Оптическая плотность газа и чем она определяется. Оптическая плотность

Цель работы - определение концентрации веществ колориметрическим методом.

I. Термины и определения

Стандартный раствор (ср) - это раствор, содержащий в единице объема определенное количество исследуемого вещества или его химико-аналитического эквивалента (ГОСТ 12.1.016 - 79).

Исследуемый раствор (ир ) - это раствор, в котором необходимо определить содержание исследуемого вещества или его химико-аналитического эквивалента (ГОСТ 12.1.016 - 79).

Градуировочный график - графическое выражение зависимости оптической плотности сигнала от концентрации исследуемого вещества (ГОСТ 12.1.016 - 79).

Предельно допустимая концентрация (ПДК ) вредного вещества - это концентрация, которая при ежедневной (кроме выходных дней) работе по 8 часов или при другой продолжительности рабочего дня, но не более 40 часов в неделю в течение всего рабочего стажа не может вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или в отдаленные сроки жизни настоящего или последующих поколений (ГОСТ 12.1.016 - 79).

Колориметрия - это метод количественного анализа содержания какого либо иона в прозрачном растворе, основанный на измерении интенсивности его окраски.

II. Теоретическая часть

Колориметрический метод анализа основан на связи двух величин:концентрации раствора и его оптической плотности (степени окрашенности).

Окраска раствора может быть вызвана как присутствием самого иона (MnO 4 - ,Cr 2 O 7 2- ), так и образованием окрашенного соединения в результате химического взаимодействия исследуемого иона с реактивом.

Например, слабоокрашенный ион Fe 3 + дает кроваво-красное соединение при взаимодействии с ионами роданида SCH - , ион меди Cu 2+ образует ярко-синий комплексный ион 2 + при взаимодействии с водным раствором аммиака.

Окраска раствора обусловлена избирательным поглощением лучей света определенной длины волны: окрашенный раствор поглощает те лучи, длина волны которых соответствует дополнительному цвету. Например: дополнительными называют сине-зеленый и красный цвета, синий и желтый.

Раствор роданида железа кажется красным, потому что он поглощает преимущественно зеленые лучи (5000Á) и пропускает красные; напротив, раствор зеленой окраски пропускает зеленые лучи и поглощает красные.

Колориметрический метод анализа основан на способности окрашенных растворов поглощать свет в диапазоне волн от ультрафиолетового до инфракрасного. Поглощение зависит от свойств вещества и его концентрации. При этом методе анализа исследуемое вещество входит в состав водного раствора, поглощающего свет, а его количество определяется по световому потоку, прошедшему через раствор. Эти измерения проводятся при помощи фотоколориметров. Действие этих приборов основано на изменении интенсивности светового потока при прохождении через раствор в зависимости от толщины слоя, степени окраски и концентрации. Мерой концентрации является оптическая плотность (D ). Чем выше концентрация вещества в растворе, тем больше оптическая плотность раствора и меньше его светопроницаемость Оптическая плотность окрашенного раствора прямо пропорциональна концентрации вещества в растворе. Она должна измеряться при длине волны, на которой исследуемое вещество имеет максимальное светопоглощение. Это достигается подбором светофильтров и кювет для раствора.

Предварительный выбор кювет производят визуально соответственно интенсивности окраски раствора. Если раствор интенсивно окрашен (темный), пользуются кюветами с малой рабочей длиной волны. В случае слабо окрашенных растворов рекомендуются кюветы с большей длиной волны. В предварительно подобранную кювету наливают раствор, измеряют его оптическую плотность, включив в ход лучей светофильтр. При измерении ряда растворов кювету заполняют раствором средней концентрации. Если полученное значение оптической плотности составляет примерно 0,3-0,5, данную кювету выбирают для работы с этим раствором. Если оптическая плотность больше 0,5-0,6, берут кювету с меньшей рабочей длиной, если оптическая плотность меньше 0,2-0,3, выбирают кювету с большей рабочей длиной волны.

На точность измерений большое влияние оказывает чистота рабочих граней кювет. Во время работы кюветы берут руками только за нерабочие грани, а после заполнения растворомвнимательно следят за отсутствием на стенках кювет даже мельчайших пузырьков воздуха.

