Волновой процесс. Волновое уравнение

Уравнением волны называется выражение, которое дает смещение колеблющейся частицы как функцию ее координат х, у, z и времени t:

(имеются в виду координаты равновесного положения частицы). Эта функция должна быть периодической как относительно времени t, так и относительно координат х, у, z. Периодичность по времени вытекает из того, что описывает колебания частицы с координатами х, у, z. Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстояние К, колеблются одинаковым образом.

Найдем вид функции в случае плоской волны, предполагая, что колебания иосят гармонический характер. Для упрощения направим оси координат так, чтобы ось совпала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярными к оси и, поскольку все точки волновой поверхности колеблются одинаково, смещение будет зависеть только от Пусть колебания точек, лежащих в плоскости (рис. 94.1), имеют вид

Найдем вид колебания точек в плоскости, соответствующей произвольному значению х. Для того чтобы пройти путь от плоскости х= 0 до этой плоскости, волне требуется время - скорость распространения волны).

Следовательно, колебания частиц, лежащих в плоскости х, будут отставать по времени на от колебаний частиц в плоскости т. е. будут иметь вид

Итак, уравнение плоской волны (и продольной, и поперечной), распространяющейся в направлении оси х, выглядит следующим образом:

Величина а представляет собой амплитуду волны. Начальная фаза волны а определяется выбором начал отсчета При рассмотрении одной волны начала отсчета времени и координаты обычно выбираются так, чтобы а была равной нулю. При совместном рассмотрении нескольких волн сделать так, чтобы для всех них начальные фазы равнялись нулю, как правило, не удается.

Зафиксируем какое-либо значение фазы, стоящей в уравнении (94.2), положив

(94.3)

Это выражение определяет связь между временем t и тем местом х, в котором фаза имеет зафиксированное значение. Вытекающеё из него значение дает скорость, с которой перемещается данное значение фазы. Продифференцировав выражение (94.3), получим

Таким образом, скорость распространения волны v в уравнении (94.2) есть скорость перемещения фазы, в связи с чем ее называют фазовой скоростью.

Согласно (94.4) . Следовательно, уравнение (94.2) описывает волну, распространяющуюся в сторону возрастания х. Волна, распространяющаяся в противоположном направлении, описывается уравнением

Действительно, приравняв константе фазу волны (94.5) и продифференцировав получившееся равенство, придем к соотношению

из которого следует, что волна (94.5) распространяется в сторону убывания х.

Уравнению плоской волны можно придать симметричный относительно х и t вид. Для этого введем величину

которая называется волновым числом. Умиожив числитель и знаменатель выражения (94.6) на частоту v, можно представить волновое число в виде

(см. формулу (93.2)). Раскрыв в (94.2) круглые скобки и приняв во внимание (94.7), придем к следующему уравнению плоской волны, распространяющейся вдоль оси х:

Уравнение волны, распространяющейся в сторону убывания х, отличается от (94.8) только знаком при члене

При выводе формулы (94.8) мы предполагали, что амплитуда колебаний не зависит от х. Для плоской волны это наблюдается в том случае, когда энергия волиы не поглощается средой. При распространении в поглощающей энергию среде интенсивность волны С удалением от источника колебаний постепенно уменьшается - наблюдается затухание волны. Опыт показывает, что в однородной среде такое затухание происходит по экспоненциальному закону: с убыванием во времени амплитуды затухающих колебаний; см. формулу (58.7) 1-го тома). Соответственно уравнение плоской волны имеет следующий вид:

Амплитуда в точках плоскости

Теперь найдем уравнение сферической волны. Всякий реальный источник волн обладает некоторой протяженностью. Однако если ограничиться рассмотрением волны на расстояниях от источника, значительно превышающих его размеры, то источник можно считать точечным. В изотропной и однородной среде волна, порождаемая точечным источником, будет сферической. Допустим, что фаза колебаний источника равна Тогда точки, лежащие на волновой поверхности радиуса , будут колебаться с фазой

Прежде чем рассматривать волновой процесс, дадим определение колебательного движения. Колебание – это периодически повторяющийся процесс. Примеры колебательных движений весьма разнообразны: смена сезонов года, колебание сердца, дыхание, заряд на обкладках конденсатора и другие.

Уравнение колебания в общем виде записывается как

где - амплитуда колебаний,
- циклическая частота,- время,- начальная фаза. Часто начальную фазу можно принять равной нулю.

От колебательного движения можно перейти к рассмотрению волнового движения. Волна – это процесс распространения колебаний в пространстве с течением времени. Так как колебания распространяются в пространстве с течением времени, то в уравнении волны необходимо учесть и пространственные координаты, и время. Уравнение волны имеет вид

где А 0 – амплитуда,  - частота, t – время,  - волновое число, z – координата.

Физическая природа волн весьма многообразна. Известны звуковые, электромагнитные, гравитационные, акустические волны.

По типу колебаний все волны можно классифицировать на продольные и поперечные. Продольные волны – это волны, у которых частицы среды колеблются вдоль направления распространения волны (рис. 3.1а). Примером продольной волны является звуковая волна.

Поперечные волны – это волны, у которых частицы среды колеблются в поперечном направлении относительно направления распространения (рис. 3.1б).

Электромагнитные волны относятся к поперечным волнам. Следует учесть, что в электромагнитных волнах происходит колебание поля, и никакого колебания частиц среды не происходит. Если в пространстве происходит распространение волны с одной частотой , то такая волна называется монохроматической .

Для описания распространения волновых процессов вводятся следующие характеристики. Аргумент косинуса (см. формулу (3.2)), т.е. выражение
, называетсяфазой волны .

Схематически распространение волны вдоль одной координаты показано на рис. 3.2, в данном случае распространение происходит вдоль оси z.

Период – время одного полного колебания. Период обозначается буквой Т и измеряется в секундах (с). Величина обратная периоду, называется линейной частотой и обозначается f , измеряется в герцах (=Гц). Линейная частота связана с круговой частотой. Связь выражается формулой

(3.3)

Если зафиксировать время t, то из рис. 3.2 видно, что существуют точки, например А и В, которые колеблются одинаково, т.е. в фазе (синфазно). Расстояние между ближайшими двумя точками, колеблющимися в фазе, называется длиной волны . Обозначается длина волны  и измеряется в метрах (м).

Волновое число  и длина волны  связаны между собой формулой

(3.4)

Волновое число  иначе называют фазовой постоянной или постоянной распространения. Из формулы (3.4) видно, что постоянная распространения измеряется в (). Физический смысл заключается в том, что она показывает, на сколько радиан изменяется фаза волны при прохождении одного метра пути.

