Пахучие вещества Пахучие вещества (бытов. хим.,аромат

    пахучее вещество

    пахучее вещество (какое) - ▲ вещество который, сильно пахнуть пахучие вещества вещества, издающие сильный запах. мускус. амбра. бальзам. мирра. эвгенол. бензойная смола, росный ладан. осмофоры. одорология. слезоточивый газ … Идеографический словарь русского языка

    душистое вещество - kvapioji medžiaga statusas T sritis chemija apibrėžtis Malonaus kvapo organinis junginys. atitikmenys: angl. fragrant substance; odoriferous substance; odorous substance rus. душистое вещество; пахучее вещество … Chemijos terminų aiškinamasis žodynas

    ЛУПУЛИН - пахучее вещество, выделяемое особыми железками, размещенными, главным образом, с наружной стороны прицветных листьев Humulus lupulus L. (в так называемой шишке) … Словарь ботанических терминов

    Благовония - пахучее вещество для умащения или натирания тела, бальзамирования трупов, для воскурения (ладан) и т. д. Б. добывались из растительного (лилия, роза, лаванда) или животного сырья, замешивались на масле (миндальном, оливковом, ореховом)… … Словарь античности

    - (лат. muscus). Пахучее лечебное вещество, добываемое из мешочков, расположенных на животе кабарги; возбуждающее и противосудорожное средство. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МУСКУС лат. muscus, араб … Словарь иностранных слов русского языка

    Кожные железы у самцов некоторых пресмыкающихся (крокодилы, гаттерия, змеи) и млекопитающих (кабарга, овцебык, бобр, выхухоль). Выделяют пахучее вещество мускус. * * * МУСКУСНЫЕ ЖЕЛЕЗЫ МУСКУСНЫЕ ЖЕЛЕЗЫ, кожные железы у самцов некоторых… … Энциклопедический словарь

    ольфактометр - прибор для измерение остроты обоняния. Особенно распространен ольфактометр. Цваардемакерта полый цилиндр с порами, содержащий пахучее вещество, в который вставлена стеклянная трубка с делениями: по мере погружения в цилиндр она уменьшает… … Большая психологическая энциклопедия

    Для улучшения этой статьи желательно?: Викифицировать статью. Одорология наука о запахах. Различают несколько напра … Википедия

    В свободном состоянии почти неизвестно, а имеется обыкновенно в растворе в жидких или твердых жирах. Получается настаиванием или поглощением из цветов Viola odorata. Чаще всего оба способа соединяются, и сначала жир или масло настаивают на цветах …

    - (squamae) микроскопически мелкие хитиновые образования, имеющие форму пластинок и находящиеся на крыльях и других частях тела; в общежитии Ч. известны под названием пыли. Форма Ч. бывает чрезвычайно разнообразна; обыкновенно длина их больше… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Ученые со всего мира разработали два десятка компьютерных моделей, чтобы научиться предсказывать запах молекулы по ее структуре. Лучше всего модели предсказывают интенсивность запаха, его приятность и схожесть с запахом чеснока, гари и пряным ароматом, рассказал «Чердаку» один из соавторов работы, Марат Казанов, заведующий сектором прикладной биоинформатики Института проблем передачи информации РАН, старший научный сотрудник Сколковского института науки и технологий.

Мы чувствуем запах благодаря сигналам, поступающим в мозг от обонятельных нейронов, рецепторы которых связываются с молекулами пахучих веществ, попадающих к нам в нос. Но предсказать, какую реакцию вызовет та или иная молекула, крайне сложно, хотя этот вопрос давно интересует как ученых, исследующих взаимодействие молекул с рецепторами, так и парфюмеров.

«Текущие научные знания позволяют предсказать, какой цвет будет видеть человек, если знать длину волны электромагнитного излучения, или, если знать частоту звуковой волны, - какой тон он услышит. В отличие от зрения и слуха, ученые до сих пор не могут предсказать запах по химической структуре молекулы. Схожие молекулы могут вызывать разные запахи, а молекулы с совершенно различной структурой - пахнуть похоже», - рассказал Марат Казанов.

Например, люди прекрасно отличают по запаху спирты н-пропанол, н-бутанол и н-пентанол, хотя формулы у них похожи.

Наоборот, мускон и мускус-кетон обладают совсем разными формулами, а пахнут похоже - мускусом . Объяснения этой особенности восприятия запахов пока нет.

«Построить предсказательные вычислительные модели, связывающие химическую структуру молекулы с воспринимаемым запахом пытались и раньше, но они были основаны, как правило, на данных эксперимента 30-летней давности с ограниченным набором ароматических веществ», - объяснил ученый.

В этом эксперименте почти полторы сотни участников определяли, чем пахнут такие вещества, как, например, ацетофенон . Всего в эксперименте использовали 10 веществ. В новом эксперименте, результаты которого были опубликованы в Science , участников было меньше - 49 человек, зато веществ, которые они оценивали, намного больше - 476.

Для каждого ароматического вещества оценивалась степень выраженности различных характеристик его запаха, таких как интенсивность, и приятность, и его схожесть с 19 заданными запахами (сладкий, цветочный, запах дерева, запах травы и т.д.). Для всех ароматических веществ были вычислены 4884 молекулярные характеристики, начиная от стандартных - молекулярного веса, присутствия тех или иных атомов, и заканчивая пространственными характеристиками молекулы.

Эти данные были предложены участникам консорциума DREAM Olfaction Prediction. DREAM Challenges - это краудсорсинговая платформа, которая позволяет ученым со всего мира объединяться для решения различных исследовательских задач в области биологии и медицины.

В данном случае участникам консорциума предлагалось, используя представленные данные, построить вычислительные модели, предсказывающие на основе молекулярных характеристик, как будут пахнуть ароматические вещества.

Всего было построено 18 вычислительных моделей. Лучше всего они предсказывали интенсивность запаха, затем его приятность для человека и далее - схожесть с 19 заданными запахами. Модели уверенно предсказывали сходство с запахами чеснока и гари, сладким, фруктовым и пряным ароматами. Сложнее всего было предсказать схожесть с запахами мочи, дерева и кислятины.

Модели также показали некоторые корреляции между свойствами запахов и молекул. Так, чем больше был молекулярный вес, тем запах был слабее, но приятнее. Интенсивность запаха также коррелировала с наличием в молекуле полярных групп, таких как фенол, энол и гидроксильная группа, а приятность - со схожестью молекулы с молекулами паклитокселя и цитронелил фенил-ацетата.

Атомы серы в молекуле были связаны с запахами чеснока и гари, а молекулы, схожие по структуре с ванилином, пахли выпечкой.

Екатерина Боровикова

МОУ «Средняя общеобразовательная школа №45»

Курсовая работа

Химия запахов.

Проверила: Дуда Л. Н.

Выполнил: ученик 11 «б» класса

Ковалёв Дмитрий Васильевич

Кемерово.


Введение

Душистые вещества

Классификация пахучих веществ

Связь между запахом вещества и его строением

Обоняние

Благоухающая реторта

Душистые эфиры

Заключение

Приложения

Литература


Введение

Почти 2000 лет назад античный учёный, поэт и философ Тит Лукреций Кар полагал, что в носовой полости есть крошечные поры разных размера и формы. Каждое пахучее вещество, рассуждал он, испускает крошечные молекулы при­сущей ему формы. Запах воспринимается, когда эти молекулы входят в поры обонятельной полости. Распознавание каждо­го запаха зависит от того, к каким порам эти молекулы под­ходят.

В 1756 г. М. В. Ломоносов в работе «Слово о происхождении света, новую теорию о цветах представляющее» выдвинул мысль о том, что окончания нервных клеток побуждают коле­бания частиц материи. В этом произведении он написал о «коловратных» (колебательных) движениях частиц эфира как возбудителях органов чувств, в том числе зрения, вкуса и обо­няния.

За последнее столетие было предложено около 30 теорий, авторы которых пытались объяснить природу запаха, его за­висимость от свойств пахучего вещества. В настоящее время удалось установить, что у природы запаха, как и у природы света, двойственный характер: корпускулярный (зависящий от структуры пахучего вещества) и волновой.

Некоторые одинаковые молекулы обладают различными запахами, т. е. основную роль играет геометрическая форма молекул пахучего вещества. Объясняется это тем, что на обо­нятельных волосках носовой полости находятся лунки пяти основных форм, воспринимающие пять запахов (камфарный, мускусный, цветочный, мятный, эфирный) соответственно. Когда в лунку входит молекула пахучего вещества, близкая ей по конфигурации, тогда и ощущается запах (Дж. Эймур, 1952). Таким образом, умозрительный вывод Лукреция оказался на­учно обоснованным. Имеются ещё два основных запаха - ос­трый и гнилостный, но их восприятие связано не с формой лунок, а с различным отношением к электрическим зарядам оболочки, покрывающей окончание обонятельных нервов. Все существующие запахи могут быть получены смешиванием приведённых семи запахов в соответствующих сочетаниях и пропорциях.

По современным данным, молекулы пахучих веществ поглощают и испускают волны длиной от 1 до 100 мк, а тело человека при нормальной температуре поглощает и испускает волны длиной от 4 до 200 мк. Наиболее важны электромагнитные волны, имеющие длину от 8 до 14 мк, что соответствует длине волн инфракрасной части спектра. Поглощение действия пахучих веществ достигается ультрафиолетовыми лучами и поглощением инфракрасных лучей. Ультрафиолетовые лучи убивают многие запахи, и этим пользуются для очищения воздуха от ненужных ароматов.

Эти данные, а также изучение спектра запахов дают основание считать, что запахи имеют физическую природу, и даже приблизительно указать их расположение в инфракрасной и ультрафиолетовой частях шкалы электромагнитных колебаний. Таким образом, мысль Ломоносова о «коловратных» движениях частиц эфира как возбудителях органов чувств нашла научное подтверждение.

Приведённые теории дали возможность создать приборы, способные «обонять» букеты запахов, определять сорта вин, кофе, табака, различных пищевых продуктов и т. д. Характеристику каждого запаха можно теперь записывать и воспроизводить с помощью различных технических устройств. Например, в кинотеатрах Токио различные сцены фильма сопровождаются разными запахами, тип и интенсивность которых определяют с помощью компьютера и распространяют в зале.

Семь цветов спектра, семь простых звуков и семь компонентов запаха - вот из чего слагается всё многообразие цветов, звуков и запахов. Значит, есть общие закономерности в зрительных, вкусовых, обонятельных ощущениях, т. е. можно получить аккорд не только звуковой и цветовой, но и запаховый.


Душистые вещества

Под душистыми обычно понимают приятно пахнущие органические вещества. Вряд ли кто-нибудь скажет так о хлоре или меркаптане, хотя у них есть свой запах. Когда имеют ввиду вообще пахнущие вещества, их называют пахучими. С точки зрения химической – разницы нет. Но если наука изучает вообще пахнущие вещества, то промышленность (и в первую очередь парфюмерную) интересуют в основном душистые вещества. Правда, здесь трудно провести четкую границу. Знаменитый мускус - основа основ парфюмерии - сам по себе пахнет резко, даже неприятно, но, добавленный в ничтожных количествах в духи, усиливает, улучшает их запах. Индол обладает фекальным запахом, а разведенный - в духах «Белая сирень» - таких ассоциаций не вызывает.

Кстати, душистые вещества отличаются не только запахом, все они обладают также и физиологическим действием: некоторые через органы обоняния на центральную нервную систему, другие при введении внутрь. Например, цитраль - вещество с приятным лимонным запахом, употребляемое в парфюмерии, является также сосудорасширяющим средством и используется при гепертонии и глаукоме.