Согласно закону Бугера-Ламберта-Бэра , доля поглощенного света зависит от толщины слоя раствораh , концентрации раствораC и интенсивности падающего светаI 0

где I - интенсивность света, прошедшего через анализируемый раствор;

I- интенсивность падающего света;

h - толщина слоя раствора;

C - концентрация раствора;

Коэффициент поглощения - величина, постоянная для данного окрашенного соединения.

Логарифмируя это выражение, получаем:

(2)

где D - оптическая плотность раствора, является постоянной величиной для каждого вещества.

Оптическая плотность D характеризует способность раствора поглощать свет.

Если раствор совсем не поглощает свет, то D = 0 и I t =I, так как выражение (2) равно нулю.

Если раствор поглощает лучи света полностью, то D равняется бесконечности и I= 0, так как выражение (2) равно бесконечности.

Если раствор поглощает 90 % падающего света, то D = 1 и

I t =0,1, так как выражение (2) равно единице.

При точных колориметрических расчетах изменение оптической плотности не должно выходить за интервал 0,1 - 1.

Для двух растворов различной толщины слоев и концентрации, но одинаковой оптической плотности можно записать:

D = h 1 C 1 = h 2 C 2 ,

Для двух растворов одинаковой толщины, но разной концентрации можно написать:

D 1 = h 1 C 1 иD 2 =h 2 C 2 ,

Как видно из выражений (3) и (4), практически для определения концентрации раствора колориметрическим методом необходимо иметь стандартный раствор, то есть раствор с известными параметрами (C, D).

Определение можно проводить по-разному:

1. Можно уравнять оптические плотности исследуемого и стандартного растворов, изменяя их концентрацию или толщину слоя раствора;

2. Можно измерить оптическую плотность этих растворов и рассчитать искомую концентрацию по выражению (4).

Для реализации первого метода применяют специальные приборы - колориметры. Они основаны на визуальной оценке интенсивности проходящего света и поэтому их точность сравнительно невелика.

Второй метод - измерения оптической плотности - осуществляется с помощью значительно более точных приборов - фотоколориметров и спектрофотометров и именно он используется в данной лабораторной работе.

При работе на фотоколориметре чаще используют прием построения градуировочного графика: измеряют оптическую плотность нескольких стандартных растворов и строят график в координатах D = f(C). Затем измеряют оптическую плотность исследуемого раствора и по градуировочному графику определяют искомую концентрацию.

Уравнение Бугера - Ламберта - Бэра справедливо только для монохроматического света, поэтому точные колориметрические измерения проводят с применением светофильтров - цветных пластинок, пропускающих лучи света в определенном диапазоне длин волн. Для работы выбирают светофильтр, который обеспечивает максимальную оптическую плотность раствора. Светофильтры, установленные на фотоколориметр, пропускают лучи не строго определенной длины волны, а в некотором ограниченном диапазоне. Вследствие этого погрешность измерений на фотоколориметре не более±3% от веса анализируемого вещества. Строго монохроматический свет применяется в специальных приборах - спектрофотометрах, у которых точность измерений выше.

Точность колориметрических измерений зависит от концентрации раствора, наличия примесей, температуры, кислотности среды раствора, времени определения. Этим методом можно анализировать только разбавленные растворы, то есть такие, для которых зависимость D = f(C) -прямая .

При анализе концентрированных растворов их предварительно разбавляют, а при расчете искомой концентрации вносят поправку на разведение. Однако точность измерений при этом понижается.

Примеси могут влиять на точность измерений тем, что сами дают окрашенное соединение с добавляемым реактивом или затрудняют образование окрашенного соединения исследуемого иона.

Метод колориметрического анализа в настоящее время применяется для проведения анализов в различных областях науки. Он позволяет точно и быстро проводить измерения, используя ничтожно малые количества вещества, недостаточные для объемного или весового анализа.

Для определения готовят эталонный раствор определяемого вещества известной концентрации, которая приближается к концентрации исследуемого раствора. Определяют оптическую плотность этого раствора при определенной длине волны . Затем определяют оптическую плотность исследуемого раствора при той же длине волны и при той же толщине слоя. Для эталонного раствора согласно уравнению (17) имеем:

где - молярный коэффициент поглощения исследуемого раствора; - толщина слоя, см.

Оптическая плотность исследуемого раствора выражается такой же формулой:

где - концентрация исследуемого раствора, .

