Статистические модели. Принципы построения статистических объектов экопроцессов

Статическое моделирование - представление или описание некоторого феномена или системы взаимосвязей между явлениями посредством набора переменных (показателей, признаков) и статистических взаимосвязей между ними. Цель статического моделирования (как и любого другого моделирования) - представить наиболее существенные черты изучаемого феномена в наглядном и доступном для изучения виде. Все статистические модели предназначены, в конечном счете, для измерения силы и направления связей между двумя или более переменными. Наиболее сложные модели позволяют также судить о структуре связей между несколькими переменными. Большинство статистических моделей можно условно разделить на корреляционные, структурные и причинные. Корреляционные модели используются для измерения парных "ненаправленных" связей между переменными, т.е. таких связей, в которых причинная компонента отсутствует либо игнорируется. Примерами таких моделей являются коэффициент парной линейной корреляции Пирсона, ранговые коэффициенты парной и множественной корреляции, большинство мер связи, разработанных для таблиц сопряженности (за исключением теоретико-информационных коэффициентов и логарифмически-линейного анализа).

Структурные модели в статическом моделировании предназначены для исследования структуры некоторого множества переменных либо объектов. Исходными данными для изучения структуры связей между несколькими переменными является матрица корреляций между ними. Анализ корреляционной матрицы может осуществляться вручную либо с помощью методов многомерного статистического анализа - факторного, кластерного, метода многомерного шкалирования. Во многих случаях исследование структуры связей между переменными является предварительным этапом при решении более сложной задачи - снижения размерности пространства признаков.

Для исследования структуры совокупности объектов применяются методы кластерного анализа и многомерного шкалирования. В качестве исходных данных используется матрица расстояний между ними. Расстояние между объектами тем меньше, чем больше объекты "похожи" друг на друга в смысле значений, измеренных на них переменных; если значения всех переменных для двух объектов совпадают, расстояние между ними равно нулю. В зависимости от целей исследования, структурные модели могут быть представлены в виде матриц (корреляций, расстояний), факторной структуры либо визуально. Результаты кластерного анализа чаще всего представляются в виде дендрограммы; результаты факторного анализа и многомерного шкалирования - в виде диаграммы рассеяния. Структура матрицы корреляций может быть также представлена в виде графа, отражающего наиболее существенные связи между переменными. Причинные модели предназначены для исследования причинных связей между двумя или несколькими переменными. Переменные, измеряющие явления-причины, называются в статистике независимыми переменными или предикторами; переменные, измеряющие явления-следствия, называются зависимыми. Большинство причинных статистических причинных моделей предполагают наличие одной зависимой переменной и одного или нескольких предикторов. Исключение составляют линейно-структурные модели, в которых может одновременно использоваться несколько зависимых переменных, а некоторые переменные могут в одно и то же время выступать в качестве зависимых по отношению к одним показателям и в качестве предикторов по отношению к другим.

Различают две области применения метода статистического моделирования: статическое имитационное моделирование планирование

  • - для изучения стохастических систем;
  • - для решения детерминированных задач.

Основной идеей, которая используется для решения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. При такой замене погрешность уменьшается с увеличением числа испытаний (реализации моделирующего алгоритма) N.

В результате статистического моделирования системы S получается серия частных значений искомых величин или функций, статистическая обработка которых позволяет получить сведения о поведении реального объекта или процесса в произвольные моменты времени. Если количество реализации N достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы S.

Статистическое моделирование – это численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления. Это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели.

Разработка подобных моделей заключается в выборе метода статистического анализа, планировании процесса получения данных, компоновке данных об экологической системе, алгоритмировании и расчете компьютерными средствами статистических соотношений. Изменение закономерностей развития экологической ситуации требует повторения описанной процедуры, но уже в новом качестве.

Статистическое нахождение математической модели включает в себя выбор вида модели и определение ее параметров. Причем искомая функция может быть как функцией одной независимой переменной (однофакторной), так и многих переменных (многофакторной). Задача выбора вида модели – задача неформальная, т. к. одна и та же зависимость может быть описана с одинаковой погрешностью самыми различными аналитическими выражениями (регрессионными уравнениями). Рациональный выбор вида модели может быть обоснован при учете ряда критериев: компактность (например, описанная одночленом или многочленом), интерпретируемость (возможность придания содержательного смысла коэффициентом модели) и др. Задача расчета параметров выбранной модели зачастую чисто формальная и осуществляется на ЭВМ.

