разделение заряженных частиц осуществляют во время их полета в электрическом поле путем воздействия силовых электрических барьеров с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие. Разделяемые по энергиям заряженные частицы направляют касательно к вогнутой стороне электрического барьера. Разделение заряженных частиц электрическими барьерами электрического поля производят при определенном взаимном положении электрических барьеров и при определенной форме электрических барьеров. Разделение заряженных частиц по энергиям электрическими барьерами электрического поля производят сменой барьеров, изменением формы барьеров, изменением положения барьеров при последующем сохранении определенного взаимного положения электрических барьеров и определенной формы электрических барьеров. Электрические барьеры электрического поля получают протяженными вдоль траекторий заряженных частиц. Высоту, ширину и длину электрического барьера выбирают достаточными для удержания заряженных частиц на круговой орбите. Заряженные частицы вынуждены перемещаться вдоль тех электрических барьеров, которые оказываются на их пути. Необходимое расщепление одного пучка заряженных частиц на два пучка определяется не только величиной напряженности поперечного электрического поля на пути заряженных частиц, но и положением расщепленных электрических барьеров в пространстве при достаточной величине напряженности электрического поля и величине электрических силовых барьеров и при соответствующих формах электрических силовых барьеров. Форма электрического силового барьера должна быть такой, чтобы к началу схода высокоэнергетических заряженных частиц с круговой орбиты выполнялось условие:

Где R E - радиус изгиба электрического барьера,

M - масса одной высокоэнергетической или одной низкоэнергетической заряженной частицы,

E r - напряженность электрического поля, соответствующая наибольшей высоте электрического барьера. Радиус орбиты смеси заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц, а положением электрического барьера в пространстве при достаточной величине электрического барьера. Для полной реализации возможностей электрических барьеров при корректировке движения частиц по траектории и при разделении N числа заряженных частиц требуется N электрических барьеров электрического поля. Для разделения N числа заряженных частиц можно использовать (N-1) электрических барьеров, но в этом случае пучок наиболее высокоэнергетических заряженных частиц приходится отпустить на прямолинейную траекторию. При этом возможность управления пучками заряженных частиц сохраняется. Для разделения заряженных частиц по энергиям необходимо воздействие электрическим барьером, высота которого уменьшается в радиальном направлении от центра круговой орбиты частицы. Крутизна уменьшения высоты электрического барьера в его поперечном сечении связана с крутизной уменьшения центробежной силы, действующей на частицу большей энергии в момент перехода частицы на большую орбиту. Зависимость высоты электрического барьера в его поперечном сечении от радиуса орбиты заряженной частицы во время перехода заряженной частицы с меньшей орбиты на большую совпадает с зависимостью центробежной силы от радиуса орбиты заряженной частицы во время перехода заряженной частицы с меньшей орбиты на большую. Каждый из расщепленных электрических барьеров имеет по всей длине постоянную высоту при постоянном радиусе изгиба электрического барьера. Для разделения заряженных частиц по энергиям с помощью только одного электрического барьера используют также такой электрический барьер, который имеет по ходу частиц уменьшающуюся вдоль электрического барьера высоту при постоянном радиусе изгиба электрического барьера. Для разделения заряженных частиц по энергиям применяют также электрический барьер, имеющий постоянную высоту по всей длине барьера при уменьшающемся в направлении полета частиц радиусе изгиба электрического барьера. Разделение бинарной смеси заряженных частиц осуществляют с помощью одного протяженного в пространстве электрического барьера. Поперечное сечение электрического барьера на фиг.1 изображено в виде пика зависимости 3 электрической составляющей силы Лоренца от радиуса орбиты заряженных частиц. Сила F, действующая на заряженную частицу с электрическим зарядом q, движущуюся со скоростью v в электрическом поле, зависит от напряженности электрического поля Е. При этом разделяемые по энергиям электрическими барьерами заряженные частицы двигаются следующим образом. В непрерывном электрическом поле при использовании способа-прототипа заряженная частица движется по окружности, радиус которой вычисляется из баланса действующих сил. Но расположив изогнутую по дуге локальную протяженную область электрического поля на пути заряженных частиц и повысив значение напряженности электрического поля по сравнению с расчетной для непрерывного электрического поля, при использовании заявляемого способа создают для заряженной частицы электрический барьер. Сместив в сторону от прямой траектории заряженных частиц начальную область протяженного в пространстве изогнутого электрического барьера, направляют разделяемые заряженные частицы уже не в непрерывное поле, как это делалось в способе-прототипе, а касательно к вогнутой стороне электрического барьера. Расположив вогнутую сторону электрического барьера под углом к прямой траектории полета заряженных частиц, при использовании заявляемого способа создают физические условия, при которых заряженная частица изменит направление своего движения. При подходе разделяемых заряженных частиц к вогнутой стороне высокого электрического барьера заряженные частицы по мере роста напряженности электрического поля меняют направление своего движения и в дальнейшем летят по дуговой траектории вдоль вогнутой стороны электрического барьера. Таким образом, при напряженности электрического поля, заведомо удовлетворяющей неравенству

Все заряженные частицы, имеющие равные массы и равные заряды, будут перемещаться вдоль электрического барьера. Радиус орбиты заряженных частиц в заявляемом способе разделения определяется не величиной напряженности поперечного электрического поля на пути заряженных частиц в электрическом поле, а положением электрического барьера в пространстве при достаточной величине электрического барьера. На фиг.1 показано, что при определенной строго выдержанной форме электрического барьера и при условии, что