Для описания волнового процесса вводится понятие фронт волны. Фронт волны – это геометрическое место воображаемых точек поверхности, до которых дошло возбуждение. Фронт волны иначе называют волновой фронт.

Уравнение, описывающее волновой фронт плоской волны, можно получить из уравнения (3.2), в виде

(3.5)

Формула (3.5) представляет собой уравнение волнового фронта плоской волны. Уравнение (3.4) показывает, что волновые фронты представляют собой бесконечные плоскости, перемещающиеся в пространстве перпендикулярно оси z.

Скорость перемещения фазового фронта называется фазовой скоростью . Фазовая скорость обозначается V ф и определяется формулой

(3.6)

Первоначально уравнение (3.2) содержит фазу с двумя знаками – отрицательным и положительным. Отрицательный знак, т.е.
, указывает, что фронт волны распространяется вдоль положительного направления распространения осиz. Такая волна называется бегущей, или падающей.

Положительный знак фазы волны указывает на движение фронта волны в обратном направлении, т.е. противоположном направлению оси z. Такая волна называется отраженной.

В дальнейшем будем рассматривать бегущие волны.

Если волна распространяется в реальной среде, то из-за происходящих тепловых потерь, неизбежно происходит уменьшение амплитуды. Рассмотрим простой пример. Пусть волна распространяется вдоль оси z и первоначальное значение амплитуды волны соответствует 100%, т.е. A 0 =100. Допустим при прохождении одного метра пути амплитуда волны уменьшается на 10%. Тогда будем иметь следующие значения амплитуд волн

Общая закономерность изменения амплитуды имеет вид

Такими свойствами обладает показательная функция. Графически процесс можно показать в виде рис. 3.3.

В общем виде соотношение пропорциональности запишем как

, (3.7)

где  - постоянная затухания волны.

Фазовую постоянную  и постоянную затухания  можно объединить с помощью введения комплексной постоянной распространения , т.е.

, (3.8)

где  - фазовая постоянная,  - постоянная затухания волны.

В зависимости от вида волнового фронта различают волны плоские, сферические, цилиндрические.

Плоская волна – это волна, имеющая плоский фронт волны. Плоской волне также можно дать следующее определение. Волна называется плоской однородной, если векторное поле ив любой точке плоскости перпендикулярны направлению распространения и не изменяются по фазе и амплитуде.

Уравнение плоской волны

Если источник, порождающий волну, является точечным, то фронт волны, распространяющийся в неограниченном однородном пространстве, представляет собой сферу.Сферическая волна – это волна, имеющая сферический фронт волны. Уравнение сферической волны имеет вид

, (3.10)

где r – радиус-вектор, проведенный из начала координат, совпадающего с положением точечного источника, в конкретную точку пространства, расположенной на расстоянии r.

Волны могут возбуждаться с помощью бесконечной нити источников, расположенных вдоль оси z. В этом случае такая нить будет порождать волны, фазовый фронт которых представляет собой цилиндрическую поверхность.

Цилиндрическая волна – это волна, имеющая фазовый фронт в виде цилиндрической поверхности. Уравнение цилиндрической волны имеет вид

, (3.11)

Формулы (3.2), (3.10, 3.11) указывают на различную зависимость амплитуды от расстояния между источником волны и конкретной точкой пространства, до которой дошла волна.

      Уравнения Гельмгольца

Максвелл получил один из важнейших результатов электродинамики, доказав, что распространение электромагнитных процессов в пространстве с течением времени происходит в виде волны. Рассмотрим доказательство этого положения, т.е. докажем волновой характер электромагнитного поля.

Запишем первые два уравнения Максвелла в комплексной форме в виде

(3.12)

Возьмем второе уравнение системы (3.12) и применим к нему операцию ротора к левой и правой частям. В результате получим

Обозначим
, которая представляет собой постоянную распространения. Таким образом

(3.14)

С другой стороны, на основе известного тождества в векторном анализе можно записать

, (3.15)

где
является оператором Лапласа, который в декартовой системе координат выражается тождеством

(3.16)

Учитывая закон Гаусса, т.е.
, уравнение (3.15) запишется в более простом виде

, или

(3.17)

Аналогично, пользуясь симметрией уравнений Максвелла, можно получить уравнение относительно вектора, т.е.

(3.18)

Уравнения вида (3.17, 3.18) называются уравнениями Гельмгольца. В математике доказано, что если какой-либо процесс описывается в виде уравнений Гельмгольца, то это означает, что процесс является волновым процессом. В нашем случае делаем заключение: переменные во времени электрическое и магнитное поле неизбежно приводит к распространению в пространстве электромагнитных волн.

В координатной форме уравнение Гельмгольца (3.17) записываются в виде

где ,,- единичные векторы вдоль соответствующих осей координат

,

,

.(3.20)

      Свойства плоских волн при распространении в непоглощающих средах

Пусть плоская электромагнитная волна распространяется вдоль оси z, тогда распространение волны описывается системой дифференциальных уравнений

(3.21)

где и- комплексные амплитуды поля,

(3.22)

Решение системы (3.21) имеет вид

(3.23)

Если волна распространяется только в одном направлении вдоль оси z, и вектор направлен вдоль осиx, то решение системы уравнений целесообразно записать в виде

(3.24)

где и- единичные орты вдоль осиx,y.

Если в среде отсутствуют потери, т.е. параметры среды  а и  а, и
являются действительными величинами.

Перечислим свойства плоских электромагнитных волн

    Для среды вводится понятие волнового сопротивления среды

(3.25)

где ,
- амплитудные значения напряженностей поля. Волновое сопротивление для среды без потерь также является действительной величиной.

Для воздуха волновое сопротивление составляет

(3.26)

    Из уравнения (3.24) видно, что магнитное и электрическое поле совпадает по фазе. Поле плоской волны представляет собой бегущую волну, которую записывается в виде

(3.27)

На рис. 3.4 векторы поля иизменяются синфазно, как следует из формулы (3.27).

    Вектор Пойнтинга в любой момент времени совпадает с направлением распространения волны

(3.28)

Модуль вектора Пойнтинга определяет плотность потока мощности и измеряется в
.

    Средняя плотность потока мощности определяется

(3.29)

, (3.30)

где
- действующие значения напряженностей поля.