Формируя статистическую гипотезу об определенной экологической системе, необходимо иметь массив разнообразных данных (базу данных), который может быть неоправданно велик. Адекватное представление о системе связано в этом случае с отделением несущественной информации. Сокращению могут подлежать как перечень (тип) данных, так и количество данных. Одним из методов осуществления подобного сжатия экологической информации (без априорных предположений о структуре и динамике наблюдаемой экосистемы) может стать факторный анализ. Сокращение данных проводят методом наименьших квадратов, главных компонент и другими многомерными статистическими методами с использованием в дальнейшем, например, кластерного анализа.

Отметим, что первичная экологическая информация обладает в той или иной степени следующими особенностями:

– многомерностью данных;

– нелинейностью и неоднозначностью взаимосвязей в исследуемой системе;

– погрешностью измерений;

– влиянием неучтенных факторов;

– пространственно-временной динамикой.

При решении первой задачи выбора вида модели полагают, что известны m входных (х 1 , х 2 , ..., х m и n выходных (y 1 , y 2 , ..., y) данных. В этом случае возможны, в частности, следующие две модели в матричной записи:

где X и Y – известные входные (выходные) и выходные (входные) параметры экологического объекта ("черного ящика") в векторной форме записи; А и В – искомые матрицы постоянных коэффициентов модели (параметров модели).

Наряду с указанными моделями рассматривается более общий вид статистического моделирования:

где F – вектор скрытых влияющих факторов; С и D – искомые матрицы коэффициентов.

При решении экологических задач целесообразно использовать и линейные и нелинейные математические модели, т. к. многие экологические закономерности мало исследованы. В результате будут учтены многомерность и нелинейность моделируемых взаимосвязей.

На основе обобщенной модели можно выделить внутренние скрытые факторы изучаемых экологических процессов, которые не известны инженеру-экологу, но их проявление отражается на компонентах векторов X и Y. Эта процедура наиболее целесообразна в случае, когда между величинами X и Y не наблюдается строгой причинно-следственной связи. Обобщенная модель с учетом воздействия скрытых факторов устраняет определенное противоречие между двумя моделями с матрицами А и В, когда фактически две различные модели могли бы быть использованы для описания одного и того же экологического процесса. Это противоречие вызвано противоположным смыслом причинно-следственной зависимости между величинами А и Y (в одном случае X – вход, а Y – выход, а в другом - наоборот). Обобщенная модель с учетом величины F – описывает более сложную систему, из которой обе величины X и Y являются выходными, а па вход действуют скрытые факторы F.

Немаловажным при статистическом моделировании является использование априорных данных, когда еще в процессе решения могут быть установлены некоторые закономерности моделей и сужено их потенциальное количество.

Предположим, необходимо составить модель, с помощью которой за 24 ч можно численно определить плодородие определенного типа почвы с учетом ее температуры Т и влажности W. Ни пшеница, ни яблоня за 24 ч дать урожай не могут. Но для пробного сева можно использовать бактерии с коротким жизненным циклом, а в качестве количественного критерия интенсивности их жизнедеятельности пользоваться количеством Р выделенного СО 2 в единицу времени. Тогда математическая модель исследуемого процесса представляет собой выражение

где P 0 - численный показатель качества почвы.

Кажется, что у нас нет никаких данных о виде функции f(T, W) потому, что у инженера-системотехника нет нужных агрономических знаний. Но это не совсем так. Кто не знает, что при Т≈0°С вода замерзает и, следовательно, СO 2 выделяться не может, а при 80°С происходит пастеризация, т. е. большинство бактерий погибает. Априорных данных уже достаточно для утверждения, что искомая функция имеет квазипараболический характер, близка к нулю при Т=0 и 80°С и имеет экстремум внутри этого интервала температур. Аналогичные рассуждения относительно влажности приводят к фактофиксации максимума экстремума искомой функции при W=20% и приближении ее к нулю при W=0 и 40%. Таким образом, априори определен вид приближенной математической модели, а задачей эксперимента является лишь уточнение характера функции f(T, W) при Т=20 ... 30 и 50 ... 60°С, а также при W=10 ... 15 и 25 ... 30% и более точное установление координат экстремума (что уменьшает объем экспериментальных работ, т. е. объем статистических данных).