Количество определяемого вещества (в мг) с учетом разбавления раствора находим по формуле:

где - общий объем исследуемого раствора, ; - объем окрашенного исследуемого раствора, - объем аликвотной части исследуемого растаора, взятой для приготовления окрашенного раствора, .

Определение к онцентраци и вещества в растворе по значению молярного коэффициента поглощения

Определив значение оптической плотности -раствора при длине волны к и зная значение молярного коэффициента поглощения . определяемого вещества для лучей длины волны X, находим по формуле (17) значение концентрации исследуемого вещества :

Количество определяемого вещества (в г) находим по формуле:

где - молекулярный (атомный) вес определяемого вещества (иона).

Значение молярного коэффициента поглощения . устанавливают следующим образом. Готовят эталонный раствор исследуемого вещества определенной концентрации и измеряют значение оптической плотности этого раствора при длине волны к и значение . вычисляют по формуле:

Если вещество трудно получить в чистом виде, то можно пользоваться табличным значением .

Определение концентрации вещества с помощью калибровочного графика

Функциональная зависимость между оптической плотностью раствора и концентрацией поглощающего вещества может быть установлена графически. Для этого предварительно готовят серию растворов определяемого вещества различной концентрации (эталонные растворы). Измеряют значения оптической плотности этих растворов для лучей с длиной волны X и по полученным данным строят кривую зависимости оптической плотности раствора от концентрации (калибровочный график). На ось ординат наносят значения оптической плотности эталонных растворов , а на ось абсцисс - соответствующие значения концентраций этих растворов (). Для получения более точных результатов рассчитывают, пользуясь методом наименьших квадратов, уравнение для калибровочного графика.

Определив значение оптической плотности исследуемого раствора при той же толщине слоя, можно найти концентрацию определяемого вещества по полученному калибровочному графику. Если раствор не подчиняется закону Бугера-Ламберта-Бера, то прямолинейная зависимость нарушается на некотором участке кривой или на всей кривой. В этом случае необходимо увеличить число эталонных растворов. Концентрацию эталонных растворов обычно выражают в . Количество определяемого вещества в миллиграммах определяют по формуле (23).

Определение концентрации вещества методом «уравнивания» или методом изменения толщины поглощающего слоя

Оптическую плотность исследуемого раствора определяют по формуле:

где - молярный коэффициент поглощения исследуемого раствора; - концентрация определяемого вещества, ; - толщина слоя, см.

На использовании этого равенства основано устройство колориметра погружения (колориметр Дюбоска), в котором тождественность цвета достигается изменением толщины слоя растворов. Оптическая схема колориметра погружения дана на рис. 96. Один световой поток от зеркала 1 проходит через слой исследуемого раствора в кювете 2, цилиндр 4, призму 6, линзы 8 и 9 и попадает в окуляр, освещая правую половину оптического поля. Другой световой поток проходит через слой стандартного раствора в кювете 3, цилиндр 5, призму 7, линзы 8 и 9, попадает в окуляр, освещая левую половину оптического поля. Кюветы 2 и 3 установлены на держателях, которые при помощи шестеренок и реек передвигаются вертикально. Стеклянные цилиндры 4 и 5 с отшлифованными концами укреплены неподвижно. Перемещая кюветы 2 и 3 по вертикали, меняют высоту столбов раствора и добиваются исчезновения границ раздела в окуляре оптического поля. Высоты столбов эталонного раствора и исследуемого раствора отсчитывают по миллиметровой шкале.

Оптическая плотность

D , мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения (См. Поток излучения) F 0 , падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F , прошедшему через этот слой: D = lg (F 0 /F ), иначе, О. п. есть логарифм величины, обратной Пропускания коэффициент у слоя вещества: D = lg (1/τ). (В определении используемой иногда натуральной О. п. десятичный логарифм lg заменяется натуральным ln.) Понятие О. п. введено Р. Бунзен ом; оно привлекается для характеристики ослабления оптического излучения (См. Оптическое излучение) (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в Светофильтр ах и иных оптических изделиях. Особенно широко О. п. пользуются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии (См. Денситометрия). Различают несколько типов О. п. в зависимости от характера падающего и способа измерения прошедшего потоков излучения (рис. ).