Многие душистые вещества обладают и антисептическим действием: ветка черемухи, помещенная под колпак с болотной водой, через 30 минут уничтожает все микроорганизмы.

Bсякое деление веществ по запаху не очень строго: оно основывается на наших субъективных ощущениях. И часто то, что нравится одному, не нравится другому. Пока еще невозможно сколько-нибудь объективно оценить, выразить запах вещества.

Его обычно с чем нибудь сравнивают, скажем с запахом фиалки, апельсина, розы. Наука накопила много эмпирических _ера_х, связывающих запах со строением молекул. Некоторые авторы приводят до 50 и более таких «мостиков» между строением и запахом. Несомненным является тот факт, что душистые вещества, как правило, содержат одну из так называемых функциональных групп: карбинольную -С-ОН, карбонильную >С=О, сложноэфирную и некоторые другие.

Cложные эфиры обладают обычно фруктовым или фруктово-цветочным запахом, это делает их незаменимыми в пищевой промышленности. Ведь они придают многим кондитерским изделиям и безалкогольным напиткам запах фруктов. Не обошли своим вниманием сложные эфиры и парфюмерную промышленность: нет практически ни одной композиции, куда бы они не входили.

Классификация пахучих веществ

Пахучие вещества встречаются в очень многих классах органических соединений.

Их строение весьма разнообразно: это соединения с открытой цепью насыщенного и ненасыщенного характера, ароматические соединения, циклические соединения с различным числом атомов углерода в цикле. Неоднократно делались попытки классифицировать пахучие вещества по запаху, но они не имели успеха, так как такое распределение по группам сталкивается со значительными трудностями и лишено научного основания. Классификация пахучих веществ по их назначению также весьма условна, так как одни и те же пахучие вещества имеют различное назначение, например для парфюмерии, кондитерских изделий и т. п.

Наиболее удобно классифицировать пахучие вещества по группам органических соединений. Такая классификация позволила бы связывать их запах со строением молекулы и природой функциональной группы (см. приложения, таблица 1).

Самая обширная группа пахучих веществ - сложные эфиры. Многие пахучие вещества относятся к альдегидам, кетонам, спиртам и некоторым другим группам органических соединений. Эфиры низших жирных кислот и насыщенных жирных спиртов обладают фруктовым запахом (фруктовые эссенции, например изоамилацетат), эфиры алифатических кислот и терпеновых или ароматических спиртов - цветочным (например, бензилацетат, терпинилацетат), эфиры бензойной, салициловой и других ароматических кислот - в основном сладким бальзамическим запахом.

Из насыщенных алифатических альдегидов можно назвать, например, деканаль, метилнонилацетальдегид, из терпеновых - цитраль, гидроксицитронеллаль, из ароматических - ванилин, гелиотропин, из жирно-ароматических - фенилацетальдегид, коричный альдегид. Из кетонов наибольшее распространение и значение имеют алициклические, содержащие кетогруппу в цикле (ветион, жасмон) или в боковой цепи (иононы), и жирно-ароматические (n-метоксиацетофенон), из спиртов – одноатомные терпеновые (_ера-ниол, линалоол и др.) и ароматические (бензиловый спирт).

Связь между запахом вещества и его строением

Обширный экспериментальный материал о связи между запахом соединений и строением их молекул (тип, число и положение функциональных групп, величина, разветвлённость, пространственная структура, наличие кратных связей и др.) пока недостаточен для того, чтобы на основании этих данных можно было предсказать запах вещества. Тем не менее для отдельных групп соединений выявлены некоторые частные закономерности. Накопление в одной молекуле нескольких одинаковых функциональных групп (а в случае соединений алифатического ряда - и разных) приводит обычно к ослаблению запаха или даже к полному его исчезновению (например, при переходе от одноатомных спиртов к многоатомным). Запах у альдегидов изостроения обычно бывает более сильным и приятным, чем у изомеров нормального строения.

Значительное влияние на запах оказывает величина молекулы. Обычно соседние члены гомологического ряда обладают сходным запахом, причём сила его постепенно меняется при переходе от одного члена ряда к другому. При достижении определённой величины молекулы запах исчезает. Так, соединения алифатического ряда, имеющие более 17-18 атомов углерода, как правило, лишены запаха. Запах зависит также от числа атомов углерода в цикле. Например, макроциклические кетоны С 5-6 имеют запах горького миндаля или ментола, С 6-9 - дают переходный запах, С 9-12 - запах камфары или мяты, С 13 - запах смолы или кедра,

С 14-16 - запах мускуса или персика, С 17-18 - запах лука, а соединения с С 18 и более либо не пахнут вообще, либо пахнут очень слабо:

Сила аромата зависит также от степени разветвления цепи атомов углерода. Например, миристиновый альдегид пахнет очень слабо, а его изомер - сильно и приятно:

Сходство структур соединений не всегда обусловливает сходство их запахов. Например, эфиры (β-нафтола с приятным и сильным запахом широко используют в парфюмерии, а эфиры α-нафтола совсем не пахнут:

Этот же эффект наблюдается и у полизамещённых бензолов. Ванилин - одно из самых известных душистых веществ, а изованилин пахнет подобно фенолу (карболке), да и то при повышенной температуре:

Наличие кратных связей - один из признаков того, что вещество обладает запахом. Рассмотрим, например, изоэвгенон и эвгенон:

У обоих веществ ярко выраженный гвоздичный запах, их широко используют в парфюмерии. При этом изоэвгенон имеет более приятный запах, чем эвгенон. Однако стоит насытить у них двойную связь, и запах почти исчезает.

Известны и обратные случаи. Цикламен-альдегид (цикламаль) - вещество с нежнейшим цветочным запахом - одно из ценнейших веществ, содержит насыщенную боковую цепочку, а форцикламен, имеющий двойную связь в этой цепочке, обладает слабым неприятным запахом:

Часто неприятный запах вещества обусловлен тройной связью. Однако и здесь есть исключение. Фолион - необходимая составная часть многих парфюмерных композиций - вещество, в котором запах свежей зелени прекрасно уживается с тройной связью:

С другой стороны, вещества, различающиеся по химическому строению, могут иметь сходные запахи. Например розоподобный запах характерен для розацетата 3-метил-1-фенил-3-пентанола ,гераниола и его цис-изомера - нерола, розеноксида.

На запах влияет и степень разбавления вещества. Так, некоторые пахучие вещества в чистом виде имеют неприятный запах (например, цибет, индол). Смешивание различных душистых веществ в определённом соотношении может приводить как к появлению нового запаха, так и к его исчезновению.

Итак, в стереохимической теории (Дж. Эймур, 1952) предполагалось существование 7 первичных запахов, которым соответствуют 7 типов рецепторов; взаимодействие последних с молекулами душистых веществ определяется геометрическими факторами. При этом молекулы душистых веществ рассматривались в виде жёстких стереохимических моделей, а обонятельные рецепторы - в виде лунок различной формы. Волновая теория (Р. Райт, 1954) постулировала, что запах определяется спектром колебательных частот молекул в диапазоне 500-50 см -1 (л ~ 20-200 мкм). Согласно теории функциональных групп (М. Бетс, 1957) запах вещества зависит от общего «профиля» молекулы и от природы функциональных групп. Однако ни одна из этих теорий не позволяет успешно предсказать запах душистых веществ на основании строения их молекул.

Обоняние

До сих пор механизм воздействия пахучих веществ на орган обоняния окончательно не выяснен. Существуют различные теории, как физические, так и химические, в которых учёные стремятся объяснить этот механизм.

Для ощущения запаха нужен непосредственный контакт молекулы пахучего вещества с обонятельными рецепторами. В связи с этим необходимые свойства пахучего вещества - летучесть, растворимость в липидах и до некоторой степени в воде, достаточная способность к адсорбции на обонятельной выстилке, определённые пределы молекулярной массы и др. Но неизвестно, какие именно физические или химические свойства определяют эффективность вещества как обонятельного раздражителя.

Учёным удалось выстроить цепочку от взаимодействия пахучего вещества с рецептором до формирования в мозге чёткого впечатления определённого запаха. Немаловажную роль в этом сыграли исследования американских учёных Ричарда Акселю и Линды Бак, за которые они были удостоены Нобелевской премии 2004 г. По физиологии и медицине.

Ключом к разгадке принципов работы обонятельной системы стало обнаружение огромного семейства из приблизительно тысячи генов, управляющих работой обонятельных рецепторов. Статью с описанием этого открытия Л. Бак и Р. Аксель опубликовали в 1991 г. В распознавании запахов задействовано более 3% от общего количества генов организма. Каждый ген содержит информацию об одном обонятельном рецепторе - белковой молекуле, которая реагирует с пахучим веществом. Обонятельные рецепторы прикреплены к мембране рецепторных клеток, образуя обонятельный эпителий. Каждая клетка содержит рецепторы только одного определённого вида.

Белковый рецептор образует карман для связывания молекулы химического вещества, обладающего запахом (одоранта). Рецепторы разных видов отличаются деталями своей структуры, поэтому карманы-ловушки имеют различную форму. Когда молекула попадает туда, форма белка-рецептора изменяется и запускается процесс передачи нервного сигнала. Каждый рецептор может регистрировать молекулы нескольких различных одорантов, трёхмерная структура которых в той или иной степени соответствует форме кармана, но сигнал от разных веществ отличается по интенсивности. При этом молекулы одного и того же одоранта могут активировать несколько различных рецепторов одновременно.

Кроме белкового рецептора в обонятельном эпителии животных присутствует другой высокомолекулярный компонент, также способный связывать пахучие вещества. В отличие от мембранного белка он растворяется в воде, и, по крайней мере, часть его находится в слизи, покрывающей обонятельный эпителий. Установлено, что он имеет нуклеопротеидную природу. Его концентрация в эпителии в несколько тысяч раз больше, чем мембранного рецептора, а специфичность по отношению к пахучим веществам значительно меньше. Исследователи полагают, что он входит в состав неспецифической системы, обеспечивающей очистку обонятельного эпителия от различных пахучих веществ по окончании их действия, что необходимо для приёма других запахов.

Иными словами, предполагается, что нуклеопротеид, попадая в слизь, способен усиливать её ток и тем самым увеличивать эффективность очистки обонятельного эпителия. Не исключено также, что нуклеопротеид, находясь в слизи, способствует растворению пахучих веществ в ней и, возможно, выполняет транспортные функции.

Такое сочетание разнообразия рецепторов и химических свойств молекул, с которыми они взаимодействуют, генерирует широкую полосу сигналов, создающих уникальный «отпечаток» запаха. Каждый запах как бы получает код (подобно штрих-коду на товарах), по которому его можно безошибочно узнать в следующий раз.

Обоняние играет чрезвычайно важную роль в жизни как животных, так и человека. Особенно разнообразны функции обоняния в жизни животных. Обоняние помогает им в поиске и выборе пищи, сигнализирует о присутствии врагов, помогает при ориентации на суше и в воде (например, возвращение лососевых рыб в родительские водоёмы, запах воды которых они запоминают).

Известна важная роль обоняния в поисках животными особей противоположного пола. В этом случае информирование осуществляется посредством химических веществ, так называемых феромонов или телергонов, которые выделяют специальные железы. Феромоны - чрезвычайно эффективные биологически активные соединения и характеризуются высокой специфичностью. Благодаря этим свойствам они, например, используются с целью привлечения и уничтожения насекомых. Обычно каждое животное наиболее чувствительно к соединениям, которые особенно важны для него при нормальных условиях жизни. Поэтому каждому виду животных свойствен особый спектр запахов. Мелкие насекомые способны воспринимать только один запах - запах полового привлекающего вещества. Пчела с более развитой обонятельной системой различает сотни запахов. У животных, обладающих сильно развитым обонятельным анализатором, например у собак, обоняние во многих отношениях играет доминирующую роль.