Низкоэнергетические заряженные частицы остаются на круговой орбите, а высокоэнергетические частицы сходят с круговой орбиты и следуют по исходной прямолинейной траектории. Радиус орбиты низкоэнергетических заряженных частиц определяется не величиной напряженности поперечного электрического поля на пути легких заряженных частиц в электрическом поле, а положением электрического барьера в пространстве при достаточной величине электрического барьера. Принцип разделения заряженных частиц с помощью двух электрических барьеров поясняется фиг. 2. Поперечное сечение двух электрических барьеров 7, 8 электрического поля изображается в виде чередующихся пиков и провалов на зависимости 6 электрической составляющей силы Лоренца от радиуса R орбиты заряженных частиц. Каждый максимум напряженности Е электрического поля дает максимум электрической составляющей силы Лоренца F=qE для равнозаряженных разделяемых частиц. При разделении заряженных частиц электрическими барьерами для каждого пучка моноэнергетических заряженных частиц имеется свой график зависимости центробежной силы от радиуса мгновенной орбиты. Электрическая сила Лоренца, действующая на разделяемые по энергиям одинаково заряженные частицы, описывается одним общим для всех заряженных частиц графиком 6. Так, на фиг.2 представлен график 6 электрической силы Лоренца, пропорциональной напряженности, при котором на малых орбитах вдоль электрического барьера 7 можно оставить пучок низкоэнергетических и высокоэнергетических заряженных частиц или оставить только пучок низкоэнергетических заряженных частиц. На больших орбитах вдоль электрического барьера 8 можно оставить пучок высокоэнергетических заряженных частиц, или оставить пучок низкоэнергетических заряженных частиц, или оставить оба пучка. При строго выдержанной форме электрического барьера 7 имеются условия, при которых низкоэнергетические заряженные частицы остаются на круговой орбите, а высокоэнергетические частицы сходят с круговой орбиты, расположенной вдоль электрического барьера 7, и следуют по круговой орбите вдоль электрического барьера 8. На фиг. 2 показано распределение двух разделенных заряженных частиц по двум электрическим барьерам 7, 8. При строго выдержанной форме электрического барьера 8 имеются условия, при которых высокоэнергетические заряженные частицы сходят с расположенной вдоль электрического барьера 8 круговой орбиты и следуют по прямолинейной траектории. Условие исхода высокоэнергетических частиц с прежней круговой траектории состоит в соблюдении неравенства (7)

На фиг. 3 пунктиром показаны два электрических барьера 7, 8. Траектории 9, 10, 11 заряженных частиц при разделении частиц по энергиям с помощью двух электрических барьеров 7, 8 показаны на фиг.3 сплошной линией. Траектории орбит 10, 11 заряженных частиц определяются не величиной напряженности электрического поля на пути заряженных частиц, а величиной электрических барьеров 7, 8 и положением электрических барьеров 7, 8 в пространстве при достаточной величине электрических барьеров 7, 8. После разделения заряженных частиц по энергиям осуществляют прием заряженных частиц. В предлагаемом способе, во-первых, непрерывное электрическое поле заменено на электрические барьеры, то есть на систему локальных протяженных изогнутых по траекториям заряженных частиц электрических полей; во-вторых, повышен уровень напряженности электрического поля и, в-третьих, сформирован гребень электрического барьера, удовлетворяющий условию исхода высокоэнергетических частиц с прежней круговой траектории, совместной с траекторией низкоэнергетических заряженных частиц, на другую окружную или прямолинейную траекторию. Важнейшей особенностью способа разделения заряженных частиц по энергиям электрическим барьером является возможность закрутить по круговой орбите только низкоэнергетические заряженные частицы, не изменяя прямолинейную траекторию высокоэнергетических заряженных частиц. Расщепление V пучков заряженных частиц в этом случае максимально и равно:

1. Решение физической проблемы избирательного захвата электрическим полем моноэнергетических заряженных частиц из пучка смеси равнозаряженных частиц. 2. Повышение селективности и уменьшение длины зоны разделения заряженных частиц по энергиям. 3. Создание основы новых исходных данных для теоретических и экспериментальных прикладных задач по применению электрических барьеров во многих областях ядерной физики, электроники и ионной техники. 4. Выполнение параллельного решения экологических проблем по части рационального использования природных ресурсов и проблем разделения веществ в электрических и электромагнитных полях. 5. Осуществление экологически безопасного разделения веществ на основе технологии формирования электрического барьера. Экологические проблемы с применением способа решаются следующим образом:

1. Уменьшаются габариты устройств для разделения заряженных частиц, что позволяет размещать производство на наименьших площадях. 2. Уменьшается количество материалов, затрачиваемых на изготовление малогабаритных устройств для разделения веществ, т.е. рационально используются природные ресурсы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ разделения заряженных частиц по энергиям, включающий формирование смеси заряженных частиц путем ионизации, вытягивание электрическим полем смеси заряженных частиц, разделение заряженных частиц путем воздействия электрическим полем и центробежной силой, действующей на заряженные частицы при их движении по дуговой траектории, и прием разделенных заряженных частиц, отличающийся тем, что разделение заряженных частиц производят путем воздействия силовых электрических барьеров с уменьшающейся высотой каждого барьера в поперечном сечении в соответствии с возрастанием радиусов орбит высокоэнергетических заряженных частиц во время перехода с меньших орбит на большие, при замене одних барьеров другими, или при изменении формы барьеров, или при изменении положения электрических барьеров в зависимости от энергии разделяемых заряженных частиц.

Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электрон пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на y. Под действием силы поля, F = eE = ma частица движется ускоренно по вертикали, поэтому . Время движения частицы вдоль оси ох с постоянной скоростью . Тогда . А это есть уравнение параболы. Т.о. заряженная частица движется в электрическом поле по параболе.

3. Движение заряженных частиц в магнитном поле .

Рассмотрим движение заряженной частицы в магнитном поле напряженностью Н. Силовые линии поля изображены точками и направлены перпендикулярно к плоскости рисунка (к нам).

Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклоняет частицу вверх от ее первоначального направления движения (направление движения электрона противоположно направлению тока)

Согласно формуле Ампера сила, отклоняющая частицу на любом участке траектории равна , ток , где t - время, за которое заряд e проходит по участку l. Поэтому . Учитывая, что , получим

Сила F называется лоренцевой силой. Направления F, v и H взаимно перпендикулярны. Направление F можно определить по правилу левой руки.

Будучи перпендикулярна скорости , лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следует, что:

1. Работа силы Лоренца равна нулю, т.е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы).

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы.

Радиус r этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Откуда .

Т.о. радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

Период обращения частицы T равен отношению длины окружности S к скорости частицы v: . Учитывая выражение для r, получим . Следовательно, период обращения частицы в магнитном поле не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом к ее скорости , то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью . Очевидно, что результирующая траектория частицы окажется винтовой линией.

4. Электромагнитные счетчики скорости крови.

Принцип действия электромагнитного счетчика основан на движении электрических зарядов в магнитном поле. В крови имеется значительное количество электрических зарядов в виде ионов.

Предположим, что некоторое количество однозарядных ионов движется внутри артерии со скоростью . Если артерию поместить между полюсами магнита, ионы будут двигаться в магнитном поле.

Для направлений и B, показанных на рис.1., магнитная сила , действующая на положительно заряженные ионы направлена вверх, а сила , действующая на отрицательно заряженные ионы, направлена вниз. Под влиянием этих сил ионы движутся к противоположным стенкам артерии. Эта поляризация артериальных ионов создает поле E (рис.2), эквивалентное однородному полю плоского конденсатора. Тогда разность потенциалов в артерии U диаметром d связан с Е формулой . Это электрическое поле, действуя на ионы, создает электрические силы и , направление которых противоположно направлению и , как показано на рис.2.

В экспериментах по исследованию структуры ядер и механизмов ядерных реакций почти всегда необходимо не только измерять энергию частиц, но и идентифицировать их. По мере роста энергии и массы бомбардирующих частиц растет число открывающихся каналов реакций, а соответственно и набор образующихся ядер. Проблема надежной идентификации продуктов реакций особенно остро стоит в физике тяжелых ионов. Рассмотрим различные методы идентификации частиц.

Идентификация на основе измерений удельных потерь энергии и полной энергии (ΔE-E-метод)

Этот метод является основным при исследовании реакций с легкими ионами (1 Н, 2 Н, 3 Н, 3 Нe, 4 Нe). В нем используется телескоп детекторов, состоящий из тонкого прострельного детектора ΔE и детектора полного поглощения энергии E. (В качестве ΔE -детектора используют тонкие кремниевые детекторы, а также ионизационные камеры и пропорциональные счетчики, в качестве детектора полного поглощения - кремниевые детекторы или детекторы из сверхчистого германия HpGe) Потери энергии в ΔE детекторе

где k - коэффициент, не зависящий от массового числа A и заряда Z частицы. AZ 2 носит название параметра идентификации. Величина сигнала ΔE - канала пропорциональна kAZ 2 /E, Е-канала - E - kAZ 2 /E. На плоскости ΔE -E распределение отображается семейством гипербол, каждая из которых соответствует частице (нуклиду) с определенным значением массового числа и заряда (см. рис.1). Толщина прострельного детектора определяет нижнюю и верхнюю границы измеряемого энергетического диапазона для данного нуклида. Если энергия мала, то частица оставит практически всю энергию в прострельном детекторе, а сигнал от детектора полного поглощения будет мал и "утонет" в шумах. Если энергия велика, наоборот. В экспериментальных ΔE -E распределениях гиперболы размыты. На рис. 2 показано как приблизительно выглядят проекции на ось ΔE сечения по энергии в Е-канале. Ширина распределений определяется не только шумами детекторов и электроники, но и другими факторами, среди которых следующие:

  • Статистические флуктуации потерь в тонких детекторах.
  • Неоднородность толщины ΔE-детектора, которая приводит к разбросу потерь энергии в нем и в Е детекторе.
  • Разброс пробегов и потери энергии в мертвых слоях детекторов.
  • Флуктуации величины заряда. Средний заряд иона Z эф при прохождении ΔE детектора совпадает с атомным номером Z только у самых легких ионов. По мере роста Z и/или уменьшения энергии различие между Z и Z эф возрастает. Для тяжелых ионов влияние этого эффекта на разрешение может быть заметно больше, чем влияние статистических флуктуаций потерь.