Энергия поля, заключенная в единице объема, называется плотностью энергии. Электромагнитное поле изменяется с течением времени, т.е. является переменным. Значение плотности энергии в данный момент времени называется мгновенной плотностью энергии. Для электрической и магнитной составляющих электромагнитного поля мгновенные плотности энергии соответственно равны

Учитывая, что
, из соотношений (3.31) и (3.32) видно, что
.

Полная плотность электромагнитной энергии определяется выражением

(3.33)

    Фазовая скорость распространения электромагнитной волны определяется формулой

(3.34)

    Длина волны определяется

(3.35)

где - длина волны в вакууме (воздухе), с – скорость света в воздухе, - относительная диэлектрическая проницаемость,  - относительная магнитная проницаемость, f – линейная частота,  - циклическая частота, V ф – фазовая скорость,  - постоянная распространения.

    Скорость перемещения энергии (групповая скорость) можно определить из формулы

(3.36)

где - вектор Пойнтинга, - плотность энергии.

Если расписать и в соответствие с формулами (3.28), (3.33), то получим

(3.37)

Таким образом, получим

(3.38)

При распространении электромагнитной монохроматической волны в среде без потерь выполняется равенство фазовой и групповой скорости.

Между фазовой и групповой скоростью существует связь, выраженная формулой

(3.39)

Рассмотрим пример распространения электромагнитной волны во фторопласте, имеющем параметры  =2, =1. Пусть напряженность электрического поля соответствует

(3.40)

Скорость распространения волны в такой среде будет равна

Волновое сопротивление фторопласта соответствует значению

Ом (3.42)

Амплитудные значения напряженности магнитного поля принимают значения

, (3.43)

Плотность потока энергии, соответственно, равна

Длина волны на частоте
имеет значение

(3.45)

      Теорема Умова – Пойнтинга

Электромагнитное поле характеризуется собственной энергией поля, причем, полная энергия определяется суммой энергий электрического и магнитного полей. Пусть электромагнитное поле занимает замкнутый объем V, тогда можно записать

(3.46)

Энергия электромагнитного поля, в принципе, не может оставаться постоянной величиной. Возникает вопрос: Какие факторы влияют на изменение энергии? Установлено, что на изменение энергии внутри замкнутого объема влияют следующие факторы:

    часть энергии электромагнитного поля может превратиться в другие виды энергии, например, механическую;

    внутри замкнутого объема могут действовать сторонние силы, которые могут увеличивать или уменьшать энергию электромагнитного поля, заключенную в рассматриваемом объеме;

    рассматриваемый замкнутый объем V может обмениваться энергией с окружающими телами за счет процесса излучения энергии.

Интенсивность излучения характеризуется вектором Пойнтинга. ОбъемV имеет замкнутую поверхность S. Изменение энергии электромагнитного поля можно рассматривать как поток вектора Пойнтинга сквозь замкнутую поверхность S (рис. 3.5), т.е.
, причем возможны варианты
>0 ,
<0 ,
=0 . Отметим, что нормаль, проведенная к поверхности
,всегда является внешней.

Напомним, что
, где
-это мгновенные значения напряженности поля.

Переход от интеграла по поверхности
к интегралу по объему V осуществлен на основе теоремы Остроградского-Гаусса.

Зная, что

подставим эти выражения в формулу (3.47). После преобразования, получим выражение в виде:

Из формулы (3.48) видно, что левая часть выражается суммой, состоящей из трех слагаемых, каждое из которых рассмотрим в отдельности.

Слагаемое
выражаетмгновенную мощность потерь , обусловленную в рассматриваемом замкнутом объеме токами проводимости. Иными словами, слагаемое выражает тепловые потери энергии поля, заключенного в замкнутом объеме.

Второе слагаемое
выражает работу сторонних сил, произведенную в единицу времени, т.е. мощность сторонних сил. Для такой мощности возможны значения
>0,
<0.

Если
>0, т.е. в объеме V добавляется энергия, тогда сторонние силы можно рассматривать в качестве генератора. Если
<0 , т.е. в объеме V происходит уменьшение энергии, то сторонние силы играют роль нагрузки.

Последнее слагаемое для линейной среды можно представить в виде:

(3.49)

Формула (3.49) выражает скорость изменения энергии электромагнитного поля, заключенного внутри объема V.

После рассмотрения всех слагаемых можно формулу (3.48) записать в виде:

Формула (3.50) выражает собой теорему Пойнтинга. Теорема Пойнтинга выражает баланс энергии внутри произвольной области, в которой существует электромагнитное поле.

      Запаздывающие потенциалы

Уравнения Максвелла в комплексной форме, как известно, имеют вид:

(3.51)

Пусть в однородной среде существуют сторонние токи. Попробуем преобразовать уравнения Максвелла для такой среды и получить более простое уравнение, описывающее электромагнитное поле в такой среде.

Возьмем уравнение
.Зная, что характеристики и связаны междусобой
,то можно записать
Учтем, что напряженность магнитного поля можно выразить с помощью векторного электродинамического потенциала , который вводится соотношением
, тогда

(3.52)

Возьмем второе уравнение системы Максвелла (3.51) и выполним преобразования:

(3.53)

Формула (3.53) выражает второе уравнение Максвелла через векторный потенциал . Формулу (3.53) можно записать в виде

(3.54)

В электростатике, как известно, выполняется соотношение:

(3.55)

где -вектор напряженности поля,
- скалярный электростатический потенциал. Знак минус указывает, что вектор направлен из точки, имеющей более высокий потенциал, в точку с более низким потенциалом.

Выражение в скобках (3.54) по аналогии с формулой (3.55) можно записать в виде

(3.56)

где
- скалярный электродинамический потенциал.

Возьмем первое уравнение Максвелла и запишем его с помощью электродинамических потенциалов

В векторной алгебре доказано тождество:

Используя тождество (3.58) можно первое уравнение Максвелла, записанное в виде (3.57), представить в виде

Приведем подобные

Умножим левую и правую части на множитель (-1):

можно задать произвольным образом, поэтому можно положить, что

Выражение (3.60) называется лоренцевой калибровкой .

Если w =0 , то получим кулонову калибровку
=0.

Сучетом калибровок уравнение (3.59) можно записать

(3.61)

Уравнение (3.61) выражает собой неоднородное волновое уравнение для векторного электродинамического потенциала.