Статистическое моделирование

численный метод решения математических задач, при котором искомые величины представляют вероятностными характеристиками какого-либо случайного явления, это явление моделируется, после чего нужные характеристики приближённо определяют путём статистической обработки «наблюдений» модели. Например, требуется рассчитать потоки тепла в нагреваемой тонкой металлической пластине, на краях которой поддерживается нулевая температура. Распределение тепла описывается тем же уравнением, что и расплывание пятна краски в слое жидкости (см. Теплопроводность , Диффузия). Поэтому моделируют плоское Броуновское движение частиц «краски» по пластине, следя за их положениями в моменты k τ, k = 0, 1, 2,... Приближённо принимают, что за малый интервал τ частица перемещается на шаг h равновероятно во всех направлениях. Каждый раз направление выбирается случайным образом, независимо от всего предыдущего. Соотношение между τ и h определяется коэффициентом теплопроводности. Движение начинается в источнике тепла и кончается при первом достижении края (наблюдается налипание «краски» на край). Поток Q (C) тепла через участок С границы измеряется количеством налипшей краски. При общем количестве N частиц согласно Больших чисел закон у такая оценка даёт случайную относительную ошибку порядка h из-за дискретности выбранной модели).

Искомую величину представляют математическим ожиданием (См. Математическое ожидание) числовой функции f от случайного исхода ω явления: , т. е. интегралом по вероятностной мере Р (см. Мера множества). На оценку , где ω 1 ,..., ω N -смоделированные исходы, можно смотреть как на квадратурную формулу для указанного интеграла со случайными узлами ω k и случайной погрешностью R N обычно принимают , считая большую погрешность пренебрежимо маловероятной; Дисперсия Df может быть оценена в ходе наблюдений (см. Ошибок теория).

В разобранном выше примере f (ω)= 1, когда траектория кончается на С; иначе f (ω) = 0. Дисперсия

Проведение каждого «эксперимента» распадается на две части: «розыгрыш» случайного исхода ω и последующее вычисление функции f (ω). Когда пространство всех исходов и вероятностная мера Р слишком сложны, розыгрыш проводится последовательно в несколько этапов (см. пример). Случайный выбор на каждом этапе проводится с помощью случайных чисел, например генерируемых каким-либо физическим датчиком; употребительна также их арифметическая имитация - псевдослучайные числа (см. Случайные и псевдослучайные числа). Аналогичные процедуры случайного выбора используются в математической статистике и теории игр.

С. м. широко применяется для решения на ЭВМ интегральных уравнений, например при исследовании больших систем (См. Большая система). Они удобны своей универсальностью, как правило, не требуют большого объёма памяти. Недостаток - большие случайные погрешности, слишком медленно убывающие при увеличении числа экспериментов. Поэтому разработаны приёмы преобразования моделей, позволяющие понижать разброс наблюдаемых величин и объём модельного эксперимента.

Лит.: Метод статистических испытаний (Метод Монте-Карло), М., 1962; Ермаков С. М., Метод Монте-Карло и смежные вопросы, М., 1971.

Н. Н. Ченцов.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Статистическое моделирование" в других словарях:

    Статистическое и эконометрическое моделирование исследование объектов познания на их статистических моделях; построение и изучение моделей реально существующих предметов, процессов или явлений (например: экономических процессов в… … Википедия

    Статистическое моделирование - способ исследования процессов поведения вероятностных систем в условиях, когда неизвестны внутренние взаимодействия в этих системах. Он заключается в машинной имитации изучаемого процесса, который как бы копируется на… … Экономико-математический словарь

    Метод прикладной и вычислительной математики, состоящий в реализации на ЭВМ специально разрабатываемых стохастич. моделей изучаемых явлений или объектов. Расширение области применения С. м. связано с быстрым развитием техники и особенно… … Математическая энциклопедия

    Моделирование ситуаций с использованием статистических закономерностей, присущих рассматриваемому явлению. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    Моделирование исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих… … Википедия

    МОДЕЛИРОВАНИЕ ИМИТАЦИОННОЕ в социологии - вид моделирования математического, состоящий в воспроизведении на ЭВМ социального процесса либо функционирования социальной системы. Почти всегда предполагает воспроизведение случайных факторов, влияющих на изучаемое явление, и, как следствие,… … Социология: Энциклопедия

    МОДЕЛИРОВАНИЕ, СТАТИСТИЧЕСКОЕ - разработка разнообразных моделей, которые отображают статистические закономерности описываемого объекта, явления. Общей специфической чертой этих моделей является учет случайных возмущений или отклонений. Объектами С.м. являются различные… … Большой экономический словарь

    МОДЕЛИРОВАНИЕ СТАТИСТИЧЕСКОЕ - представление или описание некоторого феномена или системы взаимосвязей между явлениями посредством набора переменных (показателей, признаков) и статистических взаимосвязей между ними. Цель М.С. (как и любого другого моделирования) представить… … Социология: Энциклопедия

    Для улучшения этой статьи желательно?: Исправить статью согласно стилистическим правилам Википедии. Имитационное моделирование (ситуационное … Википедия

    ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ - (...от франц. modele образец) метод исследования каких либо явлений и процессов методом статистических испытаний (метод Монте Карло) с помощью ЭВМ. Метод основан на розыгрыше (имитации) воздействия случайных факторов на изучаемое явление или… … Энциклопедический словарь по психологии и педагогике

Книги

  • Статистическое моделирование. Методы Монте-Карло. Учебное пособие для бакалавриата и магистратуры , Михайлов Г.А.. Учебное пособие посвящено особенностям моделирования случайных величин, процессов и полей. Особое внимание уделяется численному интегрированию, в частности методу Монте-Карло. Дается решение…

Идея случайного выбора. Прежде чем приступить к описанию статистических гипотез, обсудим еще раз понятие случайного выбора.

Если опустить детали и некоторые (хотя и важные) исключения, можно сказать, что весь статистический анализ основан на идее случайного выбора. Мы принимаем тезис, что имеющиеся данные появились как результат случайного выбора из некоторой генеральной совокупности, нередко - воображаемой. Обычно мы полагаем, что этот случайный выбор произведен природой. Впрочем, во многих задачах эта генеральная совокупность вполне реальна, и выбор из нее произведен активным наблюдателем.

Для краткости будем говорить, что все данные, которые мы собираемся изучить как единое целое, представляют собой одно наблюдение. Природа этого собирательного наблюдения может быть самой разнообразной. Это может быть одно число, последовательность чисел, последовательность символов, числовая таблица и т.д. Обозначим на время это собирательное наблюдение через х. Раз мы считаем х результатом случайного выбора, мы должны указать и ту генеральную совокупность, из которой х был выбран. Это значит, что мы должны указать те значения, которые могли бы появиться вместо реального х. Обозначим эту совокупность через X. Множество Х называют также выборочным пространством, или пространством выборок.

Мы предполагаем далее, что указанный выбор произошел в соответствии с неким распределением вероятностей на множестве X, согласно которому каждый элемент из Х имеет определенные шансы быть выбранным. Если Х - конечное множество, то у каждого его элемента x ; есть положительная вероятность р (х ) быть выбранным. Случайный выбор по такому вероятностному закону легко понимать буквально. Для более сложно устроенных бесконечных множеств Х приходится определять вероятность не для отдельных его точек, а для подмножеств. Случайный выбор одной из бесконечного множества возможностей вообразить труднее, он похож на выбор точки х из отрезка или пространственной области X.

Соотношение между наблюдением х и выборочным пространством X, между элементами которого распределена вероятность, - в точности такое же, как между элементарными исходами и пространством элементарных исходов, с которым имеет дело теория вероятностей. Благодаря этому теория вероятностей становится основой математической статистики, и поэтому, в частности, мы можем применять вероятностные соображения к задаче проверки статистических гипотез.

Прагматическое правило. Ясно, что раз мы приняли вероятностную точку зрения на происхождение наших данных (т.е. считаем, что они получены путем случайного выбора), то все дальнейшие суждения, основанные на этих данных, будут иметь вероятностный характер. Всякое утверждение будет верным лишь с некоторой вероятностью, а с некоторой тоже положительной вероятностью оно может оказаться неверным. Будут ли полезными такие выводы, и можно ли вообще на таком пути получить достоверные результаты?



На оба эти вопроса следует ответить положительно. Во-первых, знание вероятностей событий полезно, так как у исследователя быстро вырабатывается вероятностная интуиция, позволяющая ему оперировать вероятностями, распределениями, математическими ожиданиями и т.п., извлекая из этого пользу. Во-вторых, и чисто вероятностные результаты могут быть вполне убедительными: вывод можно считать практически достоверным, если его вероятность близка к единице.

Можно высказать следующее прагматическое правило, которым руководствуются люди и которое соединяет теорию вероятностей с нашей деятельностью.

Мы считаем практически достоверным событие, вероятность которого близка к 1;

Мы считаем практически невозможным событие, вероятность которого близка к 0.

И мы не только так думаем, но и поступаем в соответствии с этим!

Изложенное прагматическое правило, в строгом смысле, конечно, неверно, поскольку оно не защищает полностью от ошибок. Но ошибки при его использовании будут редки. Правило полезно тем, что дает возможность практически применять вероятностные выводы.

Иногда то же правило высказывают чуть по-другому: в однократном испытании маловероятное событие не происходит (и наоборот - обязательно происходит событие, вероятность которого близка к 1). Слово «однократный» вставлено ради уточнения, ибо в достаточно длинной последовательности независимых повторений опыта упомянутое маловероятное (в одном опыте!) событие встретится почти обязательно. Но это уже совсем другая ситуация.