Несмотря на то что животные обладают более тонким обонянием, чем человек, диапазон запахов, воспринимаемых человеком, значительно шире.

Человек способен научиться распознавать до 4000 различных запахов, а наиболее чувствительные к ним люди - более 10 тыс. Но это требует специальной тренировки в распознавании запахов. Известно, что опытные повара только по запаху, не пробуя пищу на вкус, могут определить, насколько хорошо она посолена. Как они это делают - загадка, ведь соль не пахнет. Конечно, не все люди имеют такие способности.

В жизни человека обоняние не играет такой существенной роли, как в жизни животных, за исключением случаев слепоты и глухоты, когда происходит компенсаторное развитие действующих органов чувств, в том числе и обоняния. Однако вдыхание пахучих веществ оказывает на организм человека весьма значительное физиологическое действие. Запахи влияют на работоспособность, изменяют мускульную силу (увеличивают - аммиак, сладкие и горькие запахи), изменяют газообмен (увеличивает - мускус, а уменьшают - мятное, розовое, коричное, лимонное и бергамотное масла и др.), изменяют ритмы дыхания и пульса (учащают и углубляют - оригановое масло и неприятные запахи, обратное действие оказывают ванилин, розовое и бергамотное масло и приятные запахи), изменяют температуру кожи (повышают - бергамотное и розовое масло, ванилин, понижают - неприятные запахи), изменяют кровяное давление (повышают - неприятные запахи, понижают - бергамотное и розовое масло и приятные запахи), изменяют внутричерепное давление (неприятные запахи - повышают, а приятные - понижают), влияют на слух (неприятные – снижают), изменяют качество зрения (бергамотное масло улучшает зрение в сумерки, неприятные запахи - ухудшают).

Чувствительность человека к восприятию запахов характеризуется так называемой пороговой концентрацией (минимальной концентрацией пахучего вещества, при которой появляется обонятельное ощущение). Для многих душистых веществ оно лежит в пределах 10~8-10~п г/л в воздухе. Восприятие запахов человеком (интенсивность и качество) индивидуально. Кроме того, вкусы в отношении запахов чрезвычайно разнообразны, но в некоторой степени они могут быть обобщены: одни предпочитают запахи гвоздики и пачули, другие - тонкие, сладковатые, нежные и свежие цветочные запахи и т. д.

Условно запахи могут быть разделены на три группы: приятные, неприятные и безразличные. Приятный запах - это тот, при вдыхании которого человек хотел бы ощущать его значительно дольше, который доставляет удовольствие. Но существует много запахов, которые приятны одним и неприятны другим, т. е. психологическое определение качества запаха относительно. Определённо неприятным запахом следует считать тот, который вызывает в мозгу неприятные представления о разложении, гниении. Безразличные запахи - те, которые не воспринимаются, к которым мы настолько привыкли, что перестали их замечать, например обычный запах воздуха, жилья, духов и т. д. Понятие о безразличности иногда заходит так далеко, что даже пересыщенный запахами воздух лабораторий может стать безразличным для тех, кто постоянно там работает.

При длительном воздействии определённого запаха у человека постепенно наступает невосприимчивость к нему, и иногда он перестаёт его ощущать, например кумарин - через 1-2 мин, цитраль - через 7-8 мин. Это явление называется обонятельной адаптацией. Продолжительность и глубина её зависят от интенсивности и характера запаха пахучего вещества, а также длительности его воздействия. При обонятельной адаптации наблюдается понижение чувствительности не только к веществу, которое было использовано, но и к другим пахучим веществам. Механизмы обонятельной адаптации до настоящего времени не вполне ясны, поскольку адаптация - субъективный фактор, сильно отличающийся у разных людей.

Благоухающая реторта

Начнем с получения природных душистых веществ из растений.
Душистые вещества содержатся в растениях обычно в виде маленьких капелек в особых клетках. Они встречаются не только в цветах, но и в листьях, в кожуре плодов и иногда даже древесине.
Содержание эфирных масел в тех частях растений, которые используются для их получения, колеблется от 0,1% до 10%. То, что их называют маслами, не должно вводить нас в заблуждение. Эфирные масла не имеют ничего общего с обычными растительными маслами: льняным, подсолнечным, кукурузным, то есть с жидкими жирами. Они представляют собой более или менее сложные смеси душистых органических веществ самых различных типов.

Среди них особенно часто встречаются сложные эфиры, альдегиды и спирты насыщенного, ненасыщенного и ароматического рядов.
Очень важными компонентами эфирных масел являются терпены и их производные.

Рассмотрим формулы некоторых представителей этого класса соединений: Терпинен – циклический углеводород. Он встречается в незначительных количествах во многих эфирных маслах. Лимонен – важный компонент масла из лимонной корки. Пинен – главная составная часть живичного скипидара. Он служит исходным соединением для получения синтетических душистых веществ.
Эфирные масла обычно очень трудно растворяются в воде, но легко растворяются в спирте. Поэтому спирт в больших количествах применяется в парфюмерной промышленности в качестве растворителя. Эфирные масла можно получить, например, экстрагируя их из частей растений спиртом или другими растворителями. Самые ценные душистые вещества цветов получают, размещая в закрытой камере на проволочной сетке попеременно слои твердого животного жира и частей растения. Через некоторое время цветы заменяют новыми, чтобы жир насытился эфирным маслом. При таком способе (во Франции его называют «анфлераж») получают жир, содержащий растворенные в нем эфирные масла и этот концентрат душистых веществ доставляют на парфюмерные фабрики (Затем эфирные масла извлекают из жира спиртом. Этот способ применяется, например, для извлечения эфирных масел из жасмина и туберозы. – Прим. Перев.). Мы применим третий, особенно важный способ выделения эфирных масел – перегонку с водяным паром.
Сами по себе эфирные масла часто летучи только при повышенных температурах, и их кипение сопровождается разложением. Если же через массу, состоящую из растений или их частей, пропустить водяной пар, то масла удаляются вместе с ним и затем собираются в дистилляте в виде капелек, которые имеют низкую плотность и поэтому плавают на поверхности воды.

Получим эфирные масла.

Колбу на 0,5 л закроем резиновой пробкой с двумя отверстиями. В одно из них вставим оттянутую на конце стеклянную трубку, которая доходит почти до дна колбы. Эта трубка служит предохранительным клапаном. Она должна быть достаточно длинной (около 1 м).

Через другое отверстие введем короткое колено изогнутой трубки с внутренним диаметром не менее 5 мм (Лучше всего взять трубку с внутренним диаметром 8-10 мм. Расстояние между колбами должно быть как можно короче, однако целесообразно разъединить трубку между колбами, вставив в середину ее стеклянный тройник и соединив его с обеими частями трубки короткими кусками резинового шланга. К свободному концу тройника присоединяют кусочек резинового шланга с укрепленным на нем зажимом. Это позволяет во время опыта быстро разъединить или соединить обе колбы. При наличии металлического паровика можно заменить им первую колбу. – Прим. Перев.).

Более длинное колено той же трубки вставим через отверстие в пробке во вторую колбу, так чтобы трубка тоже доходила там почти до дна. Кроме того, с помощью стеклянной трубки соединим вторую колбу с прямым холодильником (Либиха или с наружным свинцовым змеевиком). В качестве приемника лучше всего взять делительную или капельную воронку.
Вначале получим тминное масло. Для этого нам понадобится 20 г тмина (Тмин можно собрать или купить в аптеке. – Прим. Перев.).

Измельчим его в ступке с добавлением песка или в старой кофемолке. Поместим тмин во вторую колбу и прильем немного воды – так, чтобы она не перекрывала полностью массу тмина. Первую же колбу заполним на одну треть водой и, чтобы кипение было равномерным, добавим к воде несколько кусочков пористой керамики («кипелки»).

Теперь бунзеновской горелкой нагреем до кипенья сначала содержимое первой, а затем и второй колбы. После этого снова переставим горелку под первую колбу и будем нагревать ее как можно сильнее, чтобы через вторую колбу интенсивно проходил водяной пар, поступающий далее в холодильник и из него в виде конденсата в приемник.

Если найдется две горелки, то можно одновременно слегка нагревать и вторую колбу, чтобы объем жидкости в ней не слишком увеличивался в результате конденсации пара.

Удобно использовать для нагревания второй колбы песочную баню, разогрев ее заранее, до начала пропускания водяного пара (Лучше всего нагревать вторую колбу так, чтобы объем жидкости в ней не претерпевал ни заметного увеличения, ни уменьшения. – Прим. Перев.). Проведем перегонку в течение не менее часа. За это время в приемнике собирается около 100 мл воды, на поверхности которой плавают бесцветные капли тминного масла. Воду по возможности полнее отделим с помощью делительной воронки и в результате получим около 10 капель чистого тминного масла вместе с незначительным количеством воды. Такого количества хватило бы для приготовления нескольких бутылок тминного ликера!

Характерный запах тминному маслу придает карвон, которого в нем содержится больше 50%. Кроме того, в его состав входит лимонен – душистое вещество лимонов. Тминное масло используется, в первую очередь, для отдушивания мыл и зубных эликсиров. Оно добавляется также в малых количествах к некоторым духам.

С помощью того же прибора можно выделить эфирные масла из других растений. Для этого измельчим их и подвергнем перегонке с водяным паром в течение 1-2 часов. Разумеется, выход будет различным в зависимости от содержания эфирного масла. Интереснее всего получение следующих эфирных масел :

Масло перечной мяты . Из 50 г высушенной перечной мяты мы можем выделить 5-10 капель мятного масла . Оно содержит, в частности, ментол , который придает ему характерный запах. Мятное масло используется в большом количестве для изготовления одеколона, туалетных вод для волос, зубных паст и эликсиров. В настоящее время ментол большей частью получают путем синтеза.

Анисовое масло получим из измельченного аниса. В смеси с маслом перечной мяты и эвкалиптовым маслом оно входит в состав зубных эликсиров и паст, а также некоторых мыл.

Гвоздичное масло получим перегонкой с водяным паром гвоздики, которая продается в качестве пряности. Важной составной частью его является эвгенол . (Эвгенол можно получить из синтетического ванилина.) Гвоздичное масло служит добавкой ко многим духам и, кроме того, применяется при изготовлении зубных эликсиров и мыл.

Лавандовое масло мы получим из 50 г высушенных и измельченных цветков лаванды. Это одно из важнейших душистых веществ, которое, помимо его использования для изготовления лавандовой воды и одеколона, применяется в производстве духов, мыл, туалетных вод для волос, пудры, кремов и т. д.

Еловое масло . Соберем не менее 100-200 г иголок и молодых побегов ели. Измельчим их и, пока они еще влажные, без предварительного добавления воды перегоним с водяным паром. Обычно в иголках содержится лишь несколько десятых долей процента этого эфирного масла. Оно порадует нас приятным ароматом в комнате. Кроме того, еловое масло является излюбленным средством, придающим аромат различным препаратам для ванн.

Предоставим читателю самому получить из растений и другие душистые вещества. Например, можно перегнать с водяным паром сосну, корицу, цветы ромашки или другие душистые садовые цветы. Полученные продукты сохраним в надежно закрытых пробирках – позднее они понадобятся нам в качестве душистых веществ для изготовления косметических средств.

