Как писать нанотехнологии. Нанотехнологии и области их применения

Что такое нанотехнологии?

Опубликовано kur в 29 июнь, 2007 - 22:51.

Как не странно звучит этот вопрос в наше время, но отвечать придётся. Хотя бы для себя самого. Общаясь с учёными и специалистами, занятыми в этой отрасли, я пришёл к выводу, что вопрос до сих пор остаётся открытым.

В Википедии кто-то дал такое определение:

Нанотехнология - область прикладной науки и техники, занимающаяся изучением свойств объектов и разработкой устройств размеров порядка нанометра (по системе единиц СИ, 10-9 метра).

В популярной печати используется ещё более простое и доходчивое для обывателя определение:

Нанотехнологии - это технологии манипулирования веществом на атомном и молекулярном уровне.

(Люблю краткие определения:))

Или вот определение профессора Г. Г. Еленина (МГУ, Институт прикладной математики им. М.В. Келдыша РАН):

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустройств и материалов со специальными физическими, химическими и биологическими свойствами.

Да, в общем, всё довольно понятно.. Но вот наш (специально отмечу, отечественный) дотошный скептик скажет: "А что, всякий раз, когда мы растворяем кусочек сахара в стакане чая, мы разве не манипулируем веществом на молекулярном уровне?"

И будет прав. Необходимо добавить к опередению понятия, связанные с "контролем и точностью манипулирования".

Федеральное Агентство по науке и инновациям в "Концепции развития в РФ работ в области нанотехнологий до 2010 года", дает такое определение:

"Нанотехнология - совокупность методов и приёмов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100нм, хотя бы в одном измерении, и в результатет этого получившие принципиально новые качества, позволяющие осуществить их интеграцию в полноценно функционирующие системы большого масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов".

Ого! Мощно сказано!

Или вот Статс-секретарь Минобрнауки РФ Дмитрий Ливанов определяет нанотехнологии как:

"набор научных, технологических и производственных направлений, которые объединены в единую культуру, основанную на проведении операций с материей на уровне отдельных молекул и атомов".

Простой скептик удовлетворён, но вот скептик-специалист скажет: "А не этими ли самыми нанотехнологиями всё время занимается традиционная химия или молекулярная биология и многие другие направления науки, создавая новые вещества, в которых их свойства и структура определяются определенным образом связанными наноразмерными объектами?"

Что же делать? Мы же понимаем, что такое "нанотехнологии".. чувствуем, можно сказать.. Попробуем добавить к определению ещё пару терминов.

Бритва Оккама
Нанотехнологии: любые технологии создания объектов, потребительские свойства которых определяются необходимостью контроля и манипулирования отдельными наноразмерными объектами.

Кратко и скупо? Дадим пояснения использованным в определении терминам:

"Любые": данные термин призван примирить специалистов разных научно-технологических направлений. С другой стороны, этот термин обязывает контролирующие бюджет развития нанотехнологий организации заботиться о финансировании широкого круга направлений. Включая, конечно и молекулярные биотехнологии. (Без необходимости искусственно притягивать к названию этих направлений приставку "нано-"). Считаю довольно важным термином для ситуации с нанотехнологиями в нашей стране на текущем этапе:).

"Потребительские свойства" (можно, конечно, использовать традиционный термин "Потребительская стоимость" - кому как нравится): создание объектов с использованием таких передовых методов, как контроль и манипулирование веществом на наноуровне, должно придавать какие-либо новые потребительские свойства, либо влиять на цену объектов, в противном случае оно становится бессмысленным.

Понятно также, что, например, нанотрубки, у которых один из линейных размеров лежит в области традиционной размерности, также попадают под это определение. При этом, сами создаваемые объекты могут иметь любые размеры - от "нано" до традиционных.

"Отдельные": наличие этого термина уводит определение от традиционной химии и однозначно требует наличия самого передового научного, метрологического и технологического инструментария, способного обеспечить контроль за отдельными, а при необходимости даже за конкретными нанообъектами. Именно при индивидуальном контроле мы получаем объекты, обладающие потребительской новизной. Можно возразить, что, например, многие из существующих технологий промышленного производства ультрадисперстных материалов не требуют наличия такого контроля, но это только с первого взгляда; на самом же деле сертифицированное производство ультрадисперстных материалов в обязательном порядке требует наличия контроля за размерностью отдельных частиц.