Остается еще не разъясненным, какую вероятность следует считать малой. На этот вопрос нельзя дать количественного ответа, пригодного во всех случаях. Ответ зависит от того, какой опасностью грозит нам ошибка. Довольно часто - при проверке статистических гипотез, например, о чем см. ниже - полагают малыми вероятности, начиная с 0.01 ¸ 0.05. Другое дело - надежность технических устройств, например, тормозов автомобиля. Здесь недопустимо большой будет вероятность отказа, скажем, 0.001, так как выход из строя тормозов один раз на тысячу торможений повлечет большое число аварий. Поэтому при расчетах надежности нередко требуют, чтобы вероятность безотказной работы была бы порядка 1-10 -6 . Мы не будем обсуждать здесь, насколько реалистичны подобные требования: может ли обеспечить такую точность в расчете вероятности неизбежно приближенная математическая модель и как затем сопоставить расчетные и реальные результаты.

Предупреждения. 1. Следует дать несколько советов, как надо строить статистические модели, притом зачастую в задачах, не имеющих явного статистического характера. Для этого надо присущие обсуждаемой проблеме черты выразить в терминах, относящихся к выборочному пространству и распределению вероятностей. К сожалению, в общих словах этот процесс описать невозможно. Более того, этот процесс является творческим, и его невозможно заучить как, скажем, таблицу умножения. Но ему можно научиться, изучая образцы и примеры и следуя их духу. Мы разберем несколько таких примеров. В дальнейшем мы также будем уделять особое внимание этой стадии статистических исследований.

2. При формализации реальных задач могут возникать весьма разнообразные статистические модели. Однако математической теорией подготовлены средства для исследования лишь ограниченного числа моделей. Для ряда типовых моделей теория разработана очень подробно, и там можно получить ответы на основные вопросы, интересующие исследователя. Некоторую часть таких стандартных моделей, с которыми на практике приходится иметь дело чаще всего, мы обсудим в данной книге. Другие можно найти в более специальных и подробных руководствах и справочниках.

3. Об ограниченности математических средств стоит помнить и при математической формализации эксперимента. Если возможно, надо свести дело к типовой статистической задаче. Эти соображения особенно важны при планировании эксперимента или исследования; при сборе информации, если речь идет о статистическом обследовании; при постановке опытов, если мы говорим об активном эксперименте.

Статистическое наблюдение.

Сущность статистического наблюдения.

Начальным этапом всякого статистического исследования служит планомерный, научно организованный сбор данных о явлениях и процессах общественной жизни, называемый статистическим наблюдением. Значение этого этапа исследования определяется тем, что использование лишь вполне объективной и достаточно полной, полученной в результате статистического наблюдения, на последующих этапах в состоянии обеспечить научно обоснованные выводы о характере и закономерностях развития изучаемого объекта. Статистическое наблюдение осуществляется путем оценки и регистрации признаков единиц изучаемой совокупности в соответствующих учетных документах. Полученные таким образом данные представляют собой факты, так или иначе характеризующие явления общественной жизни. Использование аргументации, основанной на фактах, не противоречит применению теоретического анализа, поскольку всякая теория в конечном счете основывается на фактическом материале. Доказательная способность фактов еще больше возрастает в результате статистической обработки, обеспечивающей их систематизацию, представление в сжатом виде. Статистическое наблюдение следует отличать от других форм наблюдений, осуществляемых в повседневной жизни, основанных на чувственном восприятии. Статистическим можно назвать лишь такое наблюдение, которое обеспечивает регистрацию устанавливаемых фактов в учетных документах для последующего их обобщения. Конкретными примерами статистического наблюдения служит систематическое собирание сведений, например на машиностроительных предприятиях о количестве произведенных машин и узлов, издержках производства, прибыли и т. д. Статистическое наблюдение должно удовлетворять довольно жестким требованиям: 1. Наблюдаемые явления должны иметь определенное народнохозяйственное значение, научную либо практическую ценность, выражать определенные социально-экономические типы явлений. 2. Статистическое наблюдение должно обеспечить сбор массовых данных, в которых отражается вся совокупность фактов, относящихся к рассматриваемому вопросу, поскольку общественные явления находятся в постоянном изменении, развитии, имеют различные качественные состояния.

