Как можно найти относительный показатель преломления света. Преломления показатель

- 40.38 Кб

Введение 3

1. Происхождение и оценка бурь, ураганов, смерчей 5

2. Меры по обеспечению безопасности при угрозе бурь, ураганов, смерчей. 10

3. Действия населения при угрозе и во время бурь, ураганов и смерчей. 12

Заключение 14

Список литературы 15

ПРИЛОЖЕНИЕ…………………………………………………… …………….16

Введение

Чрезвычайные ситуации 1 природного характера угрожают обитателям нашей планеты с начала цивилизации.

В целом на земле от природных катастроф погибает каждый стотысячный житель, а за последние сто лет – 16 тысяч ежегодно. Природные катастрофы страшны своей неожиданностью: за короткий промежуток времени они опустошают территорию, уничтожают жилища, имущество, коммуникации. За одной катастрофой, словно лавина, следуют другие: голод, инфекции болезни.

ЧС природного характера подразделяются на геологические, метеорологические, гидрологические, природные пожары, биологические и космические.

Все природные ЧС подчиняются некоторым общим закономерностям:

  1. для каждого вида ЧС характерна определенная пространственная приуроченность;
  2. чем больше интенсивность (мощность) опасного природного явления, тем реже оно случается;
  3. каждому ЧС природного характера предшествует некоторые специфические признаки (предшественники);
  4. при всей неожиданности той или иной природной ЧС ее проявление может быть предсказано;
  5. во многих случаях могут быть предусмотрены пассивные и активные защитные мероприятия от природных опасностей.

Говоря о природных ЧС, следует подчеркнуть роль антропогенного влияния на их проявление. Известны многочисленные факты нарушения равновесия в природной среде в результате деятельности человечества, приводящие к усилению опасных воздействий.

В настоящее время масштабы использования природных ресурсов существенно взросли, в результате стали ощутимо проявляться черты глобального экологического кризиса. Природа как бы мстит человеку за грубое вторжение в ее владения. Это обстоятельство следует иметь в виду при осуществлении хозяйственной деятельности. Соблюдение природного равновесия является важнейшим профилактическим фактором, учет которого позволит сократить число природных ЧС.

Между всеми природными катастрофами существует взаимная связь. Наиболее тесная зависимость наблюдается между землетрясениями и цунами. Тропические циклоны почти всегда вызывают наводнения. Землетрясения вызывают пожары, взрывы газа, прорывы плотин. Вулканические извержения – отравления пастбищ, гибель скота, голод.

Предпосылкой успешной защиты от природных ЧС является изучение их причин и механизмов. Зная сущность процессов, можно их предсказывать, а своевременный и точный прогноз опасных явлений является важнейшим условием эффективной защиты.

1. Происхождение и оценка бурь, ураганов, смерчей

Ветер – это перемещение воздуха параллельно земной поверхности, возникающее в результате неравномерного распределения тепла и атмосферного давления и направленное из зоны высокого давления в зону низкого давления. Он характеризуется направлением, скоростью и силой.

Направление ветра определяется азимутом стороны горизонта, откуда он дует, и измеряется в градусах. Скорость ветра измеряется в метрах в секунду (м/с), километрах в час (км/ч), в узлах (милях/ч). Сила ветра измеряется давлением, которое он оказывает на 1м 2 поверхности. Сила ветра меняется почти пропорционально его скорости, поэтому сила ветра часто оценивается не давлением, а скоростью, что упрощает восприятие и понимание этих величин не только специалистами, но и всеми заинтересованными людьми.

Для обозначения движения ветра используют много слов: смерч, буря, ураган, тайфун, циклон и множество местных названий. Чтобы их систематизировать, во всем мире пользуются шкалой Бофорта, которая позволяет весьма точно оценить силу ветра в баллах (от 0 до 12) по его действию на наземные предметы или по волнению на море. Удобна эта шкала еще и тем, что она позволяет по описанным в ней признакам довольно точно определить скорость ветра без приборов.

Бризом (от легкого до сильного бриза) моряки называют ветер, имеющий скорость от 4 до 31 мили/ч. В пересчете на километры (коэффициент 1,6) это будет от 6,4 до 50 км/ч.