Аналогичным путем, исходя из третьего уравнения Максвелла
,можно получить неоднородное уравнение для скалярного электродинамического потенциала в виде:

(3.62)

Полученные неоднородные уравнения для электродинамических потенциалов имеют свои решения

, (3.63)

гдеМ – произвольная точка М, -объемная плотность заряда, γ – постоянная распространения, r

(3.64)

где V – объем, занимаемый сторонними токами, r – текущее расстояние от каждого элемента объема источника до точки М.

Решение для векторного электродинамического потенциала (3.63), (3.64) называется интегралом Кирхгофа для запаздывающих потенциалов .

Множитель
можно выразить с учетом
в виде

Этот множитель соответствует конечной скорости распространения волны от источника, причем
Т.к. скорость распространения волны является конечной величиной, то воздействие источника, порождающего волны, до произвольной точки М доходит с запаздыванием во времени. Значение времени запаздывания определяется:
На рис. 3.6 показан точечный источникU , который излучает сферические волны, распространяющиеся со скоростью v в окружающем однородном пространстве, а также произвольная точка М, расположенная на расстоянии r , до которой доходит волна.

В момент времени t векторный потенциал
в точке М является функцией токов, протекающих в источнике U в более раннее время
Иными словами,
зависит от токов источника, которые протекали в ней в более ранний момент

Из формулы (3.64) видно, что векторный электродинамический потенциал параллелен (сонаправлен) с плотностью тока сторонних сил; его амплитуда убывает по закону ; на больших расстояниях по сравнению с размерами излучателя волна имеет сферический фронт волны.

Учитывая
и первое уравнение Максвелла, можно определить напряженность электрического поля:

Полученные соотношения определяют электромагнитное поле в пространстве, созданном заданным распределением сторонних токов

      Распространение плоских электромагнитных волн в хорошо проводящих средах

Рассмотрим распространение электромагнитной волны в проводящей среде. Такие среды также называются металлоподобными. Реальная среда является проводящей, если плотность токов проводимости значительно превосходит плотность токов смещения, т.е.
и
, причем
, или

(3.66)

Формула (3.66) выражает условие, при котором реальную среду можно считать проводящей. Иными словами, мнимая часть комплексной диэлектрической проницаемости должна превосходить действительную часть. Формула (3.66) также показывает зависимость от частоты, причем, чем ниже частота, тем в среде более ярко выражены свойства проводника. Рассмотрим это положение на примере.

Так, на частоте f = 1МГц = 10 6 Гц сухая почва имеет параметры =4, =0,01,. Сравним между собойи, т.еи
. Из полученных значений видно, что 1,610 -19 >> 3,5610 -11 , поэтому сухую почву при распространении волны с частотой 1 МГц следует считать проводящей.

Для реальной среды запишем комплексную диэлектрическую проницаемость

(3.67)

т.к. в нашем случае
, то для проводящей среды можно записать

, (3.68)

где  - удельная проводимость,  - циклическая частота.

Постоянная распространения , как известно, определяется из уравнений Гельмгольца

Таким образом, получим формулу для постоянной распространения

(3.69)

Известно, что

(3.70)

Учитывая тождество (3.49), формулу (3.50) можно записать в виде

(3.71)

Постоянная распространения выражается в виде

(3.72)

Сравнение действительных и мнимых частей в формулах (3.71), (3.72) приводит к равенству значений фазовой постоянной  и постоянной затухания , т.е.

(3.73)

Из формулы (3.73) выпишем длину волны, которую приобретает поле при распространении в хорошо проводящей среде

(3.74)

где - длина волны в металле.

Из полученной формулы (3.74) видно, что длина электромагнитной волны, распространяющейся в металле, значительно сокращается по сравнению с длиной волны в пространстве.

Выше сказано, что амплитуда волны при распространении в среде с потерями уменьшается по закону
. Для характеристики процесса распространения волны в проводящей среде вводится понятиеглубина поверхностного слоя или глубина проникновения .

Глубина поверхностного слоя - это расстояние d, на котором амплитуда поверхностной волны уменьшается в е раз по сравнению с ее начальным уровнем.

(3.75)

где - длина волны в металле.

Глубину поверхностного слоя можно также определить из формулы

, (3.76)

где  - циклическая частота,  а – абсолютная магнитная проницаемость среды,  - удельная проводимость среды.

Из формулы (3.76) видно, что с повышением частоты и удельной проводимости, глубина поверхностного слоя уменьшается.

Приведем пример. Медь с удельной проводимостью
на частотеf = 10 ГГц ( = 3см) имеет глубину поверхностного слоя d =
. Отсюда можно сделать важный для практики вывод: нанесение на непроводящее покрытие слоя хорошо проводящего вещества позволит выполнить элементы устройств с малыми тепловыми потерями.

      Отражение и преломление плоской волны на границе раздела сред

При распространении плоской электромагнитной волны в пространстве, представляющем собой области с различными значениями параметров
и границей раздела в виде плоскости, возникают отраженные и преломленные волны. Интенсивности этих волн определяются через коэффициенты отражения и преломления.

Коэффициентом отражения волны называется отношение комплексных значений напряженностей электрического поля отраженной к падающей волн на границе раздела и определяется формулой:


(3.77)

Коэффициентом прохождения волны во вторую среду из первой называется отношение комплексных значений напряженностей электрического поля преломленной к падающей волн и определяется формулой

(3.78)

Если вектор Пойнтинга падающей волны перпендикулярен границе раздела, то

(3.79)

где Z 1 ,Z 2 – характеристическое сопротивление для соответствующих сред.

Характеристическое сопротивление определяется по формуле:

где
(3.80)

.

При наклонном падении направление распространения волны по отношению к границе раздела задается углом падения. Угол падения – угол между нормалью к поверхности и направлением распространения луча.

Плоскость падения – это плоскость, которая содержит падающий луч и нормаль, восстановленную в точку падения.

Из граничных условий следует, что углы падения и преломления связаны законом Снелля:

(3.81)

где n 1 , n 2 - показатели преломления соответствующих сред.

Электромагнитные волны характеризуются поляризацией. различают эллиптическую, круговую и линейную поляризации. В линейной поляризации выделяют горизонтальную и вертикальную поляризацию.

Горизонтальная поляризация – поляризация, при которой вектор колеблется в плоскости, перпендикулярной плоскости падения.

Пусть на границу раздела двух сред падает плоская электромагнитная волна с горизонтальной поляризацией как показано на рис. 3.7. Вектор Пойнтинга падающей волны обозначен . Т.к. волна имеет горизонтальную поляризацию, т.е. вектор напряженности электрического поля колеблется в плоскости, перпендикулярной плоскости падения, то он обозначени на рис. 3.7 показан в виде кружочка с крестиком (направлен от нас). Соответственно вектор напряженности магнитного поля лежит в плоскости падения волны и обозначен. Векторы,,образуют правую тройку векторов.