Неполные данные, недостаточно разносторонне характеризующие процесс, приводят к тому, что из их анализа делаются ошибочные выводы. 3. Многообразие причин и факторов, определяющих развитие социальных и экономических явлений, предопределяет ориентацию статистического наблюдения наряду со сбором данных, непосредственно характеризующих изучаемый объект, на учет фактов и событий, под влиянием которых осуществляется изменение его состояний. 4. Для обеспечения достоверности статистических данных на стадии статистического наблюдения необходима тщательная проверка качества собираемых фактов. Строгая достоверность его данных- одна их важнейших характеристик статистического наблюдения. Дефекты статистической информации, выражающиеся в ее недостоверности, не могут быть устранены в процессе дальнейшей обработки, поэтому их появление затрудняет принятие научно обоснованных решений и сбалансированность экономики. 5. Статистическое наблюдение должно проводиться на научной основе по заранее разработанным системе, плану и правилам (программе), обеспечивающим строго научное решение всех программно-методологических и организационных вопросов.

Программно-методологическое обеспечение статистического наблюдения.

Подготовка к статистическому наблюдению, обеспечивающая успех дела, предполагает необходимость своевременного решения ряда методологических вопросов, связанных с определением задач, цели, объекта, единицы наблюдения, разработкой программы и инструментария, определением способа сбора статистических данных. Задачи статистического наблюдения непосредственно вытекают из задач статистического исследования и состоят, в частности, в получении массовых данных непосредственно о состоянии изучаемого объекта, в учете состояния явлений, оказывающих влияние на объект, изучении данных о процессе развития явлений. Цели наблюдения определяются, прежде всего, нуждами информационного обеспечения для экономического и социального развития общества. Поставленные перед государственной статистикой цели уточняются и конкретизируются ее руководящими органами, в результате чего определяются направления и масштаб работы. В зависимости от цели решается вопрос об объекте статистического наблюдения, т.е. что именно следует наблюдать. Под объектом понимается совокупность вещественных предметов, предприятий, трудовых коллективов, лиц и т.д., посредством которых осуществляются явления и процессы, подлежащие статистическому исследованию. Объектами наблюдения в зависимости от целей могут выступать, в частности, массы единиц производственного оборудования, продукции, товарно материальных ценностей, населенных пунктов, районов, предприятий, организаций и учреждений различных отраслей народного хозяйства, население и отдельные его категории и т.д. Установление объекта статистического наблюдения связано с определением его границ на основе соответствующего критерия, выраженного некоторым характерным ограничительным признаком, называемым цензом. Выбор ценза оказывает существенное влияние на формирование однородных совокупностей, обеспечивает невозможность смешения различных объектов либо недоучета некоторой части объекта. Сущность объекта статистического наблюдения уясняется полнее при рассмотрении единиц, из которых он состоит: Единицами наблюдения служат первичные элементы объекта статистического наблюдения, являющиеся носителями регистрируемых признаков.

От единицы наблюдения следует отличать отчетную единицу. Отчетной единицей служит такая единица статистического наблюдения, от которой в установленном порядке получают информацию, подлежащую регистрации. В ряде случаев оба понятия совпадают, но нередко они имеют и вполне самостоятельное значение. Учесть все множество признаков, характеризующих объект наблюдения, оказывается невозможным и нецелесообразным, поэтому при разработке плана статистического наблюдения следует тщательно и квалифицированно решать вопрос о составе признаков, подлежащих регистрации в соответствии с поставленной целью. Перечень признаков, формулируемых в виде вопросов, обращаемых к единицам совокупности, на которые должно дать ответ статистическое исследование, представляет собой программу статистического наблюдения.

Чтобы получить исчерпывающую характеристику изучаемого явления, в составе программы должен быть учтен весь круг его существенных признаков. Однако проблематичность практического осуществления этого принципа обусловливает необходимость включения в программу лишь наиболее существенных признаков, выражающих социально-экономические типы явления, его важнейшие черты, свойства и взаимосвязи. Объем программы регламентируется величиной ресурсов, имеющихся в распоряжении статистических органов, сроками получения результатов, требованиями к степени детализации разработок и т.д. Содержание программы определяется характером и свойствами изучаемого объекта, целями и задачами исследования. К числу общих требований к составлению программы относится недопустимость включения в ее состав вопросов, на которые затруднительно получить точные, вполне достоверные ответы, дающие объективную картину той или иной ситуации. При рассмотрении некоторых наиболее важных признаков в состав программы принято включать контрольные вопросы, служащие для согласованности получаемых сведений. Чтобы усилить взаимопроверку вопросов и аналитичность программы наблюдения, взаимосвязанные вопросы располагаются в определенной последовательности, иногда в блоках взаимосвязанных признаков.

