Алкены гомологический ряд изомерия. Алкены: способы получения, химические свойства и применение

Физическая величина, элементарное изменение которой при переходе системы из одного состояния в другое равно полученному или отданному количеству теплоты, деленному на температуру,при которой произошел этот переход, называется энтропией.

Для бесконечно малого изменения состояния системы:

При переходе системы из одного состояния вдругое, изменение энтропии можно рассчитать так:

На основании первого начала термодинамики можно получить

dS=dQ/T=C V dT/T+RdV/V, а

При изотермическом процессе T=const, т.е. T 1 =T 2:

DS=R×ln(V 2 /V 1).

При изобарическом процессе p=const, т.е. V 2 /V 1 =T 2 /T 1:

DS=(C V +R)×ln(T 2 /T 1)=C p ×ln(T 2 /T 1)=C p ×ln(V 2 /V 1).

При изохорическом процессе V=const, т.е. V 1 =V 2:

DS=C V ×ln(T 2 /T 1).

При адиабатическом процессе dQ=0, т.е. DS=0:

S 1 =S 2 =const.

Изменения энтропии системы, совершающей цикл Карно:

DS=-(Q 1 /T 1 +Q 2 /T 2).

Энтропия замкнутой системы, совершающей обратимый цикл Карно не изменяется:

dS=0 или S=const.

Если системой совершается необратимый цикл, то dS>0.

Таким образом, энтропия замкнутой (изолированной) системы при любых, происходящих в ней процессах не может убывать:

где знак равенства справедлив для обратимых процессов, а знак неравенства – для необратимых.

Второе начало термодинамики: "В изолированной системе возможны только такие процессы, при которых энтропия системы возрастает". То есть

dS³0 или dS³dQ/T.

Второе начало термодинамики определяет направление термодинамических процессов и указывает на физический смысл энтропии: энтропия – мера рассеяния энергии, т.е. характеризует ту часть энергии, которую нельзя превратить в работу.

Термодинамическими потенциалами называют определенные функции объема V, давления p, температуры T, энтропии S, числа частиц системы N и других макроскопических параметров x, характеризующих состояние термодинамической системы. К ним относятся: внутренняя энергия U=U(S,V,N,x), энтальпия H=H(S,p,N,x); свободная энергия – F=F(V,T,N,x), энергия Гиббса G=G(p,T,N,x).

Изменение внутренней энергии системы в каком-нибудь процессе определяют как алгебраическую сумму количества теплоты Q, которыми система обменивается в ходе процесса с окружающей средой, и работы А, совершенной системой или произведенной над ней. Это отражает первое начало термодинамики:

Изменение U определяется лишь значениями внутренней энергии в начальном и конечном состояниях:

Для любого замкнутого процесса, возвращающего систему в первоначальное состояние, изменение внутренней энергии равно нулю (U 1 =U 2 ; DU=0; Q=A).

Изменение внутренней энергии системы в адиабатическом процессе (при Q=0) равно работе, производимой над системой или произведенной системой DU=A.

В случае простейшей физической системы с малым межмолекулярным взаимодействием (идеального газа) изменение внутренней энергии сводится к изменению кинетической энергии молекул:

где m – масса газа;

c V – удельная теплоемкость при постоянном объеме.

Энтальпия (теплосодержание, тепловая функция Гиббса) – характеризует состояние макроскопической системы в термодинамическом равновесии при выборе в качестве основных независимых переменных энтропии S и давления p – H(S,p,N,x).

Энтальпия аддитивная функция (т.е. энтальпия всей системы равна сумме энтальпий составляющих ее частей). С внутренней энергией U системы энтальпия связана соотношением:

где V – объем системы.

Полный дифференциал энтальпии (при неизменных N и x) имеет вид:

Из этой формулы можно определить температуру T и объем V системы:

T=(dH/dS), V=(dH/dp).

При постоянном давлении теплоемкость системы

Эти свойства энтальпии при постоянном давлении аналогичны свойствам внутренней энергии при постоянном объеме:

T=(dU/dS), p=-(dU/dV), c V =(dU/dT).

Свободная энергия – одно из названий изохорно-изотермического термодинамического потенциала или Гельмгольца энергии. Она определяетсякак разность между внутренней энергии термодинамической системы (U) и произведением ее энтропии (S) на температуру (T):

где TS – связанная энергия.

Энергия Гиббса – изобарно-изотермический потенциал, свободная энтальпия, характеристическая функция термодинамической системы при независимых параметрах p, T и N – G. Определяется через энтальпию H, энтропию S и температуру T равенством

Со свободной энергией – энергией Гельмгольца, энергия Гиббса связана соотношением:

Энергия Гиббса пропорциональна числу частиц N, отнесенная к одной частице, называется химическим потенциалом.

Совершаемая термодинамической системой в каком-либо процессе работа определяется убылью термодинамического потенциала, отвечающего условиям процесса. Так, при постоянстве числа частиц (N=const) в условиях теплоизоляции (адиабатический процесс, S=const) элементарная работа dA равна убыли внутренней энергии:

При изотермическом процессе (T=const)

В этомпроцессе работа совершается не только за счет внутренней энергии, но и за счет поступающей в систему теплоты.