Для отраженной волны соответствующие векторы поля снабжены индексом «отр», для преломленной индексом - «пр».

При горизонтальной (перпендикулярной) поляризации нахождение коэффициентов отражения и прохождения проводятся следующим образом (рис. 3.7).

На границе раздела двух сред выполняются граничные условия, т.е.

В нашем случае мы должны выявить тангенциальные проекции векторов, т.е. можно записать

Линии напряженности магнитного поля направлены для падающей, отраженной и преломленной волны перпендикулярную плоскость падения. Поэтому следует записать

Исходя из этого, можем составить на основании граничных условий систему

Также известно, что напряженности электрического и магнитного полей связаны между собой через волновое сопротивление среды Z

Тогда второе уравнение системы можно записать в виде

Итак, система уравнений приобрела вид

Разделим оба уравнения этой системы на амплитуду падающей волны
и,учитывая определения коэффициентов преломления (3.77) и прохождения (3.78), можно записать систему в виде

Система имеет два решения и две неизвестные величины. Такая система, как известно, разрешима.

Вертикальная поляризация – поляризация, при которой вектор колеблется в плоскости падения.

При вертикальной (параллельной) поляризации коэффициенты отражения и прохождения выражаются следующим образом (рис. 3.8).

Для вертикальной поляризации записывается аналогичная система уравнений как и для горизонтальной поляризации, но с учетом направления векторов электромагнитного поля

Такую систему уравнений аналогичным образом можно привести к виду

Решением системы являются выражения для коэффициентов отражения и прохождения

При падении плоских электромагнитных волн с параллельной поляризацией на границу раздела двух сред коэффициент отражения может обращаться в ноль. Угол падения, при котором падающая волна полностью, без отражения, проникает из одной среды в другую, называется углом Брюстера и обозначается как
.

(3.84)

(3.85)

Подчеркнем, что угол Брюстера при падении плоской электромагнитной волны на немагнитный диэлектрик может существовать лишь при параллельной поляризации.

Если плоская электромагнитная волна падает под произвольным углом на границу раздела двух сред с потерями, то отраженную и преломленную волны следует считать неоднородными, так как плоскость равных амплитуд должна совпадать с границей раздела. Для реальных металлов угол между фазовым фронтом и плоскостью равных амплитуд мал, поэтому можно полагать, что угол преломления равен 0.

      Приближенные граничные условия Щукина-Леонтовича

Данные граничные условия применимы в случае, когда одна из сред является хорошим проводником. Предположим, что плоская электромагнитная волна падает из воздуха под углом  на плоскую границу раздела с хорошо проводящей средой, которая описывается комплексным показателем преломления

(3.86)

Из определения понятия хорошо проводящей среды следует, что
. Применив закон Снелля, можно отметить, что угол преломления будет очень малым. Из этого можно считать, что преломленная волна входит внутрь хорошо проводящей среды практически по направлению нормали при любом значении угла падения.

Используя граничные условия Леонтовича нужно знать касательную составляющую магнитного вектора . Обычно приближенно полагают, что эта величина совпадает с аналогичной составляющей, вычисленной для поверхности идеального проводника. Ошибка, возникающая при таком приближении, будет очень мала, так как коэффициент отражения от поверхности металлов, как правило, близок к нулю.

      Излучение электромагнитных волн в свободное пространство

Выясним, в чем заключаются условия излучения электромагнитной энергии в свободное пространство. Для этого рассмотрим точечный монохроматический излучатель электромагнитных волн, который помещен в начало сферической системы координат. Как известно, сферическая система координат задается (r, Θ, φ), где r – радиус вектор, проведенный из начала системы в точку наблюдения; Θ – меридиональный угол, отсчитываемый от оси Z (зенита) до радиус-вектора, проведенного в точку М; φ – азимутальный угол, отсчитываемый от оси Х до проекции радиус-вектора, проведенной из начала координат до точки М′ (М′ - это проекция точки М на плоскость XOY). (Рис.3.9).

Точечный излучатель находится в однородной среде, обладающей параметрами

Точечный излучатель излучает электромагнитные волны во все направления и любая составляющая электромагнитного поля подчиняется уравнению Гельмгольца, кроме точки r =0 . Можно ввести комплексную скалярную функцию Ψ, под которой понимается любая произвольно взятая составляющая поля. Тогда уравнение Гельмгольца для функции Ψ имеет вид:

(3.87)

где
- волновое число (постоянная распространения).

(3.88)

Положим, что функция Ψ обладает сферической симметрией, тогда уравнение Гельмгольца можно записать в виде:

(3.89)

Уравнение (3.89) можно записать также в виде:

(3.90)

Уравнения (3.89) и (3.90) являются тождественными между собой. Уравнение (3.90) известно в физике как уравнение колебаний. Такое уравнение имеет два решения, которые при равенстве амплитуд имеют вид:

(3.91)

(3.92)

Как видно из (3.91), (3.92) решение уравнения отличается только знаками. Причем, указывает набегущую от источника волну, т.е. волна распространяется от источника в бесконечность. Вторая волна указывает, что волна приходит к источнику из бесконечности. Физически один и тот же источник не может порождать одновременно две волны: бегущую и приходящую из бесконечности. Поэтому необходимо учесть, что волна физически не существует.

Рассматриваемый пример достаточно прост. Но в случае излучения энергии системой источников выбрать правильное решение весьма сложно. Поэтому требуется аналитическое выражение, являющееся критерием выбора правильного решения. Нужен общий критерий в аналитическом виде, позволяющий выбрать однозначное физически обусловленное решение.

Иными словами, нужен такой критерий, который отличает функцию, выражающую собой бегущую волну от источника в бесконечность, от функции, описывающей волну, приходящую из бесконечности в источник излучения.

Такая задача решена А. Зоммерфельдом. Он показал, что для бегущей волны, описываемой функцией ,выполняется соотношение:

(3.93)

Эта формула называется условием излучения или условием Зоммерфельда .