Чем тяжелее ионы, тем указанные факторы сильнее ограничивают возможности ΔE -E -метода. Относительное изменение параметра идентификации для двух соседних изотопов данного элемента
Δ A/A у протонов 1, у 20 Ne - 0.05, у изотопов аргона - 0.025, а у изотопов ксенона - <00.1. Кроме того, для идентификации тяжелых ионов нужны очень тонкие прострельные детекторы. Хорошие же твердотельные ΔE-детекторы с толщиной менее 10 мкм редкость, т.к. трудно добиться высокой однородности их толщины. Для идентификации тяжелых ионов в качестве ΔE-детектора используются газовые детекторы (ионизационные камеры и пропорциональные счетчики). В них необходимую толщину можно оперативно установить, изменив давление газа. Их площадь может быть сделана заметно большей, чем у полупроводниковых детекторов. Кроме того, они радиационно устойчивы. Недостатком газовых детекторов являются заметно худшие по сравнению с твердотельными детекторами временные характеристики.
При увеличении атомного номера может возникнуть ситуация, когда нейтроноизбыточные изотопы элемента Z и нейтронодефицитные изотопы элемента Z+1 будут иметь близкие параметры идентификации.
Все указанные факторы ограничивают применимость ΔE -E -метода для ионов с массовыми числами A более ~20. Разрешение по Z в два раза лучше, чем разрешение по A.

На рис. 3. показана примерная блок-схема электроники для идентификации частиц ΔE-E-методом.

ΔE- и E-каналы идентичны. С одного из выходов спектрометрического усилителя снимается биполярный сигнал, который поступает на временной одноканальный анализатор . Он служит для выделения нужного амплитудного (энергетического) диапазона и для получения временной метки. В данном случае она получается с помощью метода привязки по нулю биполярного сигнала . Сигналы с временных одноканальных анализаторов поступают на схему совпадений, которая управляет линейными воротами. Таким образом, линейные ворота пропускают только сигналы, которые находятся в интересующем энергетическом диапазоне и совпадают в пределах разрешающего времени. Сигналы с линейных ворот поступают в АЦП и далее в систему двумерного анализа. Теперь можно выделить области двумерного спектра, соответствующие определенным частицам, и спроецировать эту область на ось Е, получив, таким образом, амплитудные (энергетические) спектры для отдельных частиц. В полученных таким образом спектрах зависимость между энергией частицы Е и номером канала n нелинейная, так как в Е-канале регистрируется не вся энергия Е, а только оставшаяся после прохождения Δ E- детектора и n пропорциональна этой энергии,

n = k. (3)

Коррекцию потерь в ΔE - детекторе несложно сделать, воспользовавшись таблицами удельных потерь.
Для увеличения диапазона энергий и регистрируемых частиц, например, если желательно одновременно снимать спектры 1 Н, 2 Н, 3 Н, 3 Нe, 4 Нe в широком энергетическом диапазоне, можно использовать телескоп из трех детекторов тонкого ΔE 1 , более толстого ΔE 2 и Е. Тогда для низких энергий и/или более тяжелых частиц в качестве прострельного детектора будет служить детектор ΔE 1 , а полное поглощение будет происходить в детекторах ΔE + Е. Для более высоких энергий и/или более легких частиц в качестве прострельного - ΔE 1 + ΔE 2 , а полное поглощение будет происходить в детекторе Е.

Идентификация на основе измерений энергии и времени пролета (E-t-метод)

Метод времени пролета является основным для измерения энергетических распределений нейтронов. Детектор используется в этом случае для того, чтобы получить информацию только о времени попадания в него нейтрона. В случае заряженных частиц нет проблем получения с детектора также и энергетической информации. Для нерелятивистских частиц время пролета связано с кинетической энергией соотношением

(4)

где t f - время пролета в наносекундах, d - пролетная база в метрах, A - массовое число частицы в атомных единицах массы, E - кинетическая энергия частицы в МэВ. Таким образом, одновременно измеряя энергию и время пролета можно провести идентификацию частиц по массам, измеряя двумерные распределения энергия - время пролета. Ионы, имеющие близкие массы, но разные заряды, естественно различаться не будут.
Разрешение по массам E-t-метода при использовании полупроводникового детектора практически полностью определяется временным разрешением

При гауссовом распределении и ΔА = 0.59 а.е.м. 95% частиц будут зарегистрированы в правильном массовом интервале. В табл. 1 приведены вычисленные по формуле (6) разрешения по массам для различных энергий и массовых чисел для установки с пролетной базой 1 м и временным разрешением 1 нс.

Таблица 1. Разрешение по массам для частиц различных энергий и масс.

Массовое число,
а.е.м.
Энергия, МэВ
0.5 1 5 10 50 100
1 0.02 0.03 0.06 0.09 0.20 0.28
2 0.03 0.04 0.09 0.12 0.28 0.39
5 0.04 0.06 0.14 0.20 0.44 0.62
10 0.06 0.09 0.20 0.28 0.62 0.87
20 0.09 0.12 0.28 0.39 0.87 1.24
50 0.14 0.20 0.44 0.62 1.38 1.96

На рис. 6 показана блок-схема электроники, которая может быть использована для идентификации по E-t-методу.