Бурей называют ветер, скорость которого достигает 20-32 м/с (70 – 115 км/ч). В свою очередь, в зависимости от силы ветра различаются:

  1. буря – ветер со скоростью 20 – 26 м/с;
  2. сильная буря – ветер со скоростью 26 – 30,5 м/с;
  3. жестокая буря – ветер со скоростью 30,5 – 32 м/с.

Сильную бурю иногда называют штормом.

Бури различают вихревые и потоковые. Вихревые бури представляют собой сложные вихревые образования, обусловленные циклонической деятельностью и распространяющиеся на большие площади. Потоковые бури – это местные явления небольшого распространения. Они своеобразны, резко обособлены и уступают вихревым бурям.

Вихревые бури бывают пыльные, снежные и шквальные. Зимой они превращаются в снежные. В России такие бури часто называются пургой, бураном или метелью.

Как правило, пыльные бури проходят при неустойчивой погоде, при прохождении атмосферных фронтов. Пустыня как бы предупреждает о надвигающейся пыльной буре: сначала спасаются бегством животные, всегда в противоположном буре направлении, затем у горизонта появляется черная полоса, которая расширяется на глазах и за несколько минут затягивает весь небосвод. Внутри бури видимость ничтожна, понижается температура, а за несколько минут до бури обычно начинается дождь.

Шквальные бури возникают, как правило, внезапно, а по времени крайне непродолжительны (несколько минут). Например, в течение 10 минут скорость ветра может возрасти с 3 до 31 м/с.

Потоковые бури подразделяют на стоковые и струевые. При стоковых поток воздуха движется по склону сверху вниз. Струевые характерны тем, что поток воздуха движется горизонтально или вверх по склону. Проходят они чаще всего между цепями гор, соединяющих долины.

Ураган – это ветер, скорость которого составляет более 32 м/с (более 115 км/ч). В зависимости от скорости различаются:

  1. ураганы – 32 – 39,2 м/с (115 – 140 км/ч);
  2. сильные ураганы – 39,2 – 46,2 м/с (140 – 170 км/ч);
  3. жестокие ураганы – более 48,6 м/с (более 170 км/ч).

Ураганы подразделяют на тропические и внетропическкие. Тропическими называют ураганы, зарождающие в тропических широтах, а внетропическими – во внетропических. Кроме того, тропические ураганы часто подразделяются на ураганы, зарождающие над Атлантическим океаном и над Тихим. Последние принято называть тайфунами.

Размеры ураганов различны. Обычно за ширину урагана принимают ширину зоны катастрофических разрушений. Часто к этой зоне прибавляют территорию ветров штормовой силы со сравнительно незначительными разрушениями. Тогда ширина урагана измеряется сотнями километров, достигая иногда 1000 км. Для тайфунов полоса разрушений обычно составляет 15 – 45 километров. Средняя продолжительность урагана – 9 – 12 дней.

Ураганы являются одной из самых мощных сил стихии и по своему пагубному воздействию не уступают таким страшным стихийным бедствиям, как землетрясение. Это объясняется тем, что ураганы несут в себе колоссальную энергию. Ее количество, выделяемое средним по мощности ураганом в течение 1 часа, равно энергии ядерного взрыва в 36 гигатонн.

Ураганный ветер разрушает прочные и сносит легкие строения, опустошает засеянные поля, обрывает провода и валит столбы электропередачи и связи, повреждает транспортные магистрали и мосты, ломает и вырывает с корнями деревья, повреждает и топит суда, вызывает аварии на коммунально-энергетических сетях в производстве. Известны случаи, когда урагнный ветер разрушал дамбы и плотины, что приводило к большим наводнениям, сбрасывал с рельсов поезда, срывал с опоры мосты, валил фабричные трубы, выбрасывал на сушу корабли.

Часто ураганы сопровождают сильные ливни, которые опаснее самого урагана, так как являются причиной селевых потоков и оползней.

Смерч (торнадо) – это жестокий атмосферный вихрь, возникающий в грозовом облаке и распространяющийся до поверхности земли (воды) в виде темного гигантского рукава – «хобота». Обычно смерчи начинаются так: на горизонте появляется грозовое облако, заливающее окружающую местность необычным зеленоватым светом, нарастает влажный зной, дышать становится тяжело. Поднимается несильный поначалу ветер, начинает моросить дождь. И вдруг температура резко падает на 15 о С. Из нависших туч к земле опускается гигантский «хобот», вращающийся с бешеной скоростью, навстречу ему с поверхности, похожий на опрокинутую воронку, тянется другой вихрь. Если они смыкаются, то образуют огромный столб, вращающийся против часовой стрелки.