Рассмотрим элементарный электрический излучатель в виде диполя. Электрический диполь представляет собой отрезок провода малой длины l по сравнению с длинной волны  (l << ), по которому протекает переменный ток (рис. 3.9). Т.к. соблюдается выполнение условия l << , то можно считать, что во всех сечениях провода в данный момент времени протекает одинаковый ток

Нетрудно показать, что изменение электрического поля в пространстве окружающем провод, носит волновой характер. Для наглядности рассмотрим предельно упрощенную модель процесса образования и изменения электрической составляющей электромагнитного поля, которое излучает провод. На рис. 3.11 показана модель процесса излучения электрического поля электромагнитной волны в течении времени, равного одному периоду

Как известно, электрический ток обусловлен движением электрических зарядов, а именно

или

В дальнейшем будем рассматривать только изменение положения на проводе положительного и отрицательного зарядов. Силовая линия напряженности электрического поля начинается на положительном заряде и оканчивается на отрицательном. На рис. 3.11 силовая линия показана пунктиром. Стоит помнить, что электрическое поле создается во всем пространстве, окружающем проводник, хотя на рис. 3.11 показана одна силовая линия.

Чтобы по проводнику протекал переменный ток, необходим источник переменной ЭДС. Такой источник включен в середину провода. Состояние процесса излучения электрического поля показано цифрами от 1 до 13. Каждая цифра соответствует определенному моменту времени, связанному состоянием процесса. Момент t=1 соответствует началу процесса, т.е. ЭДС = 0. В момент t=2 появляется переменная ЭДС, которая вызывает движение зарядов, как показано на рис. 3.11. с появлением движущихся зарядов в проводе возникает электрическое поле в пространстве. с течением времени (t = 3÷5) заряды движутся к концам проводника и силовая линия охватывает все большую часть пространства. силовая линия расширяется со скоростью света в направлении, перпендикулярном проводу. В момент времени t = 6 – 8 ЭДС, пройдя через максимальное значение, уменьшается. Заряды движутся к середине провода.

В момент времени t = 9 заканчивается полупериод изменения ЭДС, она уменьшается до нуля. При этом происходит слияние зарядов, они компенсируют друг друга. электрическое поле в этом случае отсутствует. Силовая линия напряженности излученного электрического поля замыкается и продолжает удаляться от провода.

Далее наступает второй полупериод изменения ЭДС, процессы повторяются с учетом изменения полярности. На рис. 3.11 в моменты t = 10÷13 показана картина протекания процесса с учетом силовой линии напряженности электрического поля.

Мы рассмотрели процесс образования замкнутых силовых линий вихревого электрического поля. Но стоит помнить, что излучение электромагнитных волн является единым процессом. Электрическое и магнитное поле являются неразрывными взаимообусловленными составляющими электромагнитного поля.

Процесс излучения, показанный на рис. 3.11 аналогичен излучению электромагнитного поля симметричным электрическим вибратором и широко применяется в технике радиосвязи. Необходимо помнить, что плоскость колебаний вектора напряженности электрического поля является взаимно перпендикулярной плоскости колебаний вектора напряженности магнитного поля.

Излучение электромагнитных волн обусловлено переменным процессом. Поэтому в формуле для заряда можно положить постоянную С=0. Для комплексной величины заряда можно записать.


(3.94)

По аналогии с электростатикой можно ввести понятие момента электрического диполя с переменным током

(3.95)

Из формулы (3.95) следует, что векторы момента электрического диполя и направленного отрезка провода являются сонаправленными.

Следует заметить, что реальные антенны имеют длину проводов обычно сравнимую с длиной волны. Чтобы определить излучательные характеристики таких антенн, провод обычно мысленно разбивают на отдельные малые участки, каждый из которых рассматривают как элементарный электрический диполь. результирующее поле антенны находят путем суммирования излучаемых векторных полей, порожденных отдельными диполями.

Волновые процессы

Основные понятия и определения

Рассмотрим некоторую упругую среду - твёрдую, жидкую или га­зообразную. Если в каком-либо месте этой среды возбудить колебания её частиц, то вследствие взаимодействия между частицами, колебания будут, передаваясь от одной частицы среды к другой распространяться в среде с некоторой скоростью . Процесс распространения колеба­ний в пространстве называется волной .

Если частицы в среде колеблются в направлении распростране­ния волны, то она называется продольной. Если колебания частиц происходят в плоскости, перпендикулярной направлению распространения волны, то волна называется попереч­ной . Поперечные механические волны могут возникнуть только в сре­де, обладающей ненулевым модулем сдвига. Поэтому в жидкой и газо­образной средах могут распространяться только продольные волны . Различие между продольными и поперечными волнами наиболее хорошо видно на примере распространения колебаний в пружине - см. рисунок.

Для характеристики поперечных колебаний необходимо задать положение в пространстве плоскости, проходящей через направление колебаний и направление распространения волны - плоскости поляризации .

Область пространства, в которой колеблются все частицы среды, называется волновым полем . Граница между волновым полем и остальным пространством среды называется фронтом волны . Иначе говоря, фронт волны - геометрическое место точек, до которых колебания дошли к данному моменту времени . В однородной и изотропной среде направление распространения волны перпендикулярно к фронту волны.

Пока в среде существует волна, частицы среды совершают колебания около своих положений равновесия. Пусть эти колебания являются гармоническими, и период этих колеба­ний равен Т . Частицы, отстоящие друг от друга на расстояние

вдоль направления распространения волны, совершают колебания одинаковым образом, т.е. в каждый дан­ный момент времени их смещения одинаковы. Расстояние называется длиной волны . Другими словами, длина волны есть расстояние, на которое распространяется волна за один период колебаний .

Геометрическое место точек, совершающих колебания в одной фазе называется волновой поверхностью . Фронт волны – частный случай волновой поверхности. Длина волны – минимальное расстояние между двумя волновыми поверхностями, в которых точки колеблются одинаковым образом, или можно сказать, что фазы их колебаний отличаются на .

Если волновые поверхности являются плоскостями, то волна называется плоской , а если сферами – то сферической. Плоская волна возбуждается в сплошной однородной и изотропной среде при колебаниях бесконечной плоскости. Возбуждение сферической можно представить в виде результата радиальных пульсаций сферической поверхности, а также как результат действия точечного источника, размерами которого по сравнению с расстоянием до точки наблюдения можно пренебречь. Поскольку любой реальный источник имеет конечные размеры, на достаточно большом расстоянии от него волна будет близка к сферической. В то же время участок волновой поверхности сферической волны по мере уменьшения его размеров становится сколь угодно близким к участку волновой поверхности плоской волны.