Импульсы детектора поступают в зарядочувствительный предусилитель . С зарядочувствительного предусилителя сигналы поступают как на быстрый , так и на спектрометрический усилитель. Сигналы быстрого усилителя поступают на быстрый дискриминатор , который служит для временной привязки. Стандартные таймирующие сигналы от быстрого дискриминатора поступают на стартовый вход ВАК а. На стоповый вход поступают сигналы от другого быстрого дискриминатора, который формирует таймирующие сигналы, используя периодические модуляции пучка (например, ВЧ циклотрона). Импульсы ВАКа, амплитуда которых пропорциональна времени пролета поступают в АЦП . В другой АЦП поступают сигналы со спектрометрического усилителя, амплитуда которых пропорциональна энергии. Сигналы АЦП поступают в систему двумерного анализа, как и в Δ E-E -методе.
Разрешение по времени и, соответствено, по массе можно улучшить по сравнению с рассмотренным вариантом, если для хронирования вместо ВЧ использовать поставленную на пути частицы тонкую пленку . При прохождении частиц через эту пленку из нее будут выбиваться вторичные электроны, регистрируемые микроканальной пластиной. Сигналы от микроканальной пластины поступают на зарядочувствительный предусилитель. С предусилителя - на быстрый усилитель + быстрый дискриминатор. В этом случае таймирующие сигналы микроканальной пластины поступают на стартовый вход ВАКа, а от детектора частиц - на стоповый.
Комбинация E-t и Δ E-E -методов позволяет продвинуться в разделении нуклидов по Z до ~28, а по А до ~60.

Идентификация с помощью магнитного анализа

Из уравнения магнитного анализа

где А - массовое число иона, q - его заряд, Е - кинетическая энергия иона, В - напряженность магнитного поля, R - радиус кривизны иона в магнитном поле, следует, что фиксируя B и R в магнитном спектрометре и одновременно измеряя кинетическую энергию E, можно определять отношение массового числа к квадрату ионного заряда, т.е. производить идентификацию.
Недостатком такой системы является ее низкая эффективность. В детектор попадают частицы из очень узкого энергетического диапазона. Для того чтобы снять весь спектр, необходимо неоднократно менять напряженность магнитного поля. Этот недостаток можно частично преодолеть, поставив в фокальную плоскость позиционно-чувствительные детекторы. Другой недостаток заключается в том, что не происходит разделения изотопов с близкими значениями A/q 2 , например изобар соседних элементов, находящихся в одинаковых зарядовых состояниях.
Преодолеть этот недостаток позволяет объединение магнитного анализа с ΔE-E-методом. Вырождение по изобарам с одинаковыми ионными состояниями здесь снимается, т.к. величина удельной ионизации зависит не от ионного заряда, а от среднего заряда иона Z эф.

Объединение методов идентификации

Для надежной идентификации нуклидов в широком диапазоне массовых чисел А и атомных номеров Z созданы установки, в которых используются все три метода идентификации. Запишем уравнения идентификации в следующем виде

Использование кривой Брегга для идентификации частиц

Кривая зависимости удельных ионизационных потерь энергии от пробега (кривая Брегга) - "визитная карточка" для заряженной частицы. В начале 80-х было предложено использовать ее для идентификации частиц . Для реализации этой идеи были созданы соответствующие ионизационные камеры.
Измерения кривой Брегга в газовой среде позволяют получить следующие характеристики частицы: ее энергию Е, пробег R, удельные потери dE/dx и амплитуду брегговского пика A BP (удельные потери в максимуме кривой Брегга). Существует два способа идентификации частиц, основанных на измерениях характеристик кривой Брегга. В первом траектория частиц перпендикулярна электродам ионизационной камеры, во втором - параллельна.

Идентификация частиц с помощью ионизационной камеры с электродами, перпендикулярными траектории частицы
Bragg Curve Spectroscopy (BCS)



Рис. 9. Схемы ионизационной камеры и BCS-метода.

На рис. 9 показана схема ионизационной камеры с электродами перпендикулярными траектории частицы. Расстояние между катодом и сеткой Фриша больше, чем максимальный пробег идентифицируемых частиц, расстояние между сеткой Фриша и анодом меньше, чем минимальный пробег идентифицируемых частиц. Детектируемые частицы через тонкое входное окно попадают в камеру, заполненную газом. (Входное окно - тонкая пластиковая пленка, расположенная максимально близко к катоду, катод в этом случае представляет собой сетку. Катод или часть его можно сделать из металлизированной пленки, тогда одновременно он будет служить и входным окном. ) Заряженная частица вызывает ионизацию газа. Распределение электронной плотности вдоль трека частицы соответствует кривой Брегга. Возникающие в результате ионизации электроны с постоянной скоростью движутся в однородном электрическом поле по направлению к сетке Фриша. (Однородность электрического поля обеспечивается формирующими электродами, напряжение на которые подается от делителя напряжения. ) Сетка Фриша экранирует анод от зарядов, которые находятся между ней и катодом. (Для того чтобы не допустить сбора электронов на сетке Фриша, электрическое поле между сеткой и анодом должно быть больше, чем между катодом и сеткой. ) Таким образом, собираемый на аноде заряд определяется только электронами, движущимися между сеткой Фриша и анодом. Это означает, что форма токового сигнала на аноде - зеркальное отражение кривой Брегга. Для извлечения полезной информации, содержащейся в токовом сигнале с анода, применяется как аналоговая, так и цифровая обработка сигналов.