"Контроль" , без "Манипулирования" распостраняет определение на так наз. нанотехнологии "предыдущего поколения".
"Контроль" совместно с "Манипулирова­нием" распространяет определение на перспективные нанотехнологии.

Таким образом, если мы способны найти конкретный наноразмерный объект, проконтролировать и при необходимости изменить его структуру и связи, то это - "нанотехнологии". Если же мы получаем наноразмерные объекты без возможности такого контроля (за конкретными нанообъектами), то это не нанотехнологии или, в лучшем случае, нанотехнологии "предыдущего поколения".

"Наноразмерный объект": атом, молекула, надмолекулярное образование.

В целом, определение пытается связать науку и технологии с экономикой. Т.е. отвечает достижению главных целей программы развития наноиндустрии: созданию технологий, опирающихся на передовые методы исследования и производства, а также коммерциализации полученных достижений.

В общем, пока сам бы я на этом остановился. А вы?

Http://www.nanonewsnet.ru/what-are-the-nanotechnologies

Президент России Дмитрий Медведев уверен, что в стране есть все условия для успешного развития нанотехнологий.

Нанотехнологии - это новое направление науки и технологии, активно развивающееся в последние десятилетия. Нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нанометров.

Приставка "нано", пришедшая из греческого языка ("нанос" по‑гречески ‑ гном), означает одну миллиардную долю. Один нанометр (нм) - одна миллиардная доля метра.

Термин "нанотехнология" (nanotechnology) был введен в 1974 году профессором‑материаловедом из Токийского университета Норио Танигучи (Norio Taniguchi), который определил его как "технология производства, позволяющая достигать сверхвысокую точность и ультрамалые размеры...порядка 1 нм...".

В мировой литературе четко отличают нанонауку (nanoscience) от нанотехнологий (nanotechnology). Для нанонауки используется также термин ‑ nanoscale science (наноразмерная наука).

На русском языке и в практике российского законодательства и нормативных документов термин "нанотехнологии" объединяет "нанонауку", "нанотехнологии", и иногда даже "наноиндустрию" (направления бизнеса и производства, где используются нанотехнологии).

Важнейшей составной частью нанотехнологии являются наноматериалы , то есть материалы, необычные функциональные свойства которых определяются упорядоченной структурой их нанофрагментов размером от 1 до 100 нм.

‑ нанопористые структуры;
‑ наночастицы;
‑ нанотрубки и нановолокна
‑ нанодисперсии (коллоиды);
‑ наноструктурированные поверхности и пленки;
‑ нанокристаллы и нанокластеры.

Наносистемная техника ‑ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.

Области применения нанотехнологий

Перечислить все области, в которых эта глобальная технология может существенно повлиять на технический прогресс, практически невозможно. Можно назвать только некоторые из них:

‑ элементы наноэлектроники и нанофотоники (полупроводниковые транзисторы и лазеры;
‑ фотодетекторы; солнечные элементы; различные сенсоры);
‑ устройства сверхплотной записи информации;
‑ телекоммуникационные, информационные и вычислительные технологии; суперкомпьютеры;
‑ видеотехника — плоские экраны, мониторы, видеопроекторы;
‑ молекулярные электронные устройства, в том числе переключатели и электронные схемы на молекулярном уровне;
‑ нанолитография и наноимпринтинг;
‑ топливные элементы и устройства хранения энергии;
‑ устройства микро‑ и наномеханики, в том числе молекулярные моторы и наномоторы, нанороботы;
‑ нанохимия и катализ, в том числе управление горением, нанесение покрытий, электрохимия и фармацевтика;
‑ авиационные, космические и оборонные приложения;
‑ устройства контроля состояния окружающей среды;
‑ целевая доставка лекарств и протеинов, биополимеры и заживление биологических тканей, клиническая и медицинская диагностика, создание искусственных мускулов, костей, имплантация живых органов;
‑ биомеханика; геномика; биоинформатика; биоинструментарий;
‑ регистрация и идентификация канцерогенных тканей, патогенов и биологически вредных агентов;
‑ безопасность в сельском хозяйстве и при производстве пищевых продуктов.