Смерч над сушей называют тромбами, в США – торнадо. Как и ураганы, смерчи опознают со спутников погоды. В России смерчи чаще всего происходят в Центральных областях, Поволжье, на Урале, в Сибири, на побережье и акваториях Черного, Азовского, Каспийского и Балтийского морей. Статистика зарегистрировала смерчи вблизи городов Арзамаса, Мурома, Курска, Вятки и Ярославля.

Крайне сложно прогнозировать место и время появления смерча, поэтому большей частью они возникают для людей внезапно, и предсказать их последствия тем более невозможно.

Основной причиной перечисленных явлений является циклоническая деятельность в атмосфере – процессы возникновения, эволюции (развития) и перемещения крупномасштабных возмущений в полях атмосферного давления и ветра – циклонов и антициклонов.

Циклон (от греч. – кружащийся, вращающийся) – это сильное атмосферное возмущение, круговое вихревое движение воздуха с пониженным давлением в центре. Поперечник циклона достигает от 100 до 2000 – 3000 км. В циклонах вихревые ураганные ветры дуют против часовой стрелки в северном полушарии Земли и по часовой стрелке – в южном. В антициклоне все наоборот, скорость его поменьше и погода получше.

Сам циклон движется довольно медленно: 20 – 40 км/ч, редко до 100 км/ч. Тропические циклоны (тайфуны) движутся несколько быстрее. Но внутри циклона скорости ветровых вихрей могут быть и штормовые, и ураганные, то есть больше скорости перемещения самого циклона (тайфуна). Поэтому, когда говорят: «налетел циклон (тайфун) со скоростью 120 км/ч», - это не совсем точное выражение. Правильнее сказать, что скорость ветра в границах циклона (тайфуна) достигала 120 км/ч.

2. Меры по обеспечению безопасности при угрозе бурь, ураганов, смерчей.

Меры по обеспечению безопасности при угрозе бурь, ураганов, смерчей можно по времени их принятия разделить на три группы:

  1. заблаговременные предупредительные мероприятия;
  2. оперативные защитные мероприятия, проводимые после объявления неблагоприятного прогноза, непосредственно перед ураганом (бурей, смерчем); ЧС природного характера подразделяются на геологические, метеорологические, гидрологические, природные пожары, биологические и космические.

Для некоторых веществ показатель преломления достаточно сильно меняется при изменении частоты электромагнитных волн от низких частот до оптических и далее, а также может ещё более резко меняться в определённых областях частотной шкалы. По умолчанию обычно имеется в виду оптический диапазон или диапазон, определяемый контекстом.

Отношение показателя преломления одной среды к показателю преломления второй называют относительным показателем преломления первой среды по отношению к второй. Для выполняется:

где и - фазовые скорости света в первой и второй средах соответственно. Очевидно, что относительным показателем преломления второй среды по отношению к первой является величина, равная .

Эта величина, при прочих равных условиях, обычно меньше единицы при переходе луча из среды более плотной в среду менее плотную, и больше единицы при переходе луча из среды менее плотной в среду более плотную (например, из газа или из вакуума в жидкость или твердое тело). Есть исключения из этого правила, и потому принято называть среду оптически более или менее плотной, чем другая (не путать с оптической плотностью как мерой непрозрачности среды).

Луч, падающий из безвоздушного пространства на поверхность какой-нибудь среды, преломляется сильнее, чем при падении на неё из другой среды; показатель преломления луча, падающего на среду из безвоздушного пространства, называется его абсолютным показателем преломления или просто показателем преломления данной среды, это и есть показатель преломления, определение которого дано в начале статьи. Показатель преломления любого газа, в том числе воздуха, при обычных условиях много меньше, чем показатели преломления жидкостей или твердых тел, поэтому приближенно (и со сравнительно неплохой точностью) об абсолютном показателе преломления можно судить по показателю преломления относительно воздуха.

Примеры

Показатели преломления некоторых сред приведены в таблице.