К сожалению, нам придется отказаться от получения душистых веществ, содержащихся в духах с тонким, нежным запахом – бергамотового масла , а также масел из цветков жасмина и померанцевых цветов, - так как у нас нет необходимых для этого исходных веществ.

Однако эфирное масло с очень тонким ароматом получается также из цветков ландыша. Если их удастся собрать достаточно много, то, конечно, стоит выделить из них эфирное масло.

Душистые эфиры

Многие известные душистые вещества относятся к классу сложных эфиров . Последние широко распространены в природе и дают самые разнообразные оттенки запахов, от запаха тропических орхидей до характерного аромата хорошо знакомых нам фруктов. Эти соединения мы можем синтезировать.

Сложные эфиры образуются при взаимодействии спиртов с карболовыми кислотами. При этом отщепляется вода

R-ОН + НООС- R 1 R-ООС- R 1 + Н 2 О

спирт + кислота сложный эфир + вода

Реакция достаточно быстро идет только в присутствии водоотнимающих средств и катализаторов. Поэтому смесь спирта и карбоновой кислоты длительно кипятят в присутствии серной кислоты, которая действует как водоотнимающее средство, а также катализирует реакцию.

Кроме того, часто реакционную смесь насыщают газообразным хлористым водородом. Мы можем проще получить тот же результат, добавляя поваренную соль, образующую с серной кислотой хлористый водород.
Сложные эфиры получают также в присутствии концентрированной соляной кислоты или безводного хлорида цинка, однако с меньшим выходом.

Мы применим эти добавки в тех случаях, когда исходные органические вещества разлагаются концентрированной серной кислотой, что можно обнаружить по потемнению реакционной смеси и неприятному едкому запаху.

Получим сложные эфиры.

Чтобы получить сложные эфиры в малых количествах, используем простой прибор. В широкую пробирку вставим узкую пробирку таким образом, чтобы одна треть широкой пробирки в ее нижней части оставалась незаполненной. Проще всего можно укрепить узкую пробирку с помощью нескольких кусочков резины, вырезанной из шланга или пробки. При этом необходимо учесть, что вокруг узкой пробирки обязательно нужно оставить зазор величиной не менее 1,5-2 мм, чтобы исключить избыточное давление при нагревании.

Теперь нальем в широкую пробирку 0,5-2 мл спирта и приблизительно столько же карбоновой кислоты, при тщательном охлаждении (в ледяной воде или холодной проточной воде) добавим 5-10 капель концентрированной серной кислоты и в некоторых случаях еще несколько крупинок поваренной соли.

Вставим внутреннюю пробирку, заполним ее холодной водой или еще лучше кусочками льда и укрепим собранный прибор в обычном штативе или в штативе для пробирок.

Затем на самом Прибор нужно поставить подальше от себя и не наклоняться над отверстием пробирки (как и при проведении любого другого опыта!), потому что при неосторожном нагревании возможно разбрызгивание кислоты малом огне горелки Бунзена будем кипятить смесь по крайней мере 15 минут (добавить «кипелки»!). Чем дольше нагревание, тем лучше выход.

Внутренняя пробирка, заполненная водой, служит обратным холодильником. Если ее содержимое слишком разогревается, то нужно приостановить опыт, после остывания снова заполнить внутреннюю пробирку льдом и продолжать нагревание (Удобнее непрерывно пропускать через внутреннюю пробирку холодную проточную воду. Для этого нужно подобрать к ней пробку с двумя вставленными в нее стеклянными трубками. – Прим. Перев.). Уже до завершения опыта мы часто можем почувствовать приятный запах полученного сложного эфира, на который все же накладывается едкий запах хлористого водорода (поэтому не нужно нюхать реакционную смесь, приближая к себе отверстие пробирки!).

После охлаждения реакционную смесь нейтрализуем разбавленным раствором соды. Теперь мы можем обнаружить запах чистого эфира, а также заметить множество маленьких маслянистых капелек сложного эфира, которые плавают на поверхности водного раствора, в то время как непрореагировавшие исходные вещества большей частью содержатся в растворе или образуют кристаллический осадок. По приведенной прописи получим следующие эфиры:

Этилметанат (этилформиат, муравьиноэтиловый эфир), образующийся из этанола (этилового спирта) и метановой (муравьиной) кислоты. Этот эфир добавляют к некоторым сортам рома, чтобы придать ему характерный аромат.

Бутилэтанат (бутилацетат, уксуснобутиловый эфир) – из бутанола (бутилового спирта) и этановой (уксусной кислоты).

Изобутилэтанат (изобутилацетат, уксусноизобутиловый эфир) образуется соответственно из 2-метилпропанола-1 (изобутилового спирта) и этановой кислоты. Оба последних эфира имеют сильный фруктовый запах и являются составной частью парфюмерных композиций с ароматом лаванды, гиацинтов и роз.

Пентилэтанат (амилацетат, уксусноамиловый эфир) – из пентанола, то есть амилового спирта (Яд!), и этановой кислоты.

Изопентилэтанат (изоамилацетат, уксусноизоамиловый эфир) – из 3-метилбутанола-1, то есть изоамилового спирта (Яд!), и этановой кислоты. Эти два эфира в разбавленном растворе имеют запах груш. Они входят в состав фантазийных духов и служат растворителями в лаках для ногтей.

Метилбутанат (метнлбутират, маслянометиловый эфир) – из метанола (метилового спирта) и бутановой (масляной) кислоты. Запах его напоминает ранет.

Этилбутанат (этилбутират; масляноэтиловый эфир) – из этилового спирта и бутановой кислоты. Он имеет характерный запах ананасов.

Пентилбутанат (амилбутират, масляноамиловый эфир) – из пентанола (амилового спирта) и бутановой кислоты (спирт ядовит!).

Изопентилбутанат (изоамилбутират, масляноизоамиловый эфир) – из 3-метилбутанола-1 (изоамилового спирта) и бутановой кислоты (спирт ядовит!). Два последних эфира имеют запах груш.

Среди эфиров ароматических кислот тоже есть вещества с приятным ароматом. В отличие от фруктового запаха сложных эфиров алифатического ряда у них преобладают бальзамические , так называемые животные запахи или запахи экзотических цветов. Некоторые из этих важных душистых веществ мы синтезируем.

Метил- и этилбензоат получим из метилового или соответственно этилового спирта и бензойной кислоты. Проведем опыт по приведенной выше прописи и возьмем в качестве исходных веществ спирт и около 1 г кристаллической бензойной кислоты . Эти эфиры напоминают по запаху бальзамы и входят в состав парфюмерных композиций с запахами свежего сена, русской кожи (юфти), гвоздики, иланг-иланга и туберозы.

Пентилбензоат (амилбензоат, бензойноамиловый эфир) и изопентилбензоат (изоамилбензоат, бензойноизоамиловый эфир) пахнут клевером и амброй – своеобразным выделением из пищеварительного тракта кита. Их используют для духов с восточным колоритом. Для получения этих веществ этерифицируем бензойную кислоту амиловым или изоамиловым спиртом (Яд!) в присутствии концентрированной соляной кислоты, потому что в присутствии серной кислоты возможны побочные реакции.

Этилсалицилат напоминает по запаху масло зеленого барвинка, с которым мы уже познакомились раньше. Однако у него менее резкий запах. Он применяется для изготовления духов с ароматом кассии и духов типа «Шипр». Этот эфир мы получим из этилового спирта и салициловой кислоты при нагревании с поваренной солью и серной кислотой.

Пентилсалицилат (амилсалицилат) и изопентилсалицилат (изоамилсалицилат) имеют сильный запах орхидей. Они часто применяются для создания аромата клевера, орхидей, камелий и гвоздики, а также фантазийных ароматов, особенно при отдушивании мыла. В этих двух случаях мы тоже проведем этерификацию в присутствии соляной кислоты.

Заслуживают также внимания бензилметанат (бензилформиат), бензилэтанат (бензилацетат) и бензилбутанат (бензилбутират). Все эти эфиры образуются из ароматического бензилового спирта и соответствующих карбоновых кислот – метановой (муравьиной), этановой (уксусной) или бутановой (масляной).

Так как бензиловый спирт трудно найти в продаже, мы получим его сами из продажного бензальдегида, применяемого в парфюмерии для создания аромата горького миндаля.

На водяной бане при непрерывном перемешивании 30 минут будем греть 10 г бензальдегида с концентрированным раствором едкого кали. (Осторожно, щелочь вызывает на коже ожоги!)

В результате реакции образуются бензиловый спирт и калиевая соль бензойной кислоты:

2С 6 Н 5 -СНО + КОН = С 6 Н 5 СООК + С 6 Н 5 -СН 2 -ОН

бензальдегид бензоат калия бензиловый спирт

После охлаждения добавим 30 мл воды. При этом бензоат калия растворяется, а бензиловый спирт выделяется в виде масла, образующего верхний слой. Отделим его в делительной воронке и нагреем в нашем простом приборе для этерификации с указанными выше карбоновыми кислотами при добавлении серной кислоты и поваренной соли. Полученные сложные эфиры обладают сильным запахом жасмина и используются при изготовлении многих духов.

Препаративное получение сложного эфира.

Один из сложных эфиров получим в достаточно чистом состоянии и в большем количестве. Выберем для этого метилсалицилат – душистое вещество, придающее аромат маслу барвинка.

Для этого нам понадобятся круглодонная колба на 50 – 100 мл, холодильник или заменяющее его самодельное приспособление для охлаждения, делительная воронка в качестве приемника, изогнутая стеклянная трубка, горелка и штатив с принадлежностями, а также водяная баня.

В круглодонную колбу поместим 10 г салициловой кислоты и 15 мл метанола. (Осторожно! Яд!).

Охладим смесь холодной водой и осторожно, малыми порциями, прильем 5 мл концентрированной серной кислоты. Закроем колбу резиновой пробкой со вставленным в нее обратным холодильником. Затем содержимое колбы будем греть на кипящей водяной бане в течение 2 часов. Дадим реакционной смеси остыть и выльем ее в чашку, содержащую 100 мл холодной воды, лучше всего с кусочками льда. Размешаем, выльем смесь в делительную воронку и несколько раз энергично встряхнем. При этом из смеси выделяется метилсалицилат, который можно собрать. Все же полученный таким образом продукт – от 5 до 10 г – еще содержит примеси. Его можно очистить фракционированной перегонкой.По приведенной методике можно самостоятельно синтезировать в несколько большем количестве и другие эфиры, однако у нас нет необходимости в этом, так как их запах особенно приятен именно при сильном разбавлении. Напротив, в концентрированном состоянии они часто имеют неприятный едкий запах.

Мы можем убедиться в этом, ополаскивая несколько раз водой пробирки, в которых были получены или хранились сложные эфиры. После промывания они все еще пахнут, и запах даже становится еще приятнее.Впрочем, самостоятельно синтезированные душистые вещества, конечно, нельзя использовать для приготовления фруктовых эссенций – ведь они могут быть загрязнены примесями. Да и приготовленные нами духи, увы, будут уступать по качеству фабричным, которые обычно представляют собой весьма сложные композиции.

Душистые алканали из мыла.

Среди современных синтетических душистых веществ особое место занимают высшие алканали (альдегиды) и алканолы (спирты), содержащие от 7 до 20 атомов углерода. Они имеют характерный свежий запах, обычно слегка напоминающий запах воска. Это позволило создать на их основе множество новых композиций, обладающих своеобразными фантазийными запахами.

Всемирно известные духи – например, французские «Суар де Пари» и «Шанель № 5» – своим ароматом обязаны именно этим соединениям. Подобные парфюмерные изделия производятся и в ГДР.