Уравнения плоской и сферической волн

Уравнением волны называется выражение, которое определяет сме­щение колеблющейся точки, как функцию координат равновесного поло­жения точки и времени:

Если источник совершает периодические колебания, то функция(22.2) должна быть периодической функцией и координат и времени. Периодичность по времениследует из того, что функция описывает пе­риодические колебания точки с координатами; периодич­ность по координатам - из того, что точки находящиеся на расстоя­нии вдоль направления распространения волны, колеблются одинаковым образом

Ограничимся рассмотрением гармонических волн, когда точки среды совершают гармонические колебания. Необходимо отметить, что любую негармоническую функцию можно представить в виде результата наложения гармонических волн. Поэтому рассмотрение только гармонических волн не приводит к принципиальному ухудшению общности получаемых результатов.

Рассмотрим плоскую волну. Выберем систему координат так, чтобы ось Ох совпадала с направлением распространения волны. Тогда волновые поверхности будут перпендикулярны к оси Ох и, поскольку все точки волновой поверхности ко­леблются одинаково, смещение точек среды из положений равновесия будет зависеть только отх и t :

Пусть колебания точек, лежащих в плоскости имеют вид:

(22.4)

Колебания в плоскости, находящейся на расстоянии х от начала координат, отстают по времени от колебаний в на промежуток времени , необходимый волне для преодоления расстояния х, и описываются уравнением

которое и является уравнением плоской волны, распространяющейся в направлении оси Ох.

При выводе уравнения (22.5) мы предполагали амплитуду колебаний одинаковой во всех точках. В случае плоской волны это выполняет­ся, если энергия волны не поглощается средой.

Рассмотрим некоторое значение фазы, стоящей в уравнении (22.5):

(22.6)

Уравнение (22.6) даёт связь между временем t и местом - х , в котором указанное значение фазы осуществляется в данный момент. Определив из уравнения (22.6) , мы най­дём скорость, с которой перемещается данное значение фазы. Диффе­ренцируя(22.6), получаем:

Откуда следует (22.7)

ПЛОСКАЯ ВОЛНА

ПЛОСКАЯ ВОЛНА

Волна, у к-рой направление распространения одинаково во всех точках пространства. Простейший пример - однородная монохроматич. незатухающая П. в.:

и(z, t)=Aeiwt±ikz, (1)

где А - амплитуда, j= wt±kz - , w=2p/Т - круговая частота, Т -период колебаний, k - . Поверхности постоянной фазы (фазовые фронты) j=const П. в. являются плоскостями.

При отсутствии дисперсии, когда vф и vгр одинаковы и постоянны (vгр=vф= v), существуют стационарные (т. е. перемещающиеся как целое) бегущие П. в., к-рые допускают общее представление вида:

u(z, t)=f(z±vt), (2)

где f - произвольная функция. В нелинейных средах с дисперсией также возможны стационарные бегущие П. в. типа (2), но их форма уже не произвольна, а зависит как от параметров системы, так и от характера движения . В поглощающих (диссипативных) средах П. в. уменьшают свою амплитуду по мере распространения; при линейном затухании это может быть учтено путём замены в (1) k на комплексное волновое число kд ± ikм, где kм - коэфф. затухания П. в.

Однородная П. в., занимающая всё бесконечное , является идеализацией, однако любое волновое , сосредоточенное в конечной области (напр., направляемое линиями передачи или волноводами), можно представить как суперпозицию П. в. с тем или иным пространств. спектром k. При этом волна может по-прежнему иметь плоский фазовый фронт, но неоднородное амплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отдельные участки сферич. и цилиндрич. волн, малые по сравнению с радиусом кривизны фазового фронта, приближённо ведут себя как П. в.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПЛОСКАЯ ВОЛНА

- волна, ук-рой направление распространения одинаково во всех точках пространства.

где А - амплитуда,- фаза,- круговая частота, Т - период колебаний, k - волновое число. = const П. в. являются плоскостями.
При отсутствии дисперсии, когда фазоваяскорость v ф и групповая v гр одинаковы и постоянны (v гр = v ф = v ) существуют стационарные (т. е. перемещающиеся как целое) бегущиеП. в., к-рые можно представить в общем виде

где f - произвольная ф-ция. В нелинейныхсредах с дисперсией также возможны стационарные бегущие П. в. типа (2),но их форма уже не произвольна, а зависит как от параметров системы, таки от характера движения волны. В поглощающих (диссипативных) средах П. k на комплексное волновоечисло k д ik м,где k м - коэф. затухания П. в. Однородная П. в., занимающаявсё бесконечное , является идеализацией, однако любое волновоеполе, сосредоточенное в конечной области (напр., направляемое линиямипередачи или волноводами), можно представить как суперпозициюП. в. с тем или иным пространственным спектром k. При этом волнаможет no-прежнему иметь плоский фазовый фронт, во неоднородное распределениеамплитуды. Такие П. в. наз. плоскими неоднородными волнами. Отд. участкисферич. или цилиндрич. волн, малые по сравнению с радиусом кривизны фазовогофронта, приближённо ведут себя как П. в.

Лит. см. при ст. Волны.

М. А. Миллер, Л. А. Островский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Для большинства задач, связанных с волнами, важно знать состояние колебаний различных точек среды в тот или иной момент времени. Состояния точек среды будут определены, если известны амплитуды и фазы их колебаний. Для поперечных волн необходимо еше знать характер поляризации. Для плоской линейно-поляризованной волны достаточно иметь выражение, позволяющее определить смещение с(х, t) из положения равновесия любой точки среды с координатой х, в любой момент времени t. Такое выражение называется уравнением волны.

Рис. 2.21.

Рассмотрим так называемую бегущую волну, т.е. волну с плоским волновым фронтом, распространяющуюся в каком-либо одном определенном направлении (например, вдоль оси х). Пусть частицы среды, непосредственно примыкающие к источнику плоских волн, совершают колебания по гармоническому закону; %(0, /) = = ЛсобсоГ (рис. 2.21). На рисунке 2.21, а через ^(0, t) обозначено смещение частиц среды, лежащих в перпендикулярной рисунку плоскости и имеющих в выбранной системе координат координату х = 0 в момент времени t. Начало отсчета времени выбрано так, чтобы начальная фаза колебаний, определенных через косинусоидальную функцию, была равна нулю. Ось х совместим с лучом, т.е. с направлением распространения колебаний. В этом случае фронт волны перпендикулярен оси х, так что частицы, лежащие в этой плоскости, будут совершать колебания в одной фазе. Сам фронт волны в данной среде перемещается вдоль оси х со скоростью и распространения волны в данной среде.