Показатели преломления для длины волны 589,3 нм
Тип среды Среда Температура, °С Значение
Кристаллы LiF 20 1,3920
NaCl 20 1,5442
KCl 20 1,4870
KBr 20 1,5552
Оптические стёкла ЛК3 (Лёгкий крон) 20 1,4874
К8 (Крон) 20 1,5163
ТК4 (Тяжёлый крон) 20 1,6111
СТК9 (Сверхтяжёлый крон) 20 1,7424
Ф1 (Флинт) 20 1,6128
ТФ10 (Тяжёлый флинт) 20 1,8060
СТФ3 (Сверхтяжёлый флинт) 20 2,1862
Драгоценные камни Алмаз белый - 2,417
Берилл - 1,571 - 1,599
Изумруд - 1,588 - 1,595
Сапфир белый - 1,768 - 1,771
Сапфир зелёный - 1,770 - 1,779
Жидкости Вода дистиллированная 20 1,3330
Бензол 20-25 1,5014
Глицерин 20-25 1,4370
Кислота серная 20-25 1,4290
Кислота соляная 20-25 1,2540
Масло анисовое 20-25 1,560
Масло подсолнечное 20-25 1,470
Масло оливковое 20-25 1,467
Спирт этиловый 20-25 1,3612

Материалы с отрицательным коэффициентом преломления

  • фазовая и групповая скорости волн имеют различное направление;
  • возможно преодоление дифракционного предела при создании оптических систем («суперлинз»), повышение с их помощью разрешающей способности микроскопов , создание микросхем наномасштаба, повышение плотности записи на оптические носители информации).

См. также

  • Иммерсионный метод измерения показателя преломления.

Примечания

Ссылки

  • RefractiveIndex.INFO база данных показателей преломления

Wikimedia Foundation . 2010 .

  • Бельфор
  • Саксония-Анхальт

Смотреть что такое "Показатель преломления" в других словарях:

    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ - отношение скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Относительный показатель преломления 2 сред отношение скорости света в среде, из которой свет падает на границу раздела, к скорости света по второй… … Большой Энциклопедический словарь

    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ Современная энциклопедия

    Показатель преломления - ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ, величина, характеризующая среду и равная отношению скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Показатель преломления n зависит от диэлектрической e и магнитной m проницаемостей… … Иллюстрированный энциклопедический словарь

    ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ - (см. ПРЕЛОМЛЕНИЯ ПОКАЗАТЕЛЬ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    показатель преломления - 1. Отношение скорости падающей волны к скорости преломленной волны. 2. Отношение скоростей звука в двух средах. [Система неразрушающего контроля.… … Справочник технического переводчика

    показатель преломления - отношение скорости света в вакууме к скорости света в среде (абсолютный показатель преломления). Относительный показатель преломления двух сред отношение скорости света в среде, из которой свет падает на границу раздела, к скорости света во… … Энциклопедический словарь

    показатель преломления - lūžio rodiklis statusas T sritis automatika atitikmenys: angl. index of refraction; refraction index; refractive index vok. Brechungsindex, m; Brechungsverhältnis, n; Brechungszahl, f; Brechzahl, f; Refraktionsindex, m rus. индекс преломления, m; … Automatikos terminų žodynas

    показатель преломления - lūžio rodiklis statusas T sritis chemija apibrėžtis Medžiagos konstanta, apibūdinanti jos savybę laužti šviesos bangas. atitikmenys: angl. index of refraction; refraction index; refractive index rus. индекс преломления; коэффициент рефракции;… … Chemijos terminų aiškinamasis žodynas

    показатель преломления - lūžio rodiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Esant nesugeriančiai terpei, tai elektromagnetinės spinduliuotės sklidimo greičio vakuume ir tam tikro dažnio elektromagnetinės spinduliuotės fazinio greičio terpėje… …

    показатель преломления - lūžio rodiklis statusas T sritis Standartizacija ir metrologija apibrėžtis Medžiagos parametras, apibūdinantis jos savybę laužti šviesos bangas. atitikmenys: angl. refraction index; refractive index vok. Brechungsindex, m rus. показатель… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

  • Квант. Научно-популярный физико-математический журнал. № 07/2017 , Если вы интересуетесь математикой и физикой и любите решать задачи, то вашим другом и помощником станет научно-популярный физико-математический журнал «КВАНТ». Онвыходит с 1970 года и… Категория: Математика Серия: Журнал «Квант» 2017 Издатель: МЦНМО , Купить за 50 руб электронная книга (fb2, fb3, epub, mobi, pdf, html, pdb, lit, doc, rtf, txt)

К ЛЕКЦИИ №24

«ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА»

РЕФРАКТОМЕТРИЯ.