Высшие алканали и алканолы являются важными промежуточными продуктами и получаются путем синтеза из жирных кислот при действии на них водорода под высоким давлением. Алканали образуются также в загрязненном состоянии при совместной сухой перегонке солей жирных кислот с солью метановой (муравьиной) кислоты. Аналогичным образом мы уже получали ацетон из серого древесноуксусного порошка.
Нагреем несколько граммов мелко нарезанного ядрового мыла или еще лучше готовых мыльных хлопьев с приблизительно равным количеством метаната (формиата) натрия в большой пробирке или маленькой колбочке. Выделяющиеся пары пропустим через прямой холодильник и будем собирать конденсат в приемнике.

При осторожном нагревании мы получим светлый мутный дистиллят, имеющий приятный свежий запах с оттенком запаха воска. В нем наряду с водой и другими веществами содержится несколько высших алканалей. Если же нагревать реакционную массу слишком сильно, образуются продукты разложения, имеющие, напротив, неприятный запах.

Фруктовая эссенция и изовалериановая кислота из изоамилового спирта.

Нальем в пробирку 3 мл 3-метилбутанола-1, называемого также изоамиловым спиртом. (Осторожно! Яд!) Тщательно охладим содержимое пробирки ледяной водой или по крайней мере очень холодной водой. Затем осторожно, малыми порциями, добавим 5 мл концентрированной серной кислоты. При этом смесь приобретает красноватый оттенок. Если же она почернеет, то опыт не удастся.

Одновременно снова соберем прибор, который мы уже использовали для получения метилсалицилата. Нальем в колбу раствор 10-12 г дихромата калия в 15 мл воды. Осторожно, малыми порциями (на расстоянии от себя!), будем добавлять к нему смесь из пробирки. При этом начнется бурная реакция, и одновременно мы обнаружим вначале слабый запах, напоминающий бананы, а позднее – интенсивный фруктовый запах. Будем около часа греть колбу на кипящей водяной бане. При этом жидкость станет темно-зеленой. После охлаждения, открыв колбу, мы почувствуем наводящий уныние запах валерьянки.Если теперь добавить около 25 мл воды и провести перегонку с прямым холодильником, то мы получим дистиллят, состоящий из нескольких слоев. В водном слое растворена 3-метилбутановая, или изовалериановая кислота (доказать кислую реакцию!). Над водным слоем обычно находится слой более легкого масла. Это изопентилизопентанат (изоамилизовалерат) – изоамиловый эфир изовалериановой кислоты.

Хромовая смесь – смесь дихромата калия и серной кислоты – является сильным окислителем. При ее действии из изоамилового спирта образуется вначале изовалериановый альдегид и далее из него изовалериановая кислота . Сложный эфир получается в результате реакции возникающей кислоты с еще непрореагировавшим спиртом.

Изовалериановая кислота является главной составной частью настойки из корней валерьяны и отсюда получила свое название. Упомянутые альдегид и сложный эфир находят применение в парфюмерии и при изготовлении фруктовых эссенций.

Аромат сирени из скипидара!

Бродя по лесу, мы не раз видели на стволах сосен надрезы, напоминающие рыбий хребет. Мы знаем, что так добывают живицу . Она вытекает из пораненных мест и накапливается в маленьких горшках, укрепленных на стволах деревьев. Живица служит важным сырьем для химической промышленности. При перегонке с водяным паром она разделяется на дистиллят – живичный скипидар и остаток после его отгонки – канифоль, используемую, в частности, при пайке, в качестве добавки при изготовлении бумаги, в производстве лаков, сургуча, кремов для обуви и для многих других целей.А скипидар часто применяют для разбавления олифы. Его главной составной частью является пинен , содержащийся также во многих других эфирных маслах.

Из душистых веществ семейства терпенов пинен имеет далеко не самый приятный запах. Однако в искусных руках химиков он способен превращаться в великолепные душистые вещества с цветочным ароматом, которые в природе содержатся лишь в очень малых количествах в дорогостоящих эфирных маслах, добываемых из редких цветов. Кроме того, из пинена в больших количествах получают камфору, применяемую в медицине для изготовления мазей, а также – как мы уже знаем – в производстве целлулоида.

Попробуем самостоятельно получить одно из важнейших душистых веществ – спирт терпинеол, имеющий запах сирени.

В колбу Эрленмейера вместимостью 100 мл нальем 15 мл чистого, обязательно живичного скипидара и 30 мл азотной кислоты, предварительно вдвое разбавленной водой. Колбу закроем пробкой с вертикальной стеклянной трубкой длиной 20 см и поставим в баню с холодной водой.

Опыт проведем в вытяжном шкафу либо на открытом воздухе, так как могут выделяться ядовитые нитрозные газы. Поэтому колба обязательно должна оставаться открытой! Выдержим смесь два дня, как можно чаще энергично встряхивая ее. Как только появятся газы коричневатого цвета и содержимое колбы разогреется, встряхивание нужно прекратить и охладить колбу в миске с холодной водой.

По окончании реакции содержимое колбы состоит из двух слоев, причем оба красновато-коричневые. Верхний слой представляет собой вязкую, пенистую массу. Он содержит скипидар и терпин, образовавшийся из пинена в результате присоединения к нему двух молекул воды. Образующая нижний слой азотная кислота содержит лишь незначительное количество растворимых продуктов превращения. Нейтрализуем реакционную массу разбавленным раствором соды (осторожно – вспенивание!) и отделим верхний слой масла. Для этого выльем содержимое колбы в чашку и осторожно вычерпаем верхний слой ложкой. Можно также отсосать пипеткой нижний слой (Ни в коем случае не отсасывать ртом Разрежение в пипетке создают с помощью груши или водоструйного насоса. Удобнее всего набирать жидкость в пипетку шприцем (без иглы), плотно соединенным с пипеткой кусочком резинового шланга. – Прим. Перев.).

Применять делительную воронку не стоит, потому что верхний слой слишком вязкий. Затем отделенную вязкую массу с избытком разбавленной (приблизительно 10%-ной) серной кислоты будем греть в течение часа с обратным холодильником. Используем при этом такой же простой прибор, как и при получении метилсалицилата. После охлаждения снова нейтрализуем раствором соды. При этом мы почувствуем сильный запах сирени, на который все же накладываются запахи непрореагировавшего скипидара и различных примесей. Весь процесс отражается следующей схемой: Технический терпинеол применяется для отдушивания мыл, а будучи тщательно очищен, становится незаменимым компонентом многих духов.


Духи

Итак, мы синтезировали и исследовали свойства целого ряда душистых веществ. Однако, сравнивая их запах с ароматом купленных в магазине дорогих духов, нельзя не разочароваться. Дело в том, что фабричным духам аромат придает отнюдь не одно вещество. Современные духи - продукт смешения множества композиций, каждая из которые опять-таки содержит множество душистых веществ как природного, так и синтетического происхождения. Например, новая композиция с запахом сирени имеет следующий состав:

Терпинеол 11%Иланг-иланговое масло 1%Фенилэтиловый спирт 11%Бувардия 1%Сирень 1094 11,5%Бензилацетат 1%Гелиотропин 6,5%Амилкоричный альдегид 1%Гидроксицитронеллаль 6,5%Анисовый альдегид 0,3%Коричный спирт 4,5% Метилантранилат 0,2%Настой цибета 0,8%

Лишь при смешивании нескольких подобных композиций получаются настоящие духи. Для создания таких произведений парфюмерного искусства нужен не только многолетний опыт, но и способность к творчеству, талант художника.

С давнего времени и до сих пор общепризнанным международным центром, из которого распространяются новые моды в парфюмерии, является город Сюрен во Франции (Сюрен теперь - западный пригород Парижа, расположен на левом берегу Сены. - Прим. перев.). Однако в настоящее время ценные синтетические душистые вещества во все возрастающих количествах вывозятся из ГДР даже в эту столицу парфюмерии. Готовые духи из ГДР и Советского Союза тоже не уступают сегодня всемирно известным французским маркам и пользуются большим спросом на мировом рынке.

Только во времена наших прабабушек самыми любимыми были чистые или смешанные цветочные ароматы, например сирени, роз, нарциссов. Позднее в моду вошел запах орхидей, а в наши дни почти исключительным предпочтением пользуются фантазийные духи, обладающие свежим цветочным ароматом со слабым "животным" оттенком, сближающим запах духов с запахом кожи человека. При изготовлении таких духов вначале создают так называемый ведущий запах обычно с помощью природного или синтетического цитрусового или бергамотового масла. Затем для контраста, с целью создания яркого, выразительного оттенка добавляют высшие альдегиды.
Нельзя обойтись и без свежего запаха зелени и для плавного перехода к нему - цветочного запаха. "Животный" запах, запах тела обеспечивается добавлением синтетических веществ типа амбры и мускуса. Эти вещества, кроме того, придают аромату стойкость. Они способствуют тому, чтобы летучие компоненты духов не исчезали слишком быстро и дольше держались на коже или платье.

В заключение изготовим самостоятельно духи по законам нынешней моды.

Изготовим духи.

Для создания ведущего запаха понадобится, прежде всего, цитрусовое масло, которое мы получим из кожуры лимонов или апельсинов. Она настолько богата эфирными маслами, что их очень легко выделить. Для этого достаточно механически разрушить оболочку клеток, в которых содержится масло, и собрать выделяющиеся при этом капельки. С этой целью кожуру натрем на терке, в протертом виде завернем в кусочек прочной материи и тщательно выдавим. При этом через ткань просачивается мутная жидкость, состоящая из воды и капелек масла. Смешаем приблизительно 2 мл этой жидкости с 1 мл дистиллята, полученного нами из мыла. Последний содержит высшие альдегиды жирного ряда и имеет освежающий запах, слегка напоминающий запах воска.

Теперь нам понадобится еще цветочный оттенок. Мы создадим его, добавляя к смеси 2-3 капли ландышевого масла либо синтезированных нами веществ - изопентилсалицилата (изоамилсалицилата) или терпинеола . Капелька (в буквальном смысле) метилсалицилата, тминного масла, а также небольшая добавка ванильного сахара улучшают аромат.В заключение растворим эту смесь в 20 мл чистого (не денатурированного) спирта или в крайнем случае в равном объеме водки и наши духи будут готовы. Хотя они имеют приятный аромат, все же вряд ли стоит ими душиться, потому что им трудно конкурировать с фабричными духами. Читатель может попробовать самостоятельно подобрать состав других духов, используя описанные выше и полученные им душистые вещества.


Заключение

Вряд ли существуют в природе вещества, не имеющие запаха. Камни, дерево, материалы, о которых мы привыкли думать, что они не имеют запаха, в соответствующих условиях свой запах проявляют. Однако многие не ощущают или не обращают внимания на некоторые окружающие нас запахи.


Литература

1. Войткевич С. А. «Связь между структурой душистых веществ и их запахом» // Журнал Всесоюзного химического общества им. Д. И. Менделеева. - 1969. - № 2. - С. 196-203.

2. Войткевич С. И. «Химия и технология душистых веществ СССР» // «Масложировая промышленность». - 1967.-№ 10.-С. 36-40.

3. Каспаров Г. Н. «Основы производства парфюмерии и косметики». - 2-е изд., перераб. и доп. - Москва, «Агропромиздат», 1988.

4. Самсонов С. Н. «Как воспринимаются запахи» // «Наука и жизнь». - 1988. - № 4. - С. 12-18.

5. Фридман Р. А. «Парфюмерия и косметика». - Москва, «Пищевая промышленность», 1975.