О. п. зависит от набора частот ν (длин волн λ), характеризующего исходный поток; её значение для предельного случая одной единственной ν называется монохроматической О. п. Регулярная (рис. , а)монохроматическая О. п. слоя нерассеивающей среды (без учёта поправок на отражение от передней и задней границ слоя) равна 0,4343 k ν l , где k ν - натуральный Поглощения показатель среды, l - толщина слоя (k ν l = κcl - показатель в уравнении Бугера - Ламберта - Бера закон а; если рассеянием в среде нельзя пренебречь, k ν заменяется на натуральный Ослабления показатель). Для смеси нереагирующих веществ или совокупносги расположенных одна за другой сред О. п. этого типа аддитивна, т. е. равна сумме таких же О. п. отдельных веществ или отдельных сред соответственно. То же справедливо и для регулярной немонохроматической О. п. (излучение сложного спектрального состава) в случае сред с неселективным (не зависящим от ν) поглощением. Регулярная немонохроматич. О. п. совокупности сред с селективным поглощением меньше суммы О. п. этих сред. (О приборах для измерения О. п. см. в статьях Денситометр , Микрофотометр , Спектрозональная аэрофотосъёмка , Спектросенситометр , Спектрофотометр , Фотометр .)

Лит.: Гороховский Ю. Н., Левенберг Т. М., Общая сенситометрия. Теория и практика, М., 1963; Джеймс Т., Хиггинс Дж., Основы теории фотографического процесса, пер. с англ., М., 1954.

Л. Н. Капорский.

Типы оптической плотности слоя среды в зависимости от геометрии падающего и способа измерения прошедшего потока излучения (в принятой в СССР сенситометрической системе): а) регулярную оптическую плотность D II определяют, направляя на слой по перпендикуляру к нему параллельный поток и измеряя только ту часть прошедшего потока, которая сохранила первоначальное направление; б) для определения интегральной оптической плотности D ε перпендикулярно к слою направляется параллельный поток, измеряется весь прошедший поток; в) и г) два способа измерения, применяемые для определения двух типов диффузной оптической плотности D ≠ (падающий поток - идеально рассеянный). Разность D II - D ε служит мерой светорассеяния в измеряемом слое.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Оптическая плотность D , мера непрозрачности слоя вещества для световых лучей. Равна десятичному логарифму отношения потока излучения F 0 , падающего на слой, к ослабленному в результате поглощения и рассеяния потоку F , прошедшему через этот слой: D = lg (F 0 /F ), иначе, О. п. есть логарифм величины, обратной пропускания коэффициенту слоя вещества: D = lg (1/t ). (В определении используемой иногда натуральной О. п. десятичный логарифм lg заменяется натуральным ln.) Понятие О. п. введено Р. Бунзеном ; оно привлекается для характеристики ослабления оптического излучения (света) в слоях и плёнках различных веществ (красителей, растворов, окрашенных и молочных стекол и многое др.), в светофильтрах и иных оптических изделиях. Особенно широко О. п. пользуются для количественной оценки проявленных фотографических слоев как в черно-белой, так и в цветной фотографии, где методы её измерения составляют содержание отдельной дисциплины - денситометрии . Различают несколько типов О. п. в зависимости от характера падающего и способа измерения прошедшего потоков излучения (рис. ).

О. п. зависит от набора частот n (длин волн l ), характеризующего исходный поток; её значение для предельного случая одной единственной n называется монохроматической О. п. Регулярная (рис. , а)монохроматическая О. п. слоя нерассеивающей среды (без учёта поправок на отражение от передней и задней границ слоя) равна 0,4343 k n l , где k n - натуральный поглощения показатель среды, l - толщина слоя (k n l = k cl - показатель в уравнении Бугера - Ламберта - Бера закона ; если рассеянием в среде нельзя пренебречь, k n заменяется на натуральный ослабления показатель ). Для смеси нереагирующих веществ или совокупносги расположенных одна за другой сред О. п. этого типа аддитивна, т. е. равна сумме таких же О. п. отдельных веществ или отдельных сред соответственно. То же справедливо и для регулярной немонохроматической О. п. (излучение сложного спектрального состава) в случае сред с неселективным (не зависящим от n ) поглощением. Регулярная немонохроматич. О. п. совокупности сред с селективным поглощением меньше суммы О. п. этих сред. (О приборах для измерения О. п. см. в статьях Денситометр , Микрофотометр , Спектрозональная аэрофотосъёмка , Спектросенситометр , Спектрофотометр , Фотометр .)