Литература:

1. В.Д. Пономарёв «Аналитическая химия» 1983год 246-251

2. А.А. Ищенко «Аналитическая химия» 2004 год стр 181-184

РЕФРАКТОМЕТРИЯ.

Рефрактометрия является одним их самых простых физических методов анализа с затратой минимального количества анализируемого вещества и проводится за очень короткое время.

Рефрактометрия - метод, основанный на явлении преломления или рефракции т.е. изменении направления распространения света при переходе из одной среды в другую.

Преломление, так же как и поглощение света, является следствием взаимодействия его со средой. Слово рефрактометрия означает измерение преломления света, которое оценивается по величине показателя преломления.

Величина показателя преломления n зависит

1)от состава веществ и систем,

2) от того, в какой концентрации и какие молекулы встречает световой луч на своем пути, т.к. под действием света молекулы разных веществ поляризуются по-разному. Именно на этой зависимости и основан рефрактометрический метод.

Метод этот обладает целым рядом преимуществ, в результате чего он нашел широкое применение как в химических исследованиях, так и при контроле технологических процессов.

1)Измерение показатели преломления являются весьма простым процессом, который осуществляется точно и при минимальных затратах времени и количества вещества.

2) Обычно рефрактометры обеспечивают точность до 10% при определении показателя преломления света и содержания анализируемого вещества

Метод рефрактометрии применяют для контроля подлинности и чистоты, для идентификации индивидуальных веществ, для определения строения органических и неорганических соединений при изучении растворов. Рефрактометрия находит применение для определения состава двухкомпонентных растворов и для тройных систем.

Физические основы метода

ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ.

Отклонение светового луча от первоначального направления при переходе его из одной среды в другую тем больше, чем больше разница в скоростях распространения света в двух



данных средах.

Рассмотрим преломление светового луча на границе каких-либо двух прозрачных сред I и II(См. Рис.). Условимся, что среда II обладает большей преломляющей способностью и, следовательно, n 1 и n 2 - показывает преломление соответствующих сред. Если среда I -это не вакуум и не воздух, то отношение sin угла падения светового луча к sin угла преломления даст величину относительного показателя преломления n отн. Величина n отн. может быть так же определена как отношение показателей преломления рассматриваемых сред.

n отн. = ----- = ---

Величина показателя преломления зависит от

1) природы веществ

Природу вещества в данном случае определяет степень деформируемости его молекул под действием света - степень поляризуемости. Чем интенсивней поляризуемость, тем сильнее преломление света.

2)длины волны падающего света

Измерение показателя преломления проводится при длине волны света 589,3 нм (линия D спектра натрия).

Зависимость показателя преломления от длины световой волны называется дисперсией. Чем меньше длина волны, тем значительнее преломление . Поэтому, лучи разных длин волн преломляются по-разному.

3)температуры , при которой проводится измерение. Обязательным условием определения показателя преломления является соблюдение температурного режима. Обычно определение выполняется при 20±0,3 0 С.

При повышении температуры величина показателя преломления уменьшается, при понижении - увеличивается .

Поправку на влияние температуры рассчитывают по следующей формуле:

n t =n 20 + (20-t) ·0,0002, где

n t – показатель преломления при данной температуре,

n 20 -показатель преломления при 20 0 С

Влияние температуры на значения показателей преломления газов и жидких тел связано с величинами их коэффициентов объемного расширения. Объем всех газов и жидких тел при нагревании увеличивается, плотность уменьшается и,следовательно, уменьшается показатель

Показатель преломления, измеренный при 20 0 С и длине волны света 589,3 нм, обозначается индексом n D 20

Зависимость показателя преломления гомогенной двухкомпонентной системы от ее состояния устанавливается экспериментально, путем определения показателя преломления для ряда стандартных систем(например,растворов), содержание компонентов в которых известно.

4)концентрации вещества в растворе.