Компьютеры и микроэлектроника

Нанокомпьютер — вычислительное устройство на основе электронных (механических, биохимических, квантовых) технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер, разрабатываемый на основе нанотехнологий, также имеет микроскопические размеры.

ДНК‑компьютер — вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления — это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.

Атомно‑силовой микроскоп ‑ сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Антенна‑осциллятор ‑ 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

Наномедицина и фармацевтическая промышленность

Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

ДНК‑нанотехнологии ‑ используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии ‑ наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Робототехника

Нанороботы ‑ роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, т.е. самовоспроизводству, называются репликаторами.

В настоящее время уже созданы электромеханические наноустройства, ограниченно способные к передвижению, которые можно считать прототипами нанороботов.

Молекулярные роторы ‑ синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы "Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 ‑ 2010 годы" составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется "Отчет о перспективах нанотехнологий", о российских вложениях написано дословно следующее: "Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США".

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок.

В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Материал подготовлен на основе информации открытых источников

«нано». В переводе «нано» означает одну миллиардную часть чего-либо. Если взять за основу измерения метр, то нанометр будет по размеру чуть больше атома. Ну, для большей красочности сравнения можно представить себе обыкновенную горошину, положенную на полюс Земли. Так вот, нанометр настолько же меньше метра, насколько горошина меньше всего земного шара.

Сочетание слов «нано» и «технология» неизбежно приводят к выводу, что ученые собираются воспользоваться достижениями прогресса, чтобы создать бесконечно малые частицы размером от одного до ста и поставить их на службу человечеству, используя их для производства новых материалов, лекарств и многого другого.

Кстати говоря, сам процесс создания наночастиц, а именно так ученые решили называть образования с размером не более ста нанометров, происходит двумя способами. Первый, более простой, подразумевает, что наночастица образуется из большого объема вещества при помощи постепенного уменьшения последнего. Второй, несколько более сложный и затратный, предполагает воздействие непосредственно на отдельные атомы и их последующее объединение. Многие ученые считают, что второй способ предпочтительнее и за ним нанотехнологии. Сам процесс напоминает конструктор, правда, с той разницей, что вместо деталей используются молекулы и атомы, из которых в буквальном смысле творятся новые материалы и наноустройства.

Именно таким новационным, и в то же время отчасти традиционным методом, ученые надеются изменить мир, создав новые возможности для каждого человека. Область применения нанотехнологий практически неограниченна. Промышленность, энергетика, космические исследования, спасение людей, шельфовая добыча нефти, экипировка и технологическая оснащенность военных подразделений - все эти и многие другие отрасли решительно изменятся под влиянием нанотехнологий, станут более эффективными.

С особенным нетерпением ожидаются достижения в области медицины. Уже сегодня есть вдохновляющие примеры нанотехнологий, использованных при создании специальной лекарственной капсулы, настроенной на взаимодействие с определенными видами клеток. Известно, что многие болезни надежно можно вылечить можно лишь на клеточном уровне. Однако лекарственные средства предыдущих поколений не могли действовать избирательно и вместе с больными клетками уничтожали также и здоровые. Именно из-за этого доза лекарства зачастую была слишком мала, чтобы одержать победу над недугом. Однако с помощью нанотехнологии стало возможным доставлять лекарственный препарат точно в больную клетку, избегая контакта со здоровой. Это огромный шаг вперед, который свидетельствует о возможной скорой победе над раковыми опухолями.

Нанотехнологии — это технологии, оперирующие величинами порядка нанометра.

Приведенные здесь в качестве эпиграфа строки взяты из фантастического произведения и пока не могут претендовать на серьезное отношение со стороны простого человека. Но для современного специалиста по нанотехнологиям, лемовские фантазии уже не утопия, а повседневная работа.