Вопросы программы статистического наблюдения должны быть сформулированы четко, ясно, лаконично, не допуская возможности различных их истолкований. В программе нередко приводится перечень возможных вариантов ответов, посредством которых уточняется смысловое содержание вопросов. Методологическое обеспечение статистического наблюдения предполагает, что одновременно с программой наблюдения составляется и программа ее разработки. Задачи исследования формулируются в перечне обобщающих статистических показателей. Эти показатели должны быть получены в результате обработки собранного материала, признаков, с которыми корреспондируется каждый показатель, и макетов статистических таблиц, где представлены результаты обработки первичной информации. Программа разработки, выявляя недостающую информацию, позволяет уточнить программу статистического наблюдения. Проведение статистического наблюдения предполагает необходимость подготовки соответствующего инструментария: формуляров и инструкции по их заполнению. Статистический формуляр - это первичный документ, в котором фиксируются ответы на вопросы программы по каждой из единиц совокупности. Формуляр, таким образом, - это носитель первичной информации. Для всех формуляров характерны некоторые обязательные элементы: содержательная часть, включающая перечень вопросов программы, свободная графа либо несколько граф для записи ответов и шифров (кодов) ответов, титульная и адресная печати. Статистические формуляры в целях обеспечения единства трактовки их содержательной части обычно сопровождаются инструкцией, т.е. письменными указаниями и разъяснениями к заполнению бланков статистического наблюдения. Инструкция разъясняет цель статистического наблюдения, характеризует его объект и единицу, время и продолжительность наблюдения, порядок оформления документации, сроки представления результатов. Однако главное назначение инструкции состоит в разъяснении содержания вопросов программы, как следует давать на них ответы и заполнять формуляр.

Виды и способы статистического наблюдения.

Успех дела сбора качественных и полных исходных данных с учетом требования экономного расходования материальных, трудовых и финансовых ресурсов во многом определяется решением вопроса о выборе вида, способа и организационной формы статистического наблюдения.

Виды статистического наблюдения.

Необходимость выбора того или иного варианта сбора статистических данных, в наибольшей мере соответствующего условиям решаемой задачи, определяется наличием нескольких видов наблюдения, различающихся прежде всего по признаку характера учета фактов во времени. Систематическое наблюдение, осуществляемое непрерывно и обязательно по мере возникновения признаков явления, называется текущим. Текущее наблюдение проводится на основе первичных документов, содержащих информацию, необходимую для достаточно полной характеристики изучаемого явления. Статистическое наблюдение, проводимое через некоторые равные промежутки времени, называется периодическим. Примером может служить перепись населения. Наблюдение, проводимое время от времени, без соблюдения строгой периодичности либо в разовом порядке, называется единовременным. Виды статистического наблюдения дифференцируются с учетом различия информации по признаку полноты охвата совокупности. В связи с этим различают сплошное и не сплошное наблюдения. Сплошным называют наблюдение, учитывающее все без исключения единицы изучаемой совокупности. Не сплошное наблюдение заведомо ориентируется на учет некоторой, как правило, достаточно массовой части единиц наблюдения, позволяющей тем не менее получить устойчивые обобщающие характеристики все статистической совокупности. В статистической практике применяются различные виды не сплошного наблюдения: выборочное, способ основного массива, анкетное и монографическое. Качество не сплошного наблюдения уступает результатам сплошного, однако в ряде случаев статистическое наблюдение вообще оказывается возможным только как не сплошное. Для получения представительной характеристики всей статистической совокупности по некоторой части ее единиц применяют выборочное наблюдение, основанное на научных принципах формирования выборочной совокупности. Случайный характер отбора единиц совокупности гарантирует беспристрастность результатов выборки, предупреждает их тенденциозность. По способу основного массива производится отбор наиболее крупных, наиболее существенных единиц совокупности, преобладающих в общей их массе по изучаемому признаку. Специфическим видом статистического наблюдения служит монографическое описание, представляющее собой детальное обследование отдельного, но весьма типичного объекта, обусловливающего интерес и с точки зрения изучения всей совокупности.

Способы статистического наблюдения.

Дифференциация разновидностей статистического наблюдения возможна также в зависимости от источников и способов получения первичной информации. В связи с этим различают непосредственное наблюдение, опрос и документальное наблюдение. Непосредственным называют наблюдение, осуществляемое путем подсчета, измерения значений признаков, снятия показаний приборов специальными лицами, осуществляющими наблюдениями, иначе говоря- регистраторами. Достаточно часто ввиду невозможности применения иных способов статистическое наблюдение осуществляется путем опроса по некоторому перечню вопросов. Ответы фиксируются в специальном формуляре. В зависимости от способов получения ответов различают экспедиционный и корреспондентский способы, а также способ саморегистрации. Экспедиционный способ опроса осуществляется в устной форме специальным лицом (счетчиком, экспедитором), заполняющим одновременно формуляр или бланк обследования.