Для многих водных растворов веществ показатели преломления при разных концентрациях и температурах надежно измерены, и в этих случаях можно пользоваться справочными рефрактометрическими таблицами . Практика показывает, что при содержании растворенного вещества, не превышающем 10-20%, наряду с графическим методом в очень многих случаях можно пользоваться линейным уравнением типа:

n=n о +FC,

n- показатель преломления раствора,

- показатель преломления чистого растворителя,

C - концентрация растворенного вещества,%

F -эмпирический коэффициент, величина которого найдена

путем определения коэффициентов преломления растворов известной концентрации.

РЕФРАКТОМЕТРЫ.

Рефрактометрами называют приборы, служащие для измерения величины показателя преломления. Существует 2 вида этих приборов: рефрактометр типа Аббе и типа Пульфриха. И в тех и в др. измерения основаны на определении величины предельного угла преломления. На практике применяются рефрактометры различных систем: лабораторный-РЛ, универсальный РЛУ и др.

Показатель преломления дистиллированной воды n 0 =1,33299, практически же этот показатель принимает в качестве отсчетного как n 0 =1,333.

Принцип работы на рефрактометрах основан на определении показателя преломления методом предельного угла (угол полного отражения света).

Ручной рефрактометр

Рефрактометр Аббе

В курсе физики 8 класса вы познакомились с явлением преломления света. Теперь вы знаете, что свет представляет собой электромагнитные волны определенного диапазона частот. Опираясь на знания о природе света, вы сможете понять физическую причину преломления и объяснить многие другие связанные с ним световые явления.

Рис. 141. Переходя из одной среды в другую, луч преломляется, т. е. меняет направление распространения

Согласно закону преломления света (рис. 141):

  • лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред

где n 21 - относительный показатель преломления второй среды относительно первой.

Если луч переходит в какую-либо среду из вакуума, то

где n - абсолютный показатель преломления (или просто показатель преломления) второй среды. В этом случае первой «средой» является вакуум, абсолютный показатель которого принят за единицу.

Закон преломления света был открыт опытным путём голландским учёным Виллебордом Снеллиусом в 1621 г. Закон был сформулирован в трактате по оптике, который нашли в бумагах учёного после его смерти.

После открытия Снеллиуса несколькими учёными была выдвинута гипотеза о том, что преломление света обусловлено изменением его скорости при переходе через границу двух сред. Справедливость этой гипотезы была подтверждена теоретическими доказательствами, выполненными независимо друг от друга французским математиком Пьером Ферма (в 1662 г.) и голландским физиком Христианом Гюйгенсом (в 1690 г.). Разными путями они пришли к одному и тому же результату, доказав, что

  • отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

(3)

Из уравнения (3) следует, что если угол преломления β меньше угла падения а, то свет данной частоты во второй среде распространяется медленнее, чем в первой, т. е. V 2

Взаимосвязь величин, входящих в уравнение (3), послужила веским основанием для появления ещё одной формулировки определения относительного показателя преломления:

  • относительным показателем преломления второй среды относительно первой называется физическая величина, равная отношению скоростей света в этих средах:

n 21 = v 1 / v 2 (4)

Пусть луч света переходит из вакуума в какую-либо среду. Заменив в уравнении (4) v1 на скорость света в вакууме с, а v 2 на скорость света в среде v, получим уравнение (5), являющееся определением абсолютного показателя преломления:

  • абсолютным показателем преломления среды называется физическая величина, равная отношению скорости света в вакууме к скорости света в данной среде:

Согласно уравнениям (4) и (5), n 21 показывает, во сколько раз меняется скорость света при его переходе из одной среды в другую, a n - при переходе из вакуума в среду. В этом заключается физический смысл показателей преломления.

Значение абсолютного показателя преломления п любого вещества больше единицы (в этом убеждают данные, содержащиеся в таблицах физических справочников). Тогда, согласно уравнению (5), c/v > 1 и с > v, т. е. скорость света в любом веществе меньше скорости света в вакууме.

Не приводя строгих обоснований (они сложны и громоздки), отметим, что причиной уменьшения скорости света при его переходе из вакуума в вещество является взаимодействие световой волны с атомами и молекулами вещества. Чем больше оптическая плотность вещества, тем сильнее это взаимодействие, тем меньше скорость света и тем больше показатель преломления. Таким образом, скорость света в среде и абсолютный показатель преломления определяются свойствами этой среды.