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии — это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, в сотни раз меньшая длины волны видимого света и сопоставимая с размерами атомов. Поэтому переход от «микро» к «нано» — это уже не количественный, а качественный переход — скачок от манипуляции веществом к манипуляции отдельными атомами.

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;

непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.

Реализация всех этих направлений уже началась. Почти десять лет назад были получены первые результаты по перемещению единичных атомов и сборки из них определенных конструкций, разработаны и изготовлены первые наноэлектронные элементы. По оценкам специалистов, уже на рубеже следующего века начнется производство наноэлектронных чипов, например, микросхем памяти емкостью в десятки гигабайт.

Нанотехнологический контроль изделий и материалов, буквально на уровне атомов, в некоторых областях промышленности стал обыденными делом. Реальный пример — DVD-диски, производство которых было бы невозможно без нанотехнологического контроля матриц.

Существующие способы осаждения примесей в полупроводниках (эпитаксии) по литографическим шаблонам уже практически приблизились к своему пределу не только в смысле размеров, но и топологически. Дело в том, что нынешние технологии фотолитографии позволяют изготовлять только планарные структуры — когда все элементы и проводники расположены в одной плоскости. А это накладывает существенные ограничения схемотехнику: наиболее прогрессивные схемные решения не могут быть осуществлены по такой технологии.

В частности, таким образом невозможно воспроизвести нейронные схемы, на которые возлагаются большие надежды. В то же время, сейчас активно развиваются нанотехнологические методы, позволяющие создавать активные элементы (транзисторы, диоды) размером с молекулу и формировать из них многослойные трехмерные схемы. По видимому, именно микроэлектроника будет первой отраслью, где «атомная сборка» будет осуществлена в промышленных масштабах.

Хотя сейчас в нашем распоряжении и имеются средства для манипуляций отдельными атомами, вряд ли их можно «напрямую» применять для того, чтобы собрать что-либо практически необходимое: уже хотя бы только из-за количества атомов, которые придется «монтировать».

Однако возможностей существующих технологий уже достаточно, чтобы соорудить из нескольких молекул некие простейшие механизмы, которые, руководствуясь управляющими сигналами извне (акустическими, электромагнитными и пр.), смогут манипулировать другими молекулами и создавать себе подобные устройства или более сложные механизмы.

Те, в свою очередь, смогут изготовить еще более сложные устройства и т.д. в конце концов этот экспоненциальный процесс приведет к созданию молекулярных роботов — механизмов, сравнимых по размерам с крупной молекулой и обладающих собственным встроенным компьютером.

Перспективы

За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет «разумной» и исключительно комфортной для человека

МЕДИЦИНА

Создание молекулярных роботов-врачей, которые «жили» бы внутри человеческого организма, устраняя все возникающие повреждения, или предотвращали бы возникновение таковых, включая повреждения генетические. Прогнозируемый срок реализации — первая половина XXI века.

ГЕРОНТОЛОГИЯ

Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и «облагораживания» тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики. Прогнозируемый срок реализации: третья — четвертая четверти XXI века.

ПРОМЫШЛЕННОСТЬ

Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул. Вплоть до персональных синтезаторов и копирующих устройств, позволяющих изготовить любой предмет. Первые практические результаты могут быть получены в начале XXI века.

СЕЛЬСКОЕ ХОЗЯЙСТВО

Замена «естественных машин» для производства пищи (растений и животных) их искусственными аналогами — комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки «почва — углекислый газ — фотосинтез — трава — корова — молоко» будут удалены все лишние звенья.Останется «почва — углекислый газ — молоко (творог, масло, мясо — все, что угодно)». Стоит ли говорить о том, что подобное «сельское хозяйство» не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда. По разным оценкам, первые такие комплексы будут созданы во второй — четвертой четвертях XXI века.

БИОЛОГИЯ

Станет возможным «внедрение» в живой организм на уровне атомов. Последствия могут быть самыми различными — от «восстановления» вымерших видов до создания новых типов живых существ, биороботов. Прогнозируемый срок реализации: середина XXI века.

ЭКОЛОГИЯ

Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Прогнозируемый срок реализации: середина XXI века.