Найдем выражение?(х, t) смещения частиц среды, удаленных от источника на расстояние х. Это расстояние фронт волны проходит

за время Следовательно, колебания частиц, лежащих в плоскости, удаленной от источника на расстояние х, будут отставать по времени на величину т от колебаний частиц, непосредственно примыкающих к источнику. Эти частицы (с координатой х) также будут совершать гармонические колебания. В отсутствие затухания амплитуда А колебаний (в случае плоской волны) не будет зависеть от координаты х, т.е.

Это и есть искомое уравнение тоской бегущей волны (не путать с волновым уравнением, рассматриваемым ниже!). Уравнение, как уже отмечалось, позволяет определить смещение % частицы среды с координатой х в момент времени t. Фаза колебаний зависит

от двух переменных: от координаты х частицы и времени t. В данный фиксированный момент времени фазы колебаний различных частиц будут, вообще говоря, различны, но можно выделить такие частицы, колебания которых будут происходить в одинаковой фазе (синфазно). Можно также считать, что разность фаз колебаний этих частиц равна 2пт (где т = 1, 2, 3,...). Кратчайшее расстояние между двумя частицами бегущей волны, колеблющимися в одинаковой фазе, называется длиной волны X.

Найдем связь длины волны X с другими величинами, характеризующими распространение колебаний в среде. В соответствии с введенным определением длины волны можно написать

или после сокращений Так как , то

Это выражение позволяет дать иное определение длины волны: длина волны есть расстояние, на которое успевают распространиться колебания частиц среды за время, равное периоду колебаний.

Уравнение волны обнаруживает двойную периодичность: по координате и по времени: ^(х, t) = Z,(x + nk, t) = l,(x, t + mT) = Цх + пХ, ml), где пит - любые целые числа. Можно, например, фиксировать координаты частиц (положить х = const) и рассматривать смещение их как функцию времени. Или, наоборот, фиксировать момент времени (принять t = const) и рассматривать смещение частиц как функцию координат (мгновенное состояние смещений - мгновенная фотография волны). Так, находясь на пристани можно с помощью фотоаппарата в момент времени t сфотографировать морскую поверхность, но можно, бросив щепку в море (т.е. зафиксировав координату х), следить за ее колебаниями во времени. Оба эти случая приведены в виде графиков на рис. 2.21, а-в.

Уравнение волны (2.125) можно переписать иначе

Отношение обозначается к и называется волновым числом

Так как , то

Волновое число, таким образом, показывает, какое число длин волн укладывается в отрезке 2л единиц длины. Введя волновое число в уравнение волны, получим уравнение бегущей в положительном направлении Ох волны в наиболее часто употребляемом виде

Найдем выражение, связывающее разность фаз Дер колебаний двух частиц, принадлежащих разным волновым поверхностям Х и х 2 . Воспользовавшись уравнением волны (2.131), запишем:

Если обозначить или согласно (2.130)

Плоская бегущая волна, распространяющаяся в произвольном направлении, описывается в общем случае уравнением

где г -радиус-вектор, проведенный из начала координат к частице, лежащей на волновой поверхности; к - волновой вектор, равный по модулю волновому числу (2.130) и совпадающий по направлению с нормалью к волновой поверхности в направлении распространении волны.

Возможна также комплексная форма записи уравнения волны. Так, например, в случае плоской волны, распространяющейся вдоль оси х

а в общем случае плоской волны произвольного направления

Уравнение волны в любой из перечисленных форм записи может быть получено как решение дифференциального уравнения, называемого волновым уравнением. Если мы знаем решение этого уравнения в форме (2.128) или (2.135) - уравнение бегущей волны, то найти само волновое уравнение не составляет труда. Продифференцируем 4(х, t) = % из (2.135) дважды по координате и дважды времени и получим

выражая?, через полученные производные и сравнивая результаты, получим

Имея в виду соотношение (2.129), запишем

Это и есть волновое уравнение для одномерного случая.

В общем виде для?, = с(х, у, z, /) волновое уравнение в декартовых координатах выглядит так

или в более компактном виде:

где Д - дифференциальный оператор Лапласа

Фазовой скоростью называется скорость распространения точек волны, колеблющихся в одинаковой фазе. Иными словами - это скорость перемещения «гребня», «впадины», либо любой другой точки волны, фаза которой фиксирована. Как уже отмечалось ранее, фронт волны (а следовательно, и любая волновая поверхность) перемещается вдоль оси Ох со скоростью и. Следовательно, скорость распространения колебаний в среде совпадает со скоростью перемещения данной фазы колебаний. Поэтому скорость и, определяемую соотношением (2.129), т.е.

принято называть фазовой скоростью.

Тот же результат можно получить, найдя скорость точек среды, удовлетворяющих условию постоянства фазы со/ - fee = const. Отсюда находится зависимость координаты от времени(со/ - const) и скорость перемещения данной фазы

что совпадает с (2.142).

Плоская бегущая волна, распространяющаяся в отрицательном направлении оси Ох, описывается уравнением

Действительно, в этом случае фазовая скорость отрицательна

Фазовая скорость в данной среде может зависеть от частоты колебаний источника. Зависимость фазовой скорости от частоты называется дисперсией, а среды, в которых имеет место эта зависимость, называются диспергирующими средами. Не следует думать, однако, что выражение (2.142) и есть указанная зависимость. Дело в том, что в отсутствие дисперсии волновое число к прямо пропорционально

со и поэтому . Дисперсия имеет место лишь в том случае, когда со зависит от к нелинейно).

Бегущая плоская волна называется монохроматической (имеющей одну частоту), если колебания в источнике гармонические. Монохроматическим волнам отвечает уравнение вида (2.131).

Для монохроматической волны угловая частота со и амплитуда А не зависят от времени. Это значит, что монохроматическая волна безгранична в пространстве и бесконечна во времени, т.е. представляет собой идеализированную модель. Всякая реальная волна, как бы тщательно ни поддерживалось постоянство частоты и амплитуды, монохроматической не является. Реальная волна не длится бесконечно долго, а начинается и кончается в определенные моменты времени в определенном месте, и, следовательно, амплитуда такой волны есть функция времени и координаты этого места. Однако чем длиннее интервал времени, в течение которого поддерживаются постоянными амплитуда и частота колебаний, тем ближе к монохроматической данная волна. Часто в практике монохроматической волной называют достаточно большой отрезок волны, в пределах которого частота и амплитуда не изменяются, подобно тому, как изображают на рисунке отрезок синусоиды, и называют его синусоидой.