Лит.: Гороховский Ю. Н., Левенберг Т. М., Общая сенситометрия. Теория и практика, М., 1963; Джеймс Т., Хиггинс Дж., Основы теории фотографического процесса, пер. с англ., М., 1954.

Большая Советская Энциклопедия М.: "Советская энциклопедия", 1969-1978

Колориметрия

Из оптических методов анализа в практике аналитических лабораторий наиболее широко применяются колориметрические методы (от лат. color - цвет и греч. μετρεω - измеряю). Колориметрические методы основаны на измерении интенсивности светового потока, прошедшего через окрашенный раствор.

В колориметрическом методе используются химические реакции, сопровождающиеся изменением цвета анализируемого раствора. Измеряя светопоглощение такого окрашенного раствора или сравнивая полученную окраску с окраской раствора известной концентрации, определяют содержание окрашенного вещества в испытуемом растворе.

Существует зависимость между интенсивностью окраски раствора и содержанием в этом растворе окрашенного вещества. Эта зависимость, называемая основным законом светопоглощения (или законом Бугера-Ламберта-Бера), выражается уравнением:

I = I 0 10 - ε c l

где I - интенсивность света, прошедшего через раствор; I 0 - интенсивность падающего на раствор света; ε- коэффициент светопоглощения, постоянная величина для каждого окрашенного вещества, зависящая от его природы; С - молярная концентрация окрашенного вещества в растворе; l - толщина слоя светопоглощающего раствора, см.

Физический смысл этого закона можно выразить следующим образом. Растворы одного и того же окрашенного вещества при одинаковой концентрации этого вещества и толщине слоя раствора поглощают равное количество световой энергии, т. е. светопоглощение таких растворов одинаковое.

Для окрашенного раствора, заключенного в стеклянную кювету с параллельными стенками, можно сказать, что по мере увеличения концентрации и толщины слоя раствора его окраска увеличивается, а интенсивность света I, прошедшего через поглощающий раствор, уменьшается по сравнению с интенсивностью падающего света I 0 .



Рис.1 Прохождение света через кювету с исследуемым раствором.

Оптическая плотность раствора.

Если прологарифмировать уравнение основного закона светопоглощения и изменить знаки на обратные, то уравнение принимает вид:

Величина является очень важной характеристикой окрашенного раствора; ее называют оптической плотностью раствора и обозначают буквой A:

A = ε C l

Из этого уравнения вытекает, что оптическая плотность раствора прямо пропорциональна концентрации окрашенного вещества и толщине слоя раствора.

Другими словами, при одинаковой толщине слоя раствора данного вещества оптическая плотность этого раствора будет тем больше, чем больше в нем содержится окрашенного вещества. Или, наоборот, при одной и той же концентрации данного окрашенного вещества оптическая плотность раствора зависит только от толщины его слоя. Отсюда может быть сделан следующий вывод: если два раствора одного и того же окрашенного вещества имеют различную концентрацию, одинаковая интенсивность окраски этих растворов будет достигнута при толщинах их слоев, обратно пропорциональных концентрациям растворов. Этот вывод очень важен, так как на нем основаны некоторые методы колориметрического анализа.



Таким образом, чтобы определить концентрацию (С) окрашенного раствора, необходимо измерить его оптическую плотность (A). Чтобы измерить оптическую плотность, следует измерить интенсивность светового потока.

Интенсивность окраски растворов можно измерять различными методами. Различают субъективные (или визуальные) методы колориметрии и объективные (или фотоколориметрические).

Визуальными называются такие методы, при которых оценку интенсивности окраски испытуемого раствора делают невооруженным глазом.

При объективных методах колориметрического определения для измерения интенсивности окраски испытуемого раствора вместо непосредственного наблюдения пользуются фотоэлементами. Определение в этом случае проводят в специальных приборах - фотоколориметрах, откуда и метод получил название фотоколориметрического.

Визуальные методы

К визуальным методам относятся:

1) метод стандартных серий;

2) метод дублирования (колориметрическое титрование);

3) метод уравнивания.