При аналоговой обработке сигнал с анода поступает на зарядочувствительный предусилитель. С предусилителя сигнал подается на два усилителя. Один из них имеет большую постоянную времени (~6-8 мкс) так что происходит интегрирование всего сигнала и амплитуда выходного сигнала пропорциональна энергии частицы. Другой усилитель имеет заметно меньшую постоянную времени, приблизительно равную времени пролета электронов от брегговского пика между сеткой Фриша и анодом (~0.1-0.5 мкс), его амплитуда пропорциональна амплитуде токового сигнала A BP и, соответственно, заряду иона. Ионы, с разными энергиями, но с одинаковыми зарядами, испытывают приблизительно одинаковые удельные потери в области брегговского пика. На рис. 10 показано распределение Е-A BP . Область A BP = const определяется расстоянием между сеткой Фриша и анодом и соответственно связанной с ним постоянной времени формирующих цепей усилителя. Когда пробег иона меньше этого расстояния, в обоих усилителях интегрируется весь сигнал и идентификация оказывается невозможной.

При цифровой обработке сигнала используются быстрые параллельные АЦП, позволяющие зафиксировать форму сигнала и провести идентификацию не только по Z, но и по массовому числу А, по крайней мере, для легких элементов. Это можно сделать, например, используя эталонные сигналы, полученные для различных изотопов, и сравнивая форму измеренного сигнала с эталонными (см. рис. 11).

Согласно квантовой механике, пучок частиц, как и световой пучок, характеризуется определенной длиной волны. Чем больше энергия частиц, тем меньше эта длина волны. А чем меньше длина волны, тем меньше объекты, которые можно исследовать, но тем больше размеры ускорителей и тем они сложнее. Развитие исследований микромира требовало все большей энергии зондирующего пучка. Первыми источниками излучений высокой энергии служили природные радиоактивные вещества. Но они давали исследователям лишь ограниченный набор частиц, интенсивностей и энергий. В 1930-х годах ученые начали работать над созданием установок, которые могли бы давать более разнообразные пучки. В настоящее время существуют ускорители, позволяющие получать любые виды излучений с высокой энергией. Если, например, требуется рентгеновское или гамма-излучение, то ускорению подвергаются электроны, которые затем испускают фотоны в процессах тормозного или синхротронного излучения. Нейтроны генерируются при бомбардировке подходящей мишени интенсивным пучком протонов или дейтронов.

Энергия ядерных частиц измеряется в электронвольтах (эВ). Электронвольт – это энергия, которую приобретает заряженная частица, несущая один элементарный заряд (заряд электрона), при перемещении в электрическом поле между двумя точками с разностью потенциалов в 1 В. (1 эВ » 1,60219×10 –19 Дж.) Ускорители позволяют получать энергии в диапазоне от тысяч до нескольких триллионов (10 12) электронвольт – на крупнейшем в мире ускорителе.

Для обнаружения в эксперименте редких процессов необходимо повышать отношение сигнала к шуму. Для этого требуются все более интенсивные источники излучения. Передний край современной техники ускорителей определяется двумя основными параметрами – энергией и интенсивностью пучка частиц.

В современных ускорителях используются многочисленные и разнообразные виды техники: высокочастотные генераторы, быстродействующая электроника и системы автоматического регулирования, сложные приборы диагностики и управления, сверхвысоковакуумная аппаратура, мощные прецизионные магниты (как «обычные», так и криогенные) и сложные системы юстировки и крепления.

Возможность применения высокочастотных электрических полей в длинных многокаскадных ускорителях основана на том, что такое поле изменяется не только во времени, но и в пространстве. В любой момент времени напряженность поля изменяется синусоидально в зависимости от положения в пространстве, т.е. распределение поля в пространстве имеет форму волны. А в любой точке пространства она изменяется синусоидально во времени. Поэтому максимумы поля перемещаются в пространстве с так называемой фазовой скоростью. Следовательно, частицы могут двигаться так, чтобы локальное поле все время их ускоряло.

В линейных ускорительных системах высокочастотные поля были впервые применены в 1929, когда норвежский инженер Р.Видероэ осуществил ускорение ионов в короткой системе связанных высокочастотных резонаторов. Если резонаторы рассчитаны так, что фазовая скорость поля всегда равна скорости частиц, то в процессе своего движения в ускорителе пучок непрерывно ускоряется. Движение частиц в таком случае подобно скольжению серфера на гребне волны. При этом скорости протонов или ионов в процессе ускорения могут сильно увеличиваться. Соответственно этому должна увеличиваться и фазовая скорость волны v фаз. Если электроны могут инжектироваться в ускоритель со скоростью, близкой к скорости света с , то в таком режиме фазовая скорость практически постоянна: v фаз = c .

Другой подход, позволяющий исключить влияние замедляющей фазы высокочастотного электрического поля, основан на использовании металлической конструкции, экранирующей пучок от поля в этот полупериод. Впервые такой способ был применен Э.Лоуренсом в циклотроне; он используется также в линейном ускорителе Альвареса. Последний представляет собой длинную вакуумную трубу, в которой расположен целый ряд металлических дрейфовых трубок. Каждая трубка последовательно соединена с высокочастотным генератором через длинную линию, вдоль которой со скоростью, близкой к скорости света, бежит волна ускоряющего напряжения.Таким образом, все трубки по очереди оказываются под высоким напряжением. Заряженная частица, вылетающая из инжектора в подходящий момент времени, ускоряется в направлении первой трубки, приобретая определенную энергию. Внутри этой трубки частица дрейфует – движется с постоянной скоростью. Если длина трубки правильно подобрана, то она выйдет из нее в тот момент, когда ускоряющее напряжение продвинулось на одну длину волны. При этом напряжение на второй трубке тоже будет ускоряющим и составляет сотни тысяч вольт. Такой процесс многократно повторяется, и на каждом этапе частица получает дополнительную энергию. Чтобы движение частиц было синхронно с изменением поля, соответственно увеличению их скорости должна увеличиваться длина трубок. В конце концов скорость частицы достигнет скорости, очень близкой к скорости света, и предельная длина трубок будет постоянной.