По числовым значениям показателей преломления веществ можно сравнивать их оптические плотности. Например, показатели преломления различных сортов стекла лежат в пределах от 1,470 до 2,040, а показатель преломления воды равен 1,333. Значит, стекло - среда оптически более плотная, чем вода.

Обратимся к рисунку 142, с помощью которого можно пояснить, почему на границе двух сред с изменением скорости меняется и направление распространения световой волны.

Рис. 142. При переходе световых волн из воздуха в воду скорость света уменьшается, фронт волны, а вместе с ним и её скорость меняют направление

На рисунке изображена световая волна, переходящая из воздуха в воду и падающая на границу раздела этих сред под углом а. В воздухе свет распространяется со скоростью v 1 , а в воде - с меньшей скоростью v 2 .

Первой до границы доходит точка А волны. За промежуток времени Δt точка В, перемещаясь в воздухе с прежней скоростью v 1 , достигнет точки В". За то же время точка А, перемещаясь в воде с меньшей скоростью v 2 , пройдёт меньшее расстояние, достигнув только точки А". При этом так называемый фронт волны А"В" в воде окажется повёрнутым на некоторый угол по отношению к фронту АВ волны в воздухе. А вектор скорости (который всегда перпендикулярен к фронту волны и совпадает с направлением её распространения) поворачивается, приближаясь к прямой ОО", перпендикулярной к границе раздела сред. При этом угол преломления β оказывается меньше угла падения α. Так происходит преломление света.

Из рисунка видно также, что при переходе в другую среду и повороте волнового фронта меняется и длина волны: при переходе в оптически более плотную среду уменьшается скорость, длина волны тоже уменьшается (λ 2 < λ 1). Это согласуется и с известной вам формулой λ = V/v, из которой следует, что при неизменной частоте v (которая не зависит от плотности среды и поэтому не меняется при переходе луча из одной среды в другую) уменьшение скорости распространения волны сопровождается пропорциональным уменьшением длины волны.

Вопросы

  1. Какое из двух веществ является оптически более плотным?
  2. Как определяются показатели преломления через скорость света в средах?
  3. Где свет распространяется с наибольшей скоростью?
  4. Какова физическая причина уменьшения скорости света при его переходе из вакуума в среду или из среды с меньшей оптической плотностью в среду с большей?
  5. Чем определяются (т. е. от чего зависят) абсолютный показатель преломления среды и скорость света в ней?
  6. Расскажите, что иллюстрирует рисунок 142.

Упражнение

Преломление или рефракция - это явление, при котором происходит изменение направленности луча света, или иных волн, когда они переходят границу, разделяющую две среды, как прозрачные (пропускающие эти волны), так и внутри среды, в которой непрерывно изменяются свойства.

С явлением преломления мы сталкиваемся довольно часто и воспринимаем обыденным явлением: можем увидеть, что палочка, находящаяся в прозрачном стакане с окрашенной жидкостью, «переломлена» в месте раздела воздуха и воды (рис. 1). При преломлении и отражении света во время дождя мы радуемся, увидев радугу (рис. 2).

Показатель преломления - важная характеристика вещества, связанная с его физико-химическими свойствами. Он находится в зависимости от значений температур, а также от длины световых волн, при которых проводится определение. По данным контроля качества в растворе на показатель преломления влияет концентрация растворенного в нем вещества, а также природа растворителя. В частности, на показатель преломления кровяной сыворотки влияет количество белка, содержащегося в ней.Это происходит из-за того, что при разной скорости распространения световых лучей в средах, имеющих различную плотность, их направление изменяется в месте раздела двух сред. Если мы разделим световую скорость в вакууме на световую скорость в исследуемом веществе, получится показатель преломления абсолютный (индекс рефракции). Практически определяется показатель преломления относительный (n ), представляющий собой отношение световой скорости в воздухе к световой скорости в исследуемом веществе.

Количественно показатель преломления определяют, используя специальный прибор - рефрактометр.

Рефрактометрия - один из наиболее легких методов физического анализа и может применяться в лабораториях контроля качества при производстве химической, пищевой, биологически активных добавок к пище , косметической и других видов продукции с минимальными затратами времени и количества исследуемых проб.