6. Хейфиц Л. А., Дашунин В. М. «Душистые вещества и другие продукты для парфюмерии». - Москва, «Химия», 1994.

7. «Химическая энциклопедия: В 5 т.» - «Москва», «Советская энциклопедия», 1988. - Т. 1.

8. Шулов Л. М., Хейфиц Л. А. «Душистые вещества и полупродукты парфюмерно-косметических производств» - Москва, «Агрохимиздат», 1990.

9. Материалы сайта http://alhimik.ru

10. Материалы сайта http://ermine.narod.ru

Запахи окружающего мира чрезвычайно разнообразны. По­этому их классификация представляет определенную трудность, так как опирается на субъективную оценку, свойственную, на­пример, разному возрасту, определенному уровню психологиче­ского и эмоционального настроя, социальному положению, вос­питанию, привычному стилю восприятия и многому другому .

Не­смотря на это, найти критерии и объективно оценить многочис­ленные проявления ароматов пытались исследователи и ученые разных веков. Так, в 1756 году Карл Линней разделил запахи на шесть классов: ароматические, бальзамические, амбромускусные, чесночные, каприловые (или козловые), дурманящие.

В середине ХХ столетия ученый Р.Монкрифф предположил существование нескольких типов обонятельных хеморецепторов, способных присоединять молекулы химических веществ с определенной стереохимической конструкцией. Данная гипотеза легла в основу стеореохимической теории запахов, которая базируется на выявлении соответствия между стереохимической формулой молекул пахучих веществ и присущим им запахом.

Экспериментальное обоснование данной теории осуществил другой ученый Эймур, которому удалось среди нескольких сотен исследованных пахучих молекул выявить семь различающихся классов. В каждом из них оказались вещества со сходной стереохимической конфигурацией молекул и сходным запахом. Все вещества, обладающие сходным запахом, как доказало исследование ученого, имели и геометрически сходную форму молекул, отличную от молекул веществ с иным запахом (таблица 1).

Таблица 1

Классификация первичных запахов (по Эймуру)

Наряду с классификацией запахов по Эймуру, часто используется подход к классификации запахов, предложенный в первой четверти ХХ столетия Цваардемакером. По ней пахучие вещества делятся на девять классов :

1 -- эфирные запахи:

уксусно-амиловый эфир;

сложные этиловые и метиловые эфиры масляной, изова- лерьяновой, капроновой и каприловой кислот;

бензил-ацетат, ацетон, этиловый эфир, бутиловый эфир, хлороформ.

2 -- ароматические запахи:

камфорные запахи: камфора, борнеол, уксуснокислый бор- веол, эвкалиптол;

пряные запахи: коричный альдегид, эвгенол, перец, гвоз­дика, мускат;

анисовые запахи: сафрол, карвон, метиловый эфир сали­циловой кислоты, карванол, тимол, ментол;

лимонные запахи: уксуснокислый линалоол, цитраль;

миндальные запахи: бензальдегид, нитробензол, цианистые соединения.

3 -- бальзамические запахи:

цветочные запахи: гераниол, питронеллол, нерол, метилен- фенилгликоль, линэлоол, терпинеол, метиловый эфир антра- ниловой кислоты;

лилейные запахи: пиперонал, гелиотропин, ионон, ирон, стирол,

ванильные запахи: ванилин, кумарин.

  • 4 -- амбромускусные запахи: амбра, мускус, тринитробутилтолуол.
  • 5 -- чесночные запахи:

луковичные запахи: ацетилен, сероводород, меркаптан, их­тиол;

мышьяковистые запахи: мышьяковистый водород, фосфо­ристый водород, какодил, триметиламин;

галоидные запахи: бром, хлор.

6 -- пригорелые запахи:

жженый кофе, поджаренный хлеб, гваякол, крезол;

бензол, толуол, ксилол, фенол, нафталин.

7 класс -- каприловые запахи:

каприловая кислота и ее гомологи;

запахи сыра, пота, прогорклого масла, кошачий запах.

8 класс -- противные запахи:

некротические запахи;

запах клопов.

9 класс -- тошнотворные запахи.

Во второй половине XX века исследования строения аромати­ческих молекул позволили ученым предложить классификацию запахов по химической структуре ароматических веществ.

Позднее было установлено, что разный аромат пахучих ве­ществ обусловлен химическим составом, содержащим разные группы молекулярных соединений .

Поэтому, в зависимости от компонентного состава эфирных масел, ароматы были разделены на 10 групп: пря­ные, цветочные, фруктовые, бальзамические (смолистые), камфорные, травяные, древесные, цитрусовые, пригорелые, вонючие. аромат запах эфирный душистый

Однако более поздние исследования показали, что между характером пахучего вещества и химической структурой не всегда есть прямая зависимость. Поэтому к аромати­ческим веществам была применена традиционная классифика­ция западной медицины по их медико-фармакологическим свойствам, в основе которой лежит симптоматическая направ­ленность ароматических веществ. Достоинство этой системы симптоматической классифи­кации заключается в ценной практической информации о ле­карственных свойствах ароматов.

Ароматерапевты с успехом используют также классифика­цию пахучих веществ по степени их летучести (скорости ис­парения), предложенную парфюмерами, отмечая существова­ние той зависимости, которая имеет место между скоростью испарения аромата и воздействием эфирного масла на орга­низм. Ароматы в этой классификации подразделяются на три тона -- нижний, верхний и средний.

Каждая из предложенных классификаций отражает черты определенного сходства пахучих веществ, беря за основу их качественные или количественные характеристики, внутренние или внешние проявления и свойства. Однако надо отметить, что до настоящего времени западная медицина не имеет общей классификации пахучих веществ.

Классификацию ароматов в китайской медицине определяют и формируют взаимоотношения инь--ян, существу­ющие в системе у син. Она естественно находит свое место в общей концепции китайской терапии.

2.2 Химическое строение запахов

Обширный экспериментальный материал о связи между запахом соединений и строением их молекул (тип, число и положение функциональных групп, величина, разветвлённость, пространственная структура, наличие кратных связей и др.) пока недостаточен для того, чтобы на основании этих данных можно было предсказать запах вещества. Тем не менее для отдельных групп соединений выявлены некоторые частные закономерности. Накопление в одной молекуле нескольких одинаковых функциональных групп (а в случае соединений алифатического ряда -- и разных) приводит обычно к ослаблению запаха или даже к полному его исчезновению (например, при переходе от одноатомных спиртов к многоатомным). Запах у альдегидов изостроения обычно бывает более сильным и приятным, чем у изомеров нормального строения .

Значительное влияние на запах оказывает величина молекулы. Обычно соседние члены гомологического ряда обладают сходным запахом, причём сила его постепенно меняется при переходе от одного члена ряда к другому. При достижении определённой величины молекулы запах исчезает. Так, соединения алифатического ряда, имеющие более 17-18 атомов углерода, как правило, лишены запаха. Запах зависит также от числа атомов углерода в цикле. Например, макроциклические кетоны С5-6 имеют запах горького миндаля или ментола, С6-9 -- дают переходный запах, С9-12 -- запах камфары или мяты, С13 -- запах смолы или кедра, С14-16-- запах мускуса или персика, С17-18 -- запах лука, а соединения с С18 и более либо не пахнут вообще, либо пахнут очень слабо:

Сила аромата зависит также от степени разветвления цепи атомов углерода. Например, миристиновый альдегид пахнет очень слабо, а его изомер -- сильно и приятно:

Сходство структур соединений не всегда обусловливает сходство их запахов. Например, эфиры (в-нафтола с приятным и сильным запахом широко используют в парфюмерии, а эфиры б-нафтола совсем не пахнут:

Этот же эффект наблюдается и у полизамещённых бензолов. Ванилин -- одно из самых известных душистых веществ, а изованилин пахнет подобно фенолу (карболке), да и то при повышенной температуре:

Наличие кратных связей -- один из признаков того, что вещество обладает запахом. Рассмотрим, например, изоэвгенон и эвгенон:

У обоих веществ ярко выраженный гвоздичный запах, их широко используют в парфюмерии. При этом изоэвгенон имеет более приятный запах, чем эвгенон. Однако стоит насытить у них двойную связь, и запах почти исчезает.

Известны и обратные случаи. Цикламен-альдегид (цикламаль) -- вещество с нежнейшим цветочным запахом -- одно из ценнейших веществ, содержит насыщенную боковую цепочку, а форцикламен, имеющий двойную связь в этой цепочке, обладает слабым неприятным запахом:

Часто неприятный запах вещества обусловлен тройной связью. Однако и здесь есть исключение. Фолион -- необходимая составная часть многих парфюмерных композиций -- вещество, в котором запах свежей зелени прекрасно уживается с тройной связью:

С другой стороны, вещества, различающиеся по химическому строению, могут иметь сходные запахи. Например розоподобный запах характерен для розацетата 3-метил-1-фенил-3-пентанола,гераниола и его цис-изомера -- нерола, розеноксида.

На запах влияет и степень разбавления вещества. Так, некоторые пахучие вещества в чистом виде имеют неприятный запах (например, цибет, индол). Смешивание различных душистых веществ в определённом соотношении может приводить как к появлению нового запаха, так и к его исчезновению.

Итак, в стереохимической теории (Дж. Эймур, 1952) предполагалось существование 7 первичных запахов, которым соответствуют 7 типов рецепторов; взаимодействие последних с молекулами душистых веществ определяется геометрическими факторами. При этом молекулы душистых веществ рассматривались в виде жёстких стереохимических моделей, а обонятельные рецепторы -- в виде лунок различной формы. Волновая теория (Р. Райт, 1954) постулировала, что запах определяется спектром колебательных частот молекул в диапазоне 500-50 см-1 (л ~ 20-200 мкм). Согласно теории функциональных групп (М. Бетс, 1957) запах вещества зависит от общего «профиля» молекулы и от природы функциональных групп. Однако ни одна из этих теорий не позволяет успешно предсказать запах душистых веществ на основании строения их молекул.

Большое влияние на запах оказывает величина молекулы. Обычно сходные соединения, принадлежащие к одному гомологическому ряду, пахнут одинаково, но сила запаха уменьшается с увеличением числа атомов. Соединение с17-18 углеродными атомами, как правило, лишены запаха.

Запах циклических соединений зависит от числа членов кольца. Если их 5-6, вещество пахнет горьким миндалем или ментолом, 6-9 -- дает переходный запах, 9-12 -- запах камфары или мяты, 13 -- запах смолы или кедра, 14-16 -- членов кольца обуславливают запах мускуса или персика, 17-18 -- лука, соединения с 18 членами и более либо не пахнут вообще, либо очень слабо.

Зависит сила аромата и от строения углеродной цепи. Например, альдегиды с разветвленной цепью пахнут более сильно и приятно, чем изомерные им альдегиды нормального строения. Это положение хорошо иллюстрируется примером: миристиновыйальдегид

пахнет очень слабо, а его изомер

сильно и приятно.

Соединения группы ионона обладают а в сильном разведении нежным запахом фиалок. Очевидно, одна из причин этого -- две метильные группы, присоединенные к одному углероду в циклогексановом кольце. Вот как выглядит альфаирон, обладающийнаиболее тонким фиалковым запахом:

Эти соединения -- ценнейшие душистые вещества, широко используемые в парфюмерной промышленности.

Вот еще один "мостик" между строением и запахом. Установлено, что важнейший для всей парфюмерной промышленности мускусный запах имеют соединения ароматического ряда с третично-бутильной группой, например, мускус амбровый:

Tретичные атомы углерода могут обусловливать камфарный запах. Им обладают многие третичные спирты жирного ряда, а также гексаметилэтан и метилизобутилкетон:

Замещение атомов водорода на хлор, очевидно, действует так же, как разветвление. Поэтому запах камфары присущ и гексахлорэтану ССl3 -- CCl3.