ОСВОЕНИЕ КОСМОСА

По-видимому, освоению космоса «обычным» порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком — сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из «подручных материалов» (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

КИБЕРНЕТИКА

Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным «переселение» человеческого интеллекта в компьютер. Прогнозируемый срок реализации: первая — вторая четверть XXI века.

РАЗУМНАЯ СРЕДА ОБИТАНИЯ

За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет «разумной» и исключительно комфортной для человека. Прогнозируемый срок реализации: после XXI века.

Элементы информационных систем

Это позволяет уменьшить размеры одного транзистора приблизительно до 10 нм, а рабочие частоты увеличить до порядка 1012 Гц.

ВВЕДЕНИЕ

Разработанные в последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем.

Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Это позволяет уменьшить размеры одного транзистора приблизительно до 10 нм, а рабочие частоты увеличить до порядка 1012 Гц.

КВАНТОВЫЕ ОСНОВЫ НАНОЭЛЕКТРОНИКИ

При переходе к наномасштабам, на первый план выходят квантовые свойства рассматриваемых объектов. С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами квантового ограничения, интерференцией и возможностью туннелирования через потенциальные барьеры.

Специфическим проявлением квантового ограниче-ния является одноэлектронное туннелирование в условиях кулоновский блокады. Рассмотрим иллюстрируемый на следующем рисунке пример прохождения электроном структуры металл-диэлектрик-металл.

Первоначально граница раздела между диэлектриком и металлом электрически нейтральна. При приложении к металлическим областям потенциала на этой границе начинает накапливаться заряд. Это продолжается до тех пор, пока его величина не окажется достаточной для отрыва и туннелирования через диэлектрик одного электрона. После акта туннелирования система воз-вращается в первоначальное состояние. При сохранении внешнего приложенного напряжения все повторяется вновь. Так перенос заряда в структуре осуществляется порциями, равными заряду одного электрона.

НАНОЭЛЕКТРОННЫЕ ЭЛЕМЕНТЫ

Одними из первых, появились элементы на резонансном туннелировании, представляющие собой двухбарьерный диод на квантовых ямах, у которых потенциал ям и соответствующие резонансные условия контролируются третьим электродом.

Туннельный транзистор, состоит из двух последовательно включенных туннельных переходов. Туннелирование индивидуальных электронов контролируется ку-лоновской блокадой, управляемой потенциалом, приложенным к активной области транзистора в его середине между двумя прослойками твердого диэлектрика. Если представить один бит как наличие или отсутствие одного электрона, то схема памяти емкостью 100 Гб разместится на кристалле, площадью всего 6 см2.

В 1993 г. было разработано новое семейство цифровых переключающих приборов на атомных и молекулярных шнурах. На этой основе разработаны логические элементы НЕ-И и НЕ-ИЛИ. Размер такой структуры ~ 10 нм, а рабочая частота ~ 10 12 Гц.

Квантовые точки

ОБЩАЯ ИНФОРМАЦИЯ

Полупроводниковые квантовые точки представляют собой размерами порядка нанометра, гигантские молекулы, состоящие из 103 — 105 атомов, созданные на основе обычных неорганических полупроводниковых материалов Si, InP, CdSe и т.д. они больше обычных для химии традиционных молекулярных скоплений (~ 1 нм при содержании не больше 100 атомов), но меньше структур порядка нанометра по размерам, которые производятся современными литографическими средствами электронной промышленностью.

Аналогия с атомной физикой (но со сжатием энергетического масштаба в 10000 раз!) позволяет изучать «атомоподобную физику» используя магнитные поля, доступные в лабораторных условиях.