Корреспондентский способ опроса организуется путем рассылки статистическими органами бланков обследования некоторому соответствующим образом подготовленному кругу лиц, называемых корреспондентами. Последние обязаны согласно договоренности заполнить бланк и вернуть его в статистическую организацию. Проверка правильности заполнения формуляров имеет место при опросе способом саморегистрации. Опросные листы заполняют, как и при корреспондентском способе, сами опрашиваемые, но их раздачу и сбор, а также инструктаж и контроль правильности заполнения осуществляют счетчики.

Основные организационные формы статистического наблюдения.

Все разнообразие видов и способов наблюдения осуществляется на практике посредством двух основных организационных форм: отчетности и специально организованного наблюдения. Статистическая отчетность - основная форма статистического наблюдения в социальном обществе, охватывающая все предприятия, организации и учреждения производственной и непроизводственной сфер. Отчетность- это систематическое представление в установленные сроки учетно-статистической документации в виде отчетов, всесторонне характеризующих итоги работы предприятий и учреждений в течение отчетных периодов. Отчетность непосредственно связана с первичными и бухгалтерскими учетными документами, базируется на них и представляет собой их систематизацию, т.е. результат обработки и обобщения. Отчетность осуществляется по строго установленной форме, утверждаемой Госкомстатом России. Перечень всех форм с указанием их реквизитов (принадлежностей) называется табелем отчетности. Каждая из форм отчетности должна содержать следующие сведения: наименование; номер и дату утверждения; наименование предприятия, его адрес и подчиненность; адреса, в которые представляется отчетность; периодичность, дату представления, способ передачи; содержательную часть в виде таблицы; должностной состав лиц, ответственных за разработку и достоверность отчетных данных, т.е. обязанных подписать отчет. Многообразие условий производственного процесса в различных отраслях материального производства, специфичность воспроизводственного процесса в локальных условиях, учет значимости тех или иных показателей обусловливают различие видов отчетности. Различают, прежде всего, типовую и специализированную отчетность. Типовая отчетность имеет одинаковую форму и содержание для всех предприятий либо учреждений отрасли народного хозяйства. Специализированная отчетность выражает специфические для отдельных предприятий отрасли моменты. По принципу периодичности отчетность подразделяется на годовую и текущую: квартальную, месячную, двухнедельную, недельную. В зависимости от способа передачи информации различают почтовую и телеграфную отчетность. Статистические переписи служат второй по значению организационной формой статистического наблюдения. Перепись представляет собой специально организованное статистическое наблюдение, направленное на учет численности и состава определенных объектов (явлений), а также установление качественных характеристик их совокупностей на некоторый момент времени. Переписи представляют статистическую информацию, не предусмотренную отчетностью, а в ряде случаев существенно уточняют данные текущего учета.

Для обеспечения высокого качества результатов статистических переписей осуществляется комплекс подготовительных работ. Содержание организационных мероприятий по подготовке переписей, осуществляемых согласно требованиям и правилам статистической науки, излагается в специально разрабатываемом документе, называемом организационном планом статистического наблюдения. В организационном плане должны найти решение вопросы о субъекте (исполнителе) статистического наблюдения, о месте, времени, сроках и порядке проведения, об организации переписных участков, о подборе и подготовке счетных работников, обеспечении их необходимой учетной документацией, о проведении ряда других подготовительных работ и т.д. Субъектом наблюдения выступает организация (учреждение) либо его подразделение, ответственное за наблюдение, организующее его проведение, а также непосредственно выполняющие функции по сбору и обработке статистических данных. Вопрос о месте наблюдения (месте регистрации фактов) возникает преимущественно при проведении статистико-социологических исследований и решается в зависимости от цели исследования.

Время наблюдения представляет собой период времени, в течение которого должна быть начата и завершена работа по регистрации и проверке полученных данных. Время наблюдения выбирается на основе критерия минимальной пространственной мобильности изучаемого объекта. От времени наблюдения следует отличать критический момент, к которому приурочены собранные данные.

Понятие статистического наблюдения - довольно интересная тема для рассмотрения. Статистические наблюдения используются практически везде, где только можно обусловить их применение. Вместе с тем, несмотря на обширную область применения, статистические наблюдения являются довольно-таки сложным предметом и ошибки нередки. Однако в целом статистические наблюдения как предмет для рассмотрения представляют собой большой интерес.