Большое влияние на запах оказывает положение заместителей в молекуле. Эфиры?-нафтола с приятным и сильным запахом широко используются в парфюмерии, а эфиры -нафтола вообще не пахнут:

метиловый эфир-нафтола метиловый эфир -нафтола

Этот же эффект можно наблюдать и у полизамещенных бензолов:

ванилин изованилин

Ванилин -- одно из самых известных душистых веществ, а изованилин пахнет подобно фенолу (карболке), да и то при повышенной температуре.

Влияет на запах и положение двойной связи в молекуле. У изоэвгенона

запах более приятный, чем у самого эвгенона

Но все же у них обоих ярко выраженный гвоздичный запах и оба они широко используются в парфюмерных и косметических изделиях. Однако стоит насытить двойную связь, и запах почти исчезает.

Тем не менее известны и обратные случаи. Цикламен-альдегид, вещество с нежнейшим цветочным запахом, одно из ценнейших веществ, содержит насыщенную боковую цепочку, а форцикламен, имеющий двойную связь в этой цепочке, обладает слабым неприятным запахом:

форцикламен цикламен

Часто непрятным запахом вещества обязаны тройной связи. Однако и здесь есть исключение. Фолион (необходимая составная часть многих парфюмерных композиций) -- вещество, в котором запах свежей зелени прекрасно уживается с торойной связью:

Oчевидно, большое значение для запаха имеют циклы, особенно с15 - 18 звеньями. Эти соединения найдены вприродных продуктах, очень ценных по своим душистым свойствам. Так, из желез мускусной кабарги было выделено вещество мускон и из желез цибетовой кошки -- цибетон:

мускон цибетон

Но эта связь односторонняя: запахом мускуса, например, обладают соединения и другого строения. Вообще химикам известно много различных по структуре веществ с похожим запахом, и, наоборот, часто очень близкие соединения имеют совершенно различные запахи.

Основной "поставщик" натуральных душистых веществ с давних времен -- эфирные масла. Это сложные по своему составу смеси, образующиеся в специальных клетках и каналах растений. В состав эфирныых масел входят различные классы химических соединений: и ароматические, и гетероциклические, но главный, ответственный за запах компонент -- терпены. Природные терпены можно рассматривать как вещества, построенные из кирпичей изопрена с общей формулой:

C глубокой древности известны людям розовое масло, масло сандалового дерева, мускус. Искусство получения запахов было развито у древних очень высоко: благовония, найденные в гробнице фараона Тутанхамона, сохранили свой аромат до наших дней.

Как ни хороши натуральные душистые вещества, на них нельзя рассчитывать, создавая парфюмерную промышленность: их слишком мало, и добываются они нелегкой ценой, а некоторые приходится ввозить из-за границы. Поэтому перед химиками встала задача: создать их искусственно.

Доктор технических наук В. МАЙОРОВ.

В последнее десятилетие ХХ века в науке о запахах произошла подлинная революция. Решающую роль сыграло открытие 1000 видов обонятельных рецепторов, связывающих молекулы пахучих веществ. Однако механизм передачи обонятельного сигнала в центральную нервную систему таит в себе еще много загадок.

Наука и жизнь // Иллюстрации

Пути передачи информации о запахах в головной мозг.

Схематическое изображение обонятельного эпителия. Базальные клетки являются клетками-предшественниками обонятельных рецепторных нейронов.

Изображение реснички обонятельного нейрона, сделанное с помощью флуоресцентного красителя. На мембране ресничек расположены рецепторные белки, взаимодействующие с молекулами одорантов.

Модель молекулы обонятельного рецепторного белка мыши, к которому присоединена молекула одоранта - гексанола (пурпурного цвета).

Одна из моделей процесса преобразования сигнала внутри реснички обонятельного нейрона.

Схематическое изображение комбинаторных рецепторных кодов одорантов.

Электроольфактограмма (ЭОГ) - электрический колебательный сигнал, регистрируемый специальным электродом с участка внешней поверхности обонятельного эпителия крысы.

Чуть более четверти века назад в журнале "Наука и жизнь" (№ 1, 1978 г.) была опубликована статья "Загадка запаха". Ее автор, кандидат химических наук Г. Шульпин, справедливо отмечал, что современное ему состояние науки о запахах примерно такое же, как состояние органической химии в 1835 году. Тогда один из зачинателей этой науки, Ф. Велер, писал, что органическая химия представляется ему дремучим лесом, из которого невозможно выбраться. Но уже через четверть века А. М. Бутлеров, создав теорию химического строения вещества, сумел "выбраться из чащи". Шульпин выражал уверенность, что загадка запаха будет решена едва ли не быстрее, чем в случае органической химии.

И он оказался прав на все 100%! В последнее время произошел настоящий прорыв в понимании молекулярных основ обоняния. Разберем основные стадии восприятия запахов в свете современных представлений.

КАК ВОСПРИНИМАЕТСЯ ЗАПАХ

Проделаем простой опыт. Возьмем флакон с пахучей жидкостью, например духами, откроем пробку и понюхаем содержимое в спокойном ритме дыхания. Легко обнаружить, что мы ощущаем запах только во время вдоха; начинается выдох - запах исчезает.

При вдохе через нос воздух вместе с молекулами пахучего вещества (называемого обонятельным стимулом или одорантом) проходит в каждой из двух носовых полостей по щелевидному каналу сложной конфигурации, который образован продольной носовой перегородкой и тремя носовыми раковинами. Здесь воздух очищается от пыли, увлажняется и нагревается. Затем часть воздуха поступает в расположенную в верхней задней зоне канала обонятельную область, имеющую вид щели, покрытой обонятельным эпителием.

Общая поверхность, занимаемая эпителием в обеих половинках носа взрослого человека, невелика - 2 - 4 см 2 (у кролика эта величина равна 7-10 см 2 , у собак - 27 - 200 см 2). Эпителий покрыт слоем обонятельной слизи и содержит три типа первичных клеток: обонятельные рецепторы, опорные и базальные клетки. Влекомые воздухом пахучие молекулы проникают в носовую полость и переносятся над поверхностью эпителия. При нормальном спокойном дыхании вблизи обонятельного эпителия проходит 7 -10% вдыхаемого воздуха. Обонятельный эпителий имеет толщину приблизительно 150-300 мкм. Он покрыт слоем слизи (10-50 мкм), который молекулам одоранта предстоит преодолеть, прежде чем они провзаимодействуют со специальными сенсорными нейронами - обонятельными рецепторами.

Основная функция обонятельного рецептора состоит в выделении, кодировании и передаче информации об интенсивности, качестве и продолжительности запаха в обонятельную луковицу и специальным центрам в головном мозге. Эпителий в обеих носовых полостях у человека содержит приблизительно 10 млн обонятельных нейронов (у кролика - около 100 млн, а у немецкой овчарки - до 225 млн).

Как известно, нейрон состоит из тела и отростков: аксонов и дендритов. Нервный импульс с одной нервной клетки на другую передается с аксона на дендрит. Диаметр утолщенной центральной части обонятельного нейрона (сомы) 5-10 мкм. Дендритная часть в виде волокнистых отростков диаметром 1-2 мкм выходит к внешней поверхности эпителия. Здесь дендриты заканчиваются утолщением, от которого отходит пучок из 6-12 ресничек (цилий) диаметром 0,2-0,3 мкм и длиной до 200 мкм, погруженный внутрь слоя слизи (у кролика число ресничек в одном рецепторном нейроне составляет 30-60, а у собак достигает 100-150). Отходящее от сомы нервное волокно (аксон) имеет диаметр около 0,2 мкм и выходит к внутренней поверхности эпителия. Здесь аксоны от соседних нейронов объединяются в жгуты (филы), доходящие до обонятельной луковицы.

СЕМИОТИКА ОБОНЯНИЯ

Для того чтобы обонятельный сигнал был воспринят нейроном, молекула одоранта связывается со специальной белковой структурой, расположен ной в нейрональной клеточной мембране. Такая структура называется рецепторным белком. Используя методы молекулярной биологии, американские ученые Линда Бак и Ричард Аксель в 1991 году установили, что обонятельные нейроны у млекопитающих содержат около 1000 различных видов рецепторных белков (у человека их меньше - около 350). Признанием важности этого открытия стало присуждение им в 2004 году Нобелевской премии за исследования в области физиологии и медицины (см. "Наука и жизнь" № 12, 2004 г).

Каким образом рецепторы распределяются по нейронам: имеются ли отдельные представители этого семейства во всех обонятельных нейронах или каждый нейрон несет на своей мембране только один вид рецепторного белка? Как может мозг определить, какой из 1000 типов рецепторов подал сигнал? Имеющиеся данные позволяют сделать заключение о том, что на одном нейроне присутствует только обонятельный рецепторный белок одного вида. Нейроны с разными рецепторами обладают различной функциональностью, то есть в эпителии имеются тысячи различных типов нейронов. В этом случае проблема идентификации активированного запахом отдельного рецептора сводится к задаче выявления подавшего сигнал нейрона.

Принимая во внимание, что общее число обонятельных нейронов у человека около 10 млн, число обонятельных рецепторов одного типа исчисляется в среднем десятками тысяч.

Обонятельная система использует комбинаторную схему для идентификации одорантов и кодирования сигнала. Согласно ей один тип обонятельных рецепторов активируется множеством одорантов и один одорант активирует множество типов рецепторов. Различные одоранты кодируются различными комбинациями обонятельных рецепторов, причем увеличение концентрации стимула приводит к возрастанию числа активируемых рецепторов и к усложнению его рецепторного кода. В этой схеме каждый рецептор выступает в качестве одного из компонентов комбинаторного рецепторного кода для многих одорантов и как бы выполняет роль буквы своеобразного алфавита, из совокупности которых составляются соответствующие слова-запахи.

Минимальные структурные отличия молекул одорантов, например, по функциональной группе, по длине углеродной цепи, по пространственной структуре приводят к различному рецепторному коду. Для отличительного признака молекулы одоранта, способного изменить кодировку запаха, был предложен термин "одотоп" (odotope ), или детерминант запаха. Различные обонятельные рецепторы, которые распознают один и тот же одорант, могут идентифицировать различные его признаки-одотопы. Одиночный обонятельный рецептор способен "различать" молекулы, отличающиеся длиной углеродной цепочки всего лишь на один атом углерода, или молекулы, имеющие одинаковую длину углеродной цепочки, но отличающиеся функциональной группой. Учитывая, что в эпителии млекопитающих имеется приблизительно 1000 видов обонятельных рецепторов, можно полагать, что такая комбинаторная схема позволяет различить громадное число одорантов (даже человек различает до 10 000 запахов).

Полученные в последнее время результаты экспериментальных исследований свойств обонятельных рецепторных белков позволили создать на молекулярном уровне структурную модель спиральной молекулы обонятельного белка. Обонятельные рецепторные белки принадлежат к суперсемейству мембранносвязанных рецепторов. Они пересекают двухслойную липидную мембрану реснички семь раз. У содержащей 300-350 аминокислот молекулы рецепторного белка три наружные петли соединяются с тремя внутриклеточными петлями семью пересекающими мембрану трансмембранными участками.