КВАНТОВЫЕ ТОЧКИ МОГУТ БЫТЬ ПОЛУЧЕНЫ ПОСРЕДСТВОМ

  • колоидальных химических средств
  • управляемым затвердеванием в процессе эпитаксического роста
  • флуктуаций размера в условных квантовых колодцах
  • нанопроизводство

КОЛЛОИДАЛЬНЫЕ ТОЧКИ

Коллоидальные точки являются свободными, т.е. они не погребены внутри другого полупроводника. Таким образом, они свободны от натяжения. Они закрыты органическими молекулами, используемыми для предотвращения свертывания маленьких точек в процессе их роста. Размер этих молекул можно контролировать в процессе роста и их форма приближается к сферической. Коллоидальные технологии были развиты достаточно глубоко в основном для ионных систем II — IV (CdS, CdSe) и недавно для полупроводников III — V групп (InP, GaP, InAs). В связи с совершенной универсальностью размеров, можно проводить спектроскопические исследования высокого разрешения. Последние выявили новые физические эффекты, включая значительное расширение взаимодействия электронно-дырочного обмена применительно к соответствующим массивным твердым телам, передача заряда в возбужденном состоянии, необычное поведение (в отношении масс) под давлением (например, задержанные фазовые переходы), и определение до 10 возбужденных состояний электронно-дырочных переходов. Теперь стала возможной замена органической протравленную оболочку вокруг этих точек неорганическими полупроводниками — например: CdSe (ZnS) — таким образом производя структуры «ядро — оболочка». Были созданы массивы каллоидальных точек. Более того входные структуры запрещающие загрузку каллоидальных квантовых точек носителями недавно стали возможны для точек размерами 6нм.

УПРАВЛЯЕМЫЕ ЗАТВЕРДЕВАНИЯ

Управляемое затвердевание пленки материала А выращенного на субстрате созданном из материала В производит острова А, т. к. разница между атомными размерами А и В достаточно велика. Примеры А/В пар включают InAs|GaAs и InP|GaInP. Если остановить металлоорганическое химическое выпаривание или молекулярно-лучевой эпитоксический рост сразу перед объединением островов, можно получить удивительно универсальный набор точек материала А.

Формы этих точек сильно разнятся. Они появляются в виде пирамид, но накрапление изменяет форму и состав. Обычно может получиться только маленькое число размеров. Спектроскопические и транспортные изменения этих точек раскрыли мультиэкситонные переходы (несколько электронов и несколько дырок распадаются вместе). Также были обнаружены эффекты Кулоновской блокады, где загрузка точки электронами вызывает Кулоновское отталкивание электронов от других электронов так электронное сложение требует повышенного входного напряжения. Вертикальное выравнивание самособирающихся точек в настоящее время обещает заманчивые перспективы для создания сетки точек и приложения устройств.

ФЛУКТУАЦИИ РАЗМЕРОВ В КВАНТОВЫХ ЯМАХ

Флуктуации размеров в квантовых ямах нарушает периодичность в двух расширенных направлениях, таким образом вызывая образование точки. Управление формой и размером достаточно сложно, но качество восприимчивости такое хорошее, что можно наблюдать чрезвычайно точные спектроскопические черты. Фактически многие из недавних достижений одноточечной спектроскопии и наноядерного магнитного резонанса или нанофотолюменесценции были сфокусированы на этом типе точек.

НАНОПРОИЗВОДСТВО

Нанопроизводство квантовых точек идеально для изучения транспортных свойств таких как наблюдение перехода электронов поодиночке в точки. Это раскрывает красивую последовательность переходов перекомпановывая атомную физику в ее правиле отбора, но на энергетическом масштабе миллиэлектронвольт (вместо приблизительно 10эВ). Аналогия с атомной физикой (но со сжатием энергетического масштаба в 10000 раз!) позволяет изучать «атомоподобную физику» используя магнитные поля, доступные в лабораторных условиях.

Квантовые точки позволяют изучать обычные квантовые структуры, о которых можно прочесть в учебнике, в лабораторных условиях (например, «частица в ящике») на максимальном пределе нулевого измерения (т.е. никакой периодичности), и изучать необычное поведение, на чем могут быть основаны новые концепции различных устройств. В числе последних, высокоэкономичный квантовый лазер, диоды излучающие свет, ячейки солнечных батарей и одноэлектронные транзисторы. Таким образом эта область интересна теоретикам квантовой физики, экспериментаторам в области электроскопии, передачи информации и, вероятно, специалистам в области оптоэлектроники. Фактически, сегодня сложно найти конференцию по физике, химии или материаловедения одним из ключевых вопросов которых не являлся бы вопрос о квантовых точках.