Метод стандартных серий. При выполнении анализа методом стандартных серий интенсивность окраски анализируемого окрашенного раствора сравнивают с окрасками серии специально приготовленных стандартных растворов (при одинаковой толщине поглощающего слоя).

Растворы в колориметрии обычно имеют интенсивную окраску, поэтому имеется возможность определять весьма небольшие концентрации или количества веществ. Однако это может сопровождаться определенными трудностями: так навески для приготовления серии стандартных растворов могут быть очень малы. Для преодоления этих трудностей готовят стандартный раствор А достаточно высокой концентрации, например 1 мг/мл. После этого путем разбавления из раствора А готовят стандартный раствор В значительно меньшей концентрации, а из него в свою очередь готовят серию стандартных растворов.

Для этого в пробирки или кюветы одинакового размера и одинакового цвета стекла пипеткой добавляются необходимые объемы растворов реагентов в нужной последовательности. Порции растворов определяемого вещества целесообразно добавлять из бюретки, т.к. их объемы будут различны для обеспечения различных концентраций в серии стандартных растворов. При этом начальный раствор должен содержать все компоненты, кроме определяемого вещества (нулевой раствор) . В исследуемый раствор добавляют растворы необходимых реагентов. Все растворы доводят до постоянного объема, а затем визуально сравнивают интенсивность окраски исследуемого раствора с растворами серии стандартных растворов. Возможно совпадение интенсивности окраски с каким-либо раствором серии. Тогда считается, сто исследуемый раствор имеет такую же концентрацию или содержит столько же определяемого вещества. Если же интенсивность окраски покажется промежуточной между соседними растворами серии, концентрация или содержание определяемого компонента считают средним арифметическим между растворами серии.

Колориметрическое титрование (метод дублирования) . Этот метод основан на сравнении окраски анализируемого раствора с окраской другого раствора- контрольного. Для приготовления контрольного раствора готовят раствор, содержащий все компоненты исследуемого раствора, за исключением определяемого вещества, и все употреблявшиеся при подготовке пробы реактивы, и к нему добавляют из бюретки стандартный раствор определяемого вещества. Когда этого раствора будет добавлено столько, что интенсивности окраски контрольного и анализируемого раствора уравняются, считают, что в анализируемом растворе содержится столько же определяемого вещества, сколько его было введено в контрольный раствор.

Метод уравнивания. Этот метод основан на уравнивании окрасок анализируемого раствора и раствора с известной концентрацией определяемого вещества - стандартного раствора. Существуют два варианта выполнения колориметрического определения этим методом.

По первому варианту уравнивание окрасок двух растворов с разной концентрацией окрашенного вещества проводят путем изменения толщины слоев этих растворов при одинаковой силе проходящего через растворы светового потока. При этом, несмотря на различие концентраций анализируемого и стандартного растворов, интенсивность светового потока, проходящего через оба слоя этих растворов, будет одинакова. Соотношение между толщинами слоев и концентрациями окрашенного вещества в растворах в момент уравнивания окрасок будет выражаться уравнением:

l 1 = C 2

где l 1 - толщина слоя раствора с концентрацией окрашенного вещества C 1 , а l 2 -толщина слоя раствора с концентрацией окрашенного вещества C 2 .

В момент равенства окрасок отношение толщин слоев двух сравниваемых растворов обратно пропорционально отношению их концентраций.

На основании приведенного уравнения, измерив толщину слоев двух одинаково окрашенных растворов и зная концентрацию одного из этих растворов, легко можно рассчитать неизвестную концентрацию окрашенного вещества в другом растворе.

Для измерения толщины слоя, через который проходит световой поток, можно применять стеклянные цилиндры или пробирки, а при более точных определениях специальные приборы - колориметры.

По второму варианту, для уравнивания окрасок двух растворов с различной концентрацией окрашенного вещества, через слои растворов одинаковой толщины пропускают световые потоки различной интенсивности.

В этом случае оба раствора имеют одинаковую окраску, когда отношение логарифмов интенсивностей падающих световых потоков равно отношению концентраций.

В момент достижения одинаковой окраски двух сравниваемых растворов, при равной толщине их слоев, концентрации растворов прямо пропорциональны логарифмам интенсивностей падающего на них света.

По второму варианту определение может быть выполнено только с помощью колориметра.