НЕОБХОДИМАЯ СЛИЗЬ

Находящиеся в потоке воздуха молекулы одоранта, перед тем как достичь обонятельных рецепторных нейронов, должны пересечь обволакива ющий поверхность обонятельного эпителия слой слизи. Физиологические функции слоя слизи полностью до сих пор не выяснены. Не вызывает сомнения, что она создает гидрофильную оболочку для чувствительных и хрупких обонятельных рецепторов, выполняя защитную функцию. Ведь систему восприятия сигнала нужно защитить от воздействия внешней среды, то есть от молекул одорантов, среди которых могут быть достаточно опасные и химически активные вещества.

Слой слизи состоит из двух подслоев. Внешний, водный, имеет толщину примерно 5 мкм, а внутренний, более вязкий, - около 30 мкм. Реснички-цилии направлены наклонно к внешней поверхности слоя слизи. Они образуют своего рода сетку с нерегулярными ячейками, причем эта сетка размещена у поверхности раздела подслоев так, что основная часть поверхности ресничек (около 85%) оказывается расположен ной вблизи границы раздела.

Слой слизи содержит разнообразные растворимые в воде белки, значительную часть которых составляют так называемые гликопротеины. Благодаря разветвленной молекулярной структуре эти белки способны связывать и удерживать молекулы воды, образуя гель.

Другие виды белков, содержащихся в слизи, взаимодействуют с молекулами одорантов и тем самым могут оказывать влияние на восприятие и распознавание запахов. Эти белки подразделяются на два основных класса - одорант-связующие белки (OBP) и одорант-разрушающие ферменты.

ОВР относятся к семейству белков, имеющих складчатую бочкообразную структуру с внутренней глубокой полостью, в которую попадают маленькие молекулы гидрофильных (жирорастворимых) одорантов. Разные подвиды этих белков отличаются высокой избирательностью взаимодействия с одорантами различных химических классов.

Полагают, что OBP способствуют растворению одоранта и транспортируют его молекулы сквозь слой слизи, действуют как фильтр для разделения одорантов, могут облегчать связывание одоранта с рецепторным белком и даже очищать околорецепторное пространство от ненужных компонентов.

Кроме одорант-связующих белков в слизи обонятельного эпителия вблизи рецепторных нейронов обнаружены несколько видов одорант-разрушающих ферментов. Все эти ферменты запускают реакции превращения молекул одорантов в другие соединения. Образующиеся в результате этих реакций продукты также вносят свой вклад в восприятие запаха. В конечном итоге все поступающие в слой слизи молекулы одорантов быстро, практически одновременно с завершением вдоха, теряют свою "запаховую" активность. Так что обонятельная система при каждом вдохе получает новую информацию от свежих порций одоранта.

ОБОНЯНИЕ НА УРОВНЕ МОЛЕКУЛ

Многие свойства системы восприятия запахов можно объяснить на молекулярном уровне. Молекула одоранта встречает на поверхности слизи, покрывающей обонятельный эпителий, молекулу одорант-связующего белка, которая связывает и переносит молекулу одоранта через слой слизи к поверхности реснички обонятельного нейрона. В ресничках осуществляется основной процесс передачи обонятельного сигнала. Его механизм достаточно типичен для многих видов взаимодействий физиологически активных веществ с рецепторами нервных клеток.

Молекула одоранта прикрепляется к определенному обонятельному рецептору (R). Между процессом связывания молекулы одоранта с рецептором и передачей обонятельного сигнала в нервную систему лежит сложный каскад биохимических реакций, проходящих в нейроне. Связывание молекулы одоранта с рецепторным белком активирует так называемый G-белок, расположенный на внутренней стороне клеточной мембраны. G-белок в свою очередь активирует аденилатциклазу (AC) - фермент, преобразующий внутриклеточный аденозинтрифосфат (ATP) в циклический аденозинмонофосфат (cAMP). А уже cAMP активирует другой мембранносвязанный белок, который называется ионным каналом, поскольку открывает и закрывает вход заряженным частицам внутрь клетки. Когда ионный канал открыт, в клетку проникают катионы металлов. Таким способом меняется электрический потенциал клеточной мембраны и генерируется электрический импульс, передающий сигнал с одного нейрона на другой.

Несколько молекулярных стадий передачи внутриклеточного сигнала обеспечивают его усиление, в результате чего небольшого числа молекул одоранта становится достаточно для генерирования нейроном электрического импульса. Такие усилительные каскады обеспечивают большую чувствительность системы восприятия запахов.

Итак, активация рецепторного белка молекулой одоранта в конечном счете приводит к генерированию электрического тока в обонятельном рецепторном нейроне. Ток распространяется по дендриту нейрона в его соматическую часть, где возбуждает выходной электрический импульс. Этот импульс передается по нейрональному аксону в обонятельную луковицу.

Одиночный электрический сигнал-импульс на выходе имеет длительность не более 5 мс и пиковую амплитуду около 100 мкВ. Почти все нейроны генерируют импульсы и при отсутствии воздействия одоранта, то есть обладают спонтанной активностью, называемой биологическим шумом. Частота этих импульсов меняется в диапазоне от 0,07 до 1,8 импульса в секунду.

ЛУКОВИЧНАЯ НЕЙРОСЕТЬ

Обонятельные рецепторные нейроны распознают громадное число разнообразных молекул пахучих веществ и посылают информацию о них через аксоны в обонятельную луковицу, служащую первым центром обработки обонятельной информации в головном мозге. Парные обонятельные луковицы представляют собой продолговатые образования "на ножках". Отсюда начинается путь обонятельного сигнала к полушариям мозга. Аксоны обонятельных нейронов оканчиваются в обонятельной луковице разветвлениями в сферических концентраторах (диаметром 100-200 мкм), называемых гломерулами. В гломерулах осуществляется контакт между окончаниями аксонов обонятельных нейронов и дендритами нейронов второго порядка, которыми являются митральные и пучковые клетки.

Митральные клетки - самые крупные нервные клетки, выходящие из обонятельной луковицы. Пучковые клетки меньше митральных, но функционально с ними схожи. Представление о количестве нервных клеток у млекопитающих могут дать характеристики обонятельной системы кролика. В ней имеется по 50 миллионов обонятельных рецепторных нейронов справа и слева (ровно в десять раз больше, чем у человека). Аксоны обонятельных рецепторов распределены между 1900 гломерулами обонятельной луковицы - примерно по 26 000 аксонов на гломерулу. Дендритные окончания 45 000 митральных и 130 000 пучковых клеток получают сигналы от аксонов в гломерулах и передают их из обонятельной луковицы в центры обоняния в головном мозге. Около 24 митральных и 70 пучковых клеток получают информацию от аксонов в каждой гломеруле. У человека около 10 млн аксонов обонятельных нейронов распределяются по 2000 гломерул обонятельной луковицы.

Все аксоны одной популяции обонятельных нейронов сходятся на две гломерулы, зеркально расположенные по разные стороны двумерного поверхностного слоя обонятельной луковицы. В зависимости от содержания передаваемого сигнала гломерулы активируются различным образом. Совокупность активированных гломерул называется картой запаха и представляет своего рода "слепок" запаха, то есть она показывает, из каких пахучих веществ состоит воспринимаемый обонятельный объект.

Механизм активации гломерул до сих пор не выяснен. Усилия исследователей направлены на то, чтобы выяснить, каким образом многообразие одорантов воспроизводится в двумерном слое гломерул на поверхности обонятельной луковицы. Кстати, эти отображения имеют динамический характер - они постоянно меняются в ходе восприятия запаха, усложняя научную задачу.

Обонятельная луковица - это большая многослойная нейросеть для пространственно-временнoй обработки отображения запаха в гломерулах. Ее можно рассматривать как совокупность множества микросхем с большим количеством связей, со взаимной активацией и ингибированием активности нейронов. Выполняемые нейронами операции выделяют характерные свойства карты запаха.

От обонятельной луковицы аксоны митральных и пучковых клеток передают информацию в первичные обонятельные участки коры головного мозга, а затем в высшие ее участки, где формируется осознанное ощущение запаха, и в лимбическую систему, которая порождает эмоциональную и мотивационную реакцию на обонятельный сигнал.

Свойства обонятельных зон коры головного мозга позволяют формировать ассоциативную память, которая устанавливает связь нового аромата с отпечатками воспринятых ранее обонятельных стимулов. Полагают, что процесс идентификации одоранта включает сравнение получающегося отображения с его описанием в семантической памяти. В случае совпадения отпечатка и памяти о запахе происходит какой-либо ответ (эмоциональный, двигательный) организма. Процесс этот осуществляется очень быстро, в течение секунды, и информация о совпадении после ответа сразу сбрасывается, поскольку мозг готовит себя к решению следующей задачи восприятия запаха.

ЗАГАДКИ ЗАПАХОВ

То, о чем говорилось в предыдущих разделах, относится пусть к самому сложному, основополагающему, но начальному разделу науки о запахах - к их восприятию. Не раскрыт механизм взаимодействия обоняния с другими системами восприятия, например со вкусом (см. "Наука и жизнь" № , с. 16-20). Ведь известно, что если человеку зажать ноздри, то при дегустации даже хорошо известных вкусовых пищевых продуктов (например - кофе) он не в состоянии точно определить, что он пробовал. Достаточно разжать ноздри - и вкусовые ощущения восстанавливаются.

С молекулярной точки зрения пока непонятно, в каких единицах измерять интенсивность запаха и от чего она зависит, что такое качество запаха, его "букет", чем отличается один запах от другого и как охарактеризовать это отличие, что происходит с запахом при смешивании различных одорантов. Оказывается, что независимо от вида одорантов и уровня подготовленности даже опытный эксперт не может определить все составляющие смесь компоненты, если их больше трех. Если же смесь содержит более десяти одорантов, то человек не в состоянии идентифицировать ни одного из них.

Остается еще множество вопросов, касающихся механизмов и видов воздействия запахов на эмоциональное, психическое и физическое состояния человека. В последнее время на эту тему появилось немало спекуляций, чему поспособствовал вышедший в 1985 году роман П. Зюскинда "Парфюмер", более восьми лет прочно занимавший место в первой десятке бестселлеров на западном книжном рынке. Фантазии на тему чрезвычайной силы подсознательного воздействия ароматов на эмоциональное состояние человека обеспечили этому произведению огромный успех.

Однако художественный вымысел постепенно получает обоснование. Недавно в периодической печати появились сообщения о том, что американские военные "парфюмеры" разработали на редкость дурно пахнущую бомбу, способную не только вызвать отвращение, но и разогнать солдат противника или агрессивно настроенную толпу.

Общественные аллюзии на парфюмерные темы подстегнули всеобщий интерес к искусству ароматерапии. Расширилось использование ароматов в общественных местах, таких, как офисы, торговые залы, холлы гостиниц. Появились даже специальным образом ароматизированные товары, улучшающие настроение. Возникла такая отрасль рыночной экономики, как аромамаркетинг - "наука" о привлечении клиентов с помощью приятных запахов. Так, запах кожи навевает покупателю мысли о дорогом качественном товаре, аромат кофе побуждает к покупкам для домашнего ужина и т.д. Каким образом запахи формируют в головном мозге сигналы, побуждающие человека совершать покупки? Ученым предстоит совершить еще немало открытий, прежде чем ответить на этот и многие другие вопросы и отделить мифы о запахах от реальности.

Литература

Лозовская Е., канд. физ.-мат. наук. // Наука и жизнь, 2004, № 12.

Майоров В. А. Запахи: их восприятие, воздействие, устранение. - М.: Мир, 2006.

Марголина А., канд. биол. наук. // Наука и жизнь, 2005, № 7.

Шульпин Г., канд. хим. наук. Загадка запаха // Наука и жизнь, 1978, № 1.