Пространственные изменения поля налагают ограничение на временную структуру пучка. Ускоряющее поле изменяется в пределах сгустка частиц любой конечной протяженности. Следовательно, протяженность сгустка частиц должна быть мала по сравнению с длиной волны ускоряющего высокочастотного поля. Иначе частицы будут по-разному ускоряться в пределах сгустка. Слишком большой разброс энергии в пучке не только увеличивает трудности фокусировки пучка из-за наличия хроматической аберрации у магнитных линз, но и ограничивает возможности применения пучка в конкретных задачах. Разброс энергий может также приводить к размытию сгустка частиц пучка в аксиальном направлении.

Рассмотрим сгусток нерелятивистских ионов, движущихся с начальной скоростью v 0 . Продольные электрические силы, обусловленные пространственным зарядом, ускоряют головную часть пучка и замедляют хвостовую. Синхронизируя соответствующим образом движение сгустка с высокочастотным полем, можно добиться большего ускорения хвостовой части сгустка, чем головной. Таким согласованием фаз ускоряющего напряжения и пучка можно осуществить фазировку пучка – скомпенсировать дефазирующее влияние пространственного заряда и разброса по энергии. В результате в некотором интервале значений центральной фазы сгустка наблюдаются центрирование и осцилляции частиц относительно определенной фазы устойчивого движения. Это явление, называемое автофазировкой, чрезвычайно важно для линейных ускорителей ионов и современных циклических ускорителей электронов и ионов. К сожалению, автофазировка достигается ценой снижения коэффициента заполнения ускорителя до значений, намного меньших единицы.

В процессе ускорения практически у всех пучков обнаруживается тенденция к увеличению радиуса по двум причинам: из-за взаимного электростатического отталкивания частиц и из-за разброса поперечных (тепловых) скоростей. Первая тенденция ослабевает с увеличением скорости пучка, поскольку магнитное поле, создаваемое током пучка, сжимает пучок и в случае релятивистских пучков почти компенсирует дефокусирующее влияние пространственного заряда в радиальном направлении. Поэтому данный эффект весьма важен в случае ускорителей ионов, но почти несуществен для электронных ускорителей, в которых пучок инжектируется с релятивистскими скоростями. Второй эффект, связанный с эмиттансом пучка, важен для всех ускорителей.

Удержать частицы вблизи оси можно с помощью квадрупольных магнитов. Правда, одиночный квадрупольный магнит, фокусируя частицы в одной из плоскостей, в другой их дефокусирует. Но здесь помогает принцип «сильной фокусировки», открытый Э.Курантом, С.Ливингстоном и Х.Снайдером: система двух квадрупольных магнитов, разделенных пролетным промежутком, с чередованием плоскостей фокусировки и дефокусировки в конечном счете обеспечивает фокусировку во всех плоскостях.

Дрейфовые трубки все еще используются в протонных линейных ускорителях, где энергия пучка увеличивается от нескольких мегаэлектронвольт примерно до 100 МэВ. В первых электронных линейных ускорителях типа ускорителя на 1 ГэВ, сооруженного в Стэнфордском университете (США), тоже использовались дрейфовые трубки постоянной длины, поскольку пучок инжектировался при энергии порядка 1 МэВ. В более современных электронных линейных ускорителях, примером самых крупных из которых может служить ускоритель на 50 ГэВ длиной 3,2 км, сооруженный в Стэнфордском центре линейных ускорителей, используется принцип «серфинга электронов» на электромагнитной волне, что позволяет ускорять пучок с приращением энергии почти на 20 МэВ на одном метре ускоряющей системы. В этом ускорителе высокочастотная мощность на частоте около 3 ГГц генерируется большими электровакуумными приборами – клистронами.

Протонный линейный ускоритель на самую высокую энергию был построен в Лосаламосской национальной лаборатории в шт. Нью-Мексико (США) в качестве «мезонной фабрики» для получения интенсивных пучков пионов и мюонов. Его медные резонаторы создают ускоряющее поле порядка 2 МэВ/м, благодаря чему он дает в импульсном пучке до 1 мА протонов с энергией 800 МэВ.

Для ускорения не только протонов, но и тяжелых ионов были разработаны сверхпроводящие высокочастотные системы. Самый большой сверхпроводящий протонный линейный ускоритель служит инжектором ускорителя на встречных пучках ГЕРА в лаборатории Немецкого электронного синхротрона (ДЕЗИ) в Гамбурге (Германия).

ЦИКЛИЧЕСКИЕ УСКОРИТЕЛИ

Электронные синхротроны основаны на тех же принципах, что и протонные. Однако благодаря одной важной особенности они проще в техническом отношении. Малость массы электрона позволяет инжектировать пучок при скоростях, близких к скорости света. Поэтому дальнейшее увеличение энергии не связано с заметным увеличением скорости, и электронные синхротроны могут работать при фиксированной частоте ускоряющего напряжения, если пучок инжектируется с энергией около 10 МэВ.