Президент России Дмитрий Медведев уверен, что в стране есть все условия для успешного развития нанотехнологий.

Нанотехнологии - это новое направление науки и технологии, активно развивающееся в последние десятилетия. Нанотехнологии включают создание и использование материалов, устройств и технических систем, функционирование которых определяется наноструктурой, то есть ее упорядоченными фрагментами размером от 1 до 100 нанометров.

Приставка "нано", пришедшая из греческого языка ("нанос" по‑гречески ‑ гном), означает одну миллиардную долю. Один нанометр (нм) - одна миллиардная доля метра.

Термин "нанотехнология" (nanotechnology) был введен в 1974 году профессором‑материаловедом из Токийского университета Норио Танигучи (Norio Taniguchi), который определил его как "технология производства, позволяющая достигать сверхвысокую точность и ультрамалые размеры...порядка 1 нм...".

В мировой литературе четко отличают нанонауку (nanoscience) от нанотехнологий (nanotechnology). Для нанонауки используется также термин ‑ nanoscale science (наноразмерная наука).

На русском языке и в практике российского законодательства и нормативных документов термин "нанотехнологии" объединяет "нанонауку", "нанотехнологии", и иногда даже "наноиндустрию" (направления бизнеса и производства, где используются нанотехнологии).

Важнейшей составной частью нанотехнологии являются наноматериалы , то есть материалы, необычные функциональные свойства которых определяются упорядоченной структурой их нанофрагментов размером от 1 до 100 нм.

‑ нанопористые структуры;
‑ наночастицы;
‑ нанотрубки и нановолокна
‑ нанодисперсии (коллоиды);
‑ наноструктурированные поверхности и пленки;
‑ нанокристаллы и нанокластеры.

Наносистемная техника ‑ полностью или частично созданные на основе наноматериалов и нанотехнологий функционально законченные системы и устройства, характеристики которых кардинальным образом отличаются от показателей систем и устройств аналогичного назначения, созданных по традиционным технологиям.

Области применения нанотехнологий

Перечислить все области, в которых эта глобальная технология может существенно повлиять на технический прогресс, практически невозможно. Можно назвать только некоторые из них:

‑ элементы наноэлектроники и нанофотоники (полупроводниковые транзисторы и лазеры;
‑ фотодетекторы; солнечные элементы; различные сенсоры);
‑ устройства сверхплотной записи информации;
‑ телекоммуникационные, информационные и вычислительные технологии; суперкомпьютеры;
‑ видеотехника — плоские экраны, мониторы, видеопроекторы;
‑ молекулярные электронные устройства, в том числе переключатели и электронные схемы на молекулярном уровне;
‑ нанолитография и наноимпринтинг;
‑ топливные элементы и устройства хранения энергии;
‑ устройства микро‑ и наномеханики, в том числе молекулярные моторы и наномоторы, нанороботы;
‑ нанохимия и катализ, в том числе управление горением, нанесение покрытий, электрохимия и фармацевтика;
‑ авиационные, космические и оборонные приложения;
‑ устройства контроля состояния окружающей среды;
‑ целевая доставка лекарств и протеинов, биополимеры и заживление биологических тканей, клиническая и медицинская диагностика, создание искусственных мускулов, костей, имплантация живых органов;
‑ биомеханика; геномика; биоинформатика; биоинструментарий;
‑ регистрация и идентификация канцерогенных тканей, патогенов и биологически вредных агентов;
‑ безопасность в сельском хозяйстве и при производстве пищевых продуктов.

Компьютеры и микроэлектроника

Нанокомпьютер — вычислительное устройство на основе электронных (механических, биохимических, квантовых) технологий с размерами логических элементов порядка нескольких нанометров. Сам компьютер, разрабатываемый на основе нанотехнологий, также имеет микроскопические размеры.