Конструкция рефрактометра основана на том, что лучи света полностью отражаются, когда переходят через границу двух сред (одна из них – это призма из стекла, другая – исследуемый раствор) (рис. 3).

Рис. 3. Схема рефрактометра

От источника (1) световой луч падает на зеркальную поверхность (2), затем, отражаясь, переходит в верхнюю призму осветительную (3), потом в нижнюю призму измерительную (4), которая изготовлена из стекла, обладающего большим показателем преломления. Между призмами (3) и (4) с помощью капилляра наносят 1–2 капельки пробы. Чтобы не нанести призме механических повреждений, необходимо не касаться капилляром ее поверхности.

В окуляр (9) видят поле с перекрещенными линиями, чтобы установить границу раздела. Перемещая окуляр, точку пересечения полей нужно совместить с границей раздела (рис. 4).Плоскость призмы (4) играет роль границы раздела, на поверхности которой преломляется световой луч. Так как лучи рассеиваются, граница света и тени получается расплывчатой, радужной. Это явление устраняется компенсатором дисперсии (5). Затем луч пропускается объективом (6) и призмой (7). На пластине (8) имеются штрихи визирные (две прямые линии, пересеченные крестообразно), а также шкала с показателями преломления, которая наблюдается в окуляр (9). По ней и отсчитывается показатель преломления.

Линия раздела границ полей будет соответствовать углу внутреннего полного отражения, зависящего от показателя преломления пробы.

Рефрактометрия применяется с целью установления чистоты и подлинности вещества. Этот метод применяется также, чтобы при контроле качества определить концентрацию веществ в растворах, которую вычисляют по градуировочному графику (график, показывающий зависимость показателя преломления пробы от ее концентрации).

В компании «КоролёвФарм» показатель преломления определяется согласно утвержденной нормативной документации при входном контроле сырья , в экстрактах собственного производства , а также при выпуске готовой продукции. Определение производится квалифицированными сотрудниками аккредитованной физико-химической лаборатории с помощью рефрактометра ИРФ – 454 Б2М.

Если по результатам входного контроля сырья показатель преломления не соответствует необходимым требованиям, отделом контроля качества оформляется Акт о несоответствии, на основании которого данная партия сырья возвращается поставщику.

Методика определения

1. Перед началом измерений проверяется чистота поверхностей призм, соприкасающихся между собой.

2. Проверка точки нуля. На поверхность призмы измерительной наносим 2÷3 капли воды дистиллированной, осторожно закрываем призмой осветительной. Открываем осветительное окошко и, применяя зеркало, устанавливаем световой источник в наиболее интенсивном направлении. Вращая винты окуляра, получаем в его поле зрения четкое, резкое разграничение темного и светлого полей. Вращаем винт и наводим линию тени и света так, чтобы она совпала с точкой, в которой пересекаются линии в верхнем окошке окуляра. На вертикальной линии в нижнем окошке окуляра видим нужный результат – показатель преломления воды дистиллированной при 20 ° С (1,333). Если показания другие, устанавливаем винтом показатель преломления на значение 1,333, и с помощью ключа (снять винт регулировочный) приводим границу тени и света к месту точки пересечения линий.

3. Определяем коэффициент преломления. Приподнимаем камеру призмы осветительной и бумагой фильтровальной или салфеткой марлевой снимаем воду. Далее наносим 1-2 капли испытуемого раствора на поверхность призмы измерительной и закрываем камеру. Вращаем винты до момента, пока границы тени и света не совпадут с точкой пересечения линий. На вертикальной линии в нижнем окошке окуляра видим нужный результат – показатель преломления исследуемой пробы. Производим подсчет коэффициента преломления по шкале в нижнем окошке окуляра.

4. Используя градуировочный график, устанавливаем взаимосвязь между концентрацией раствора и показателем преломления. Чтобы построить график необходимо приготовить стандартные растворы нескольких концентраций, используя препараты химически чистых веществ, измерить их показатели преломления и отложить полученные значения на оси ординат, на оси абсцисс отложить соответствующие концентрации растворов. Необходимо выбирать интервалы концентраций, при которых между концентрацией и показателем преломления наблюдается зависимость линейная. Измеряем показатель преломления исследуемой пробы и с помощью графика определяем его концентрацию.