Однако это преимущество сводится на нет другим следствием малости электронной массы. Поскольку электрон движется по круговой орбите, он движется с ускорением (центростремительным), а потому испускает фотоны – излучение, которое называется синхротронным. Мощность Р синхротронного излучения пропорциональна четвертой степени энергии пучка Е и току I , а также обратно пропорциональна радиусу кольца R , так что она пропорциональна величине (E /m ) 4 IR –1 . Эта энергия, теряемая при каждом обороте электронного пучка по орбите, должна компенсироваться высокочастотным напряжением, подаваемым на ускоряющие промежутки. В рассчитанных на большие интенсивности «фабриках аромата» такие потери мощности могут достигать десятков мегаватт.

Циклические ускорители типа электронных синхротронов могут использоваться и как накопители больших циркулирующих токов с постоянной высокой энергией. Такие накопители имеют два основных применения: 1) в исследованиях ядра и элементарных частиц методом встречных пучков, о чем говорилось выше, и 2) как источники синхротронного излучения, используемые в атомной физике, материаловедении, химии, биологии и медицине.

Средняя энергия фотонов синхротронного излучения пропорциональна (E /m ) 3 R –1 . Таким образом, электроны с энергией порядка 1 ГэВ, циркулирующие в накопителе, испускают интенсивное синхротронное излучение в ультрафиолетовом и рентгеновском диапазонах. Большая часть фотонов испускается в пределах узкого вертикального угла порядка m /E . Поскольку радиус электронных пучков в современных накопителях на энергию порядка 1 ГэВ измеряется десятками микрометров, пучки испускаемого ими рентгеновского излучения характеризуются высокой яркостью, а потому могут служить мощным средством исследования структуры вещества. Излучение испускается по касательной к криволинейной траектории электронов. Следовательно, каждый отклоняющий магнит электронного накопительного кольца, когда через него проходит сгусток электронов, создает разворачивающийся «прожекторный луч» излучения. Оно выводится по длинным вакуумным каналам, касательным к основной вакуумной камере накопителя. Расположенные вдоль этих каналов щели и коллиматоры формируют узкие пучки, из которых далее с помощью монохроматоров выделяется нужный диапазон энергий рентгеновского излучения.

Первыми источниками синхротронного излучения были установки, первоначально сооруженные для решения задач физики высоких энергий. Примером может служить Стэнфордский позитрон-электронный накопитель на энергию 3 ГэВ в Стэнфордской лаборатории синхротронного излучения. На этой установке в свое время были открыты «очарованные» мезоны.

Первые источники синхротронного излучения не обладали той гибкостью, которая позволяла бы им удовлетворять разнообразным нуждам сотен пользователей. Быстрый рост потребности в синхротронном излучении с высоким потоком и большой интенсивностью пучка вызвал к жизни источники второго поколения, спроектированные с учетом потребностей всех возможных пользователей. В частности, были выбраны системы магнитов, уменьшающие эмиттанс электронного пучка. Малый эмиттанс означает меньшие размеры пучка и, следовательно, более высокую яркость источника излучения. Типичными представителями этого поколения явились накопители в Брукхейвене, служившие источниками рентгеновского излучения и излучения вакуумной ультрафиолетовой области спектра.

Яркость излучения можно также увеличить, заставив пучок двигаться по синусоидальной траектории в периодической магнитной структуре и затем объединяя излучение, возникающее при каждом изгибе. Ондуляторы – магнитные структуры, обеспечивающие подобное движение, представляют собой ряд магнитных диполей, отклоняющих пучок на небольшой угол, расположенных по прямой на оси пучка. Яркость излучения такого ондулятора может в сотни раз превышать яркость излучения, возникающего в отклоняющих магнитах.

В середине 1980-х годов начали создаваться источники синхротронного излучения третьего поколения с большим числом таких ондуляторов. Среди первых источников третьего поколения можно отметить «Усовершенствованный источник света» с энергией 1,5 ГэВ в Беркли, генерирующий мягкое рентгеновское излучение, а также «Усовершенствованный источник фотонов» с энергией 6 ГэВ в Аргоннской национальной лаборатории (США) и синхротрон на энергию 6 ГэВ в Европейском центре синхротронного излучения в Гренобле (Франция), которые используются как источники жесткого рентгеновского излучения. После успешного сооружения этих установок был создан ряд источников синхротронного излучения и в других местах.

Применение синхротронного излучения в научных исследованиях получило большой размах и продолжает расширяться. Исключительная яркость таких пучков рентгеновского излучения позволяет создать новое поколение рентгеновских микроскопов для изучения биологических систем в их нормальной водной среде. Открывается возможность быстрого анализа структуры вирусов и белков для разработки новых фармацевтических препаратов с узкой направленностью действия на болезнетворные факторы и минимальными побочными эффектами. Яркие пучки рентгеновского излучения могут служить мощными микрозондами для выявления самых ничтожных количеств примесей и загрязнений. Они дают возможность очень быстро анализировать экологические пробы при исследовании путей загрязнения окружающей среды. Их можно также использовать для оценки степени чистоты больших кремниевых пластин перед дорогостоящим процессом изготовления очень сложных интегральных схем, и они открывают новые перспективы для метода литографии, позволяя в принципе создавать интегральные схемы с элементами меньше 100 нм.

ЛАБОРАТОРИЯ ИМ. Э. ФЕРМИ близ Батавии (США). Длина окружности «Главного кольца» ускорителя составляет 6,3 км. Кольцо расположено на глубине 9 м под окружностью в центре снимка.