ДНК‑компьютер — вычислительная система, использующая вычислительные возможности молекул ДНК. Биомолекулярные вычисления — это собирательное название для различных техник, так или иначе связанных с ДНК или РНК. При ДНК‑вычислениях данные представляются не в форме нулей и единиц, а в виде молекулярной структуры, построенной на основе спирали ДНК. Роль программного обеспечения для чтения, копирования и управления данными выполняют особые ферменты.

Атомно‑силовой микроскоп ‑ сканирующий зондовый микроскоп высокого разрешения, основанный на взаимодействии иглы кантилевера (зонда) с поверхностью исследуемого образца. В отличие от сканирующего туннельного микроскопа (СТМ), может исследовать как проводящие, так и непроводящие поверхности даже через слой жидкости, что позволяет работать с органическими молекулами (ДНК). Пространственное разрешение атомно‑силового микроскопа зависит от размера кантилевера и кривизны его острия. Разрешение достигает атомарного по горизонтали и существенно превышает его по вертикали.

Антенна‑осциллятор ‑ 9 февраля 2005 года в лаборатории Бостонского университета была получена антенна‑осциллятор размерами порядка 1 мкм. Это устройство насчитывает 5000 миллионов атомов и способно осциллировать с частотой 1,49 гигагерц, что позволяет передавать с ее помощью огромные объемы информации.

Наномедицина и фармацевтическая промышленность

Направление в современной медицине, основанное на использовании уникальных свойств наноматериалов и нанообъектов для отслеживания, конструирования и изменения биологических систем человека на наномолекулярном уровне.

ДНК‑нанотехнологии ‑ используют специфические основы молекул ДНК и нуклеиновых кислот для создания на их основе четко заданных структур.

Промышленный синтез молекул лекарств и фармакологических препаратов четко определенной формы (бис‑пептиды).

В начале 2000‑го года, благодаря быстрому прогрессу в технологии изготовления частиц наноразмеров, был дан толчок к развитию новой области нанотехнологии ‑ наноплазмонике . Оказалось возможным передавать электромагнитное излучение вдоль цепочки металлических наночастиц с помощью возбуждения плазмонных колебаний.

Робототехника

Нанороботы ‑ роботы, созданные из наноматериалов и размером сопоставимые с молекулой, обладающие функциями движения, обработки и передачи информации, исполнения программ. Нанороботы, способные к созданию своих копий, т.е. самовоспроизводству, называются репликаторами.

В настоящее время уже созданы электромеханические наноустройства, ограниченно способные к передвижению, которые можно считать прототипами нанороботов.

Молекулярные роторы ‑ синтетические наноразмерные двигатели, способные генерировать крутящий момент при приложении к ним достаточного количества энергии.

Место России среди стран, разрабатывающих и производящих нанотехнологии

Мировыми лидерами по общему объему капиталовложений в сфере нанотехнологий являются страны ЕС, Япония и США. В последнее время значительно увеличили инвестиции в эту отрасль Россия, Китай, Бразилия и Индия. В России объем финансирования в рамках программы "Развитие инфраструктуры наноиндустрии в Российской Федерации на 2008 ‑ 2010 годы" составит 27,7 млрд.руб.

В последнем (2008 год) отчете лондонской исследовательской фирмы Cientifica, который называется "Отчет о перспективах нанотехнологий", о российских вложениях написано дословно следующее: "Хотя ЕС по уровню вложений все еще занимает первое место, Китай и Россия уже обогнали США".

В нанотехнологиях существуют такие области, где российские ученые стали первыми в мире, получив результаты, положившие начало развитию новых научных течений.

Среди них можно выделить получение ультрадисперсных наноматериалов, проектирование одноэлектронных приборов, а также работы в области атомно‑силовой и сканирующей зондовой микроскопии. Только на специальной выставке, проводившейся в рамках XII Петербургского экономического форума (2008 год), было представлено сразу 80 конкретных разработок.

В России уже производится целый ряд нанопродуктов, востребованных на рынке: наномембраны, нанопорошки, нанотрубки. Однако, по мнению экспертов, по комммерциализации нанотехнологических разработок Россия отстает от США и других развитых стран на десять лет.

Материал подготовлен на основе информации открытых источников