Для систем, в которых возможен обмен веществом сокружающей средой (изменение N), возможныпроцессы при постоянных p и T. В этом случае элементарная работа dA всех термодинамических сил, кроме сил давления, равна убыли термодинамического потенциала Гиббса (G), т.е.

Согласно теореме Нернста изменение энтропии (DS) при любых обратимых изотермических процессах, совершаемых между двумя равновесными состояниями при температурах, приближающихся к абсолютному нулю, стремится к нулю

Другая эквивалентная формулировка теоремы Нернста: "При помощи последовательности термодинамических процессов нельзя достигнуть температуры, равной абсолютному нулю".

Лекция 14.

Основное неравенство и основное уравнение термодинамики. Понятие о термодинамических потенциалах. Эффект Джоуля-Томпсона. Принцип Ле-Шателье-Брауна. Введение в термодинамику необратимых процессов.

Основное неравенство и основное уравнение термодинамики

Для энтропии выполняется соотношение . Используя первое начало термодинамики, получаем основное неравенство термодинамики:

.

Знак равенства соответствует равновесным процессам . Основное уравнение равновесных (обратимых) процессов:

.

Метод термодинамических потенциалов.

Применение законов термодинамики даёт возможность описывать многие свойства макросистем. Для такого описания исторически сложились два пути: метод циклов и метод термодинамических функций. Первый основан на анализе обратимых циклов, а второй – на применении термодинамических функций (потенциалов), введённых Гиббсом.

Исходным для вывода всех термодинамических потенциалов является основное уравнение термодинамики:

,

связывающее между собой пять величин (T , S , U , p , V ), которые могут быть параметрами состояния или рассматриваться как функции состояния системы.

Для определения состояния простейшей термодинамической системы достаточно задать значения двух независимых параметров. Поэтому для нахождения значений остальных трех параметров необходимо определить ещё три уравнения, одним из которых является основное уравнение термодинамики, а остальные два могут быть, например, уравнением состояния и дополнительным уравнением, вытекающим из свойств конкретного состояния системы:

;
;
.

В общем случае к термодинамическим потенциалам может относиться любая функция состояния (например, внутренняя энергия или энтропия), если она определена как независимая функция параметров состояния. Поэтому число термодинамических функций очень велико. Обычно рассматривают те, которые обладают следующим свойством: частные производные функции по соответствующим параметрам равны тому или иному параметру состояния системы.

Термодинамические потенциалы ( термодинамические функции ) это определённые функции объёма, давления, температуры, энтропии, числа частиц системы и других макроскопических параметров, характеризующих состояние системы, обладающие следующим свойством: если известен термодинамический потенциал, то путём его дифференцирования по отмеченным выше параметрам можно получить все другие параметры, определяющие состояние системы.

Примеры термодинамических потенциалов.

1) V и энтропию S . Тогда из основного уравнения термодинамики вытекает:
. Откуда находим
,
. Следовательно, внутренняя энергия
- потенциал.

Смысл внутренней энергии как потенциала : при V=const получаем:
, т.е. изменение внутренней энергии равно количеству теплоты, подведённой к системе при изохорном процессе.

Если процесс необратимый, то
или
.

2) Выберем в качестве независимых параметров давление p и энтропию S .

С учетом равенства
и основного уравнения термодинамики:
, получаем, что из соотношения: следует:
. А теперь введём обозначение:
. Тогда
и
,
. Значит, функция
является термодинамическим потенциалом и носит название: энтальпия.

Смысл энтальпии как термодинамического потенциала : при p =const получаем, что
, т.е. изменение энтальпии равно подведённому количеству теплоты при изобарном процессе.

Если процесс необратимый, то
или ,
.

3) Выберем в качестве независимых параметров объём V и температуру T .

Перепишем основное уравнение термодинамики
в виде:
и с учётом равенства
получаем: или . Теперь вводим обозначение:
, тогда
,
,
. Таким образом, функция
- термодинамический потенциал, который называется свободной энергией или термодинамическим потенциалом Гельмгольца.

Смысл свободной энергии как термодинамического потенциала : при T=const получаем: , т.е. уменьшение свободной энергии равно работе, совершённой системой в изотермическом процессе.

Если процесс необратимый, то
или , т.е.

.

При необратимом изотермическом и изохорном процессе
- свободная энергия уменьшается до тех пор, пока система не придет в термодинамическое равновесие – в этом случае свободная энергия принимает минимальное значение.

Рассматриваемый в термодинамике потенциал связан с энергией, необходимой для обратимого переноса ионов из одной фазы в другую. Таким потенциалом, конечно, является электрохимический потенциал ионного компонента. Электростатический потенциал, кроме задач, связанных с его определением в конденсированных фазах, не связан непосредственно с обратимой работой. Хотя в термодинамике можно обойтись без электростатического потенциала за счет использования вместо него электрохимического потенциала, потребность в описании электрического состояния фазы остается.

Часто электрохимический потенциал ионного компонента представляют в виде суммы электрического и «химического» членов:

где Ф - «электростатический» потенциал, а коэффициент активности, предполагаемый здесь независимым от электрического состояния данной фазы. Заметим прежде всего, что такое разложение не является необходимым, поскольку соответствующие формулы, имеющие значение с точки зрения термодинамики, уже получены в гл. 2.

Электростатический потенциал Ф можно определить так, что он будет измеримым или неизмеримым. В зависимости от того, как определен Ф, величина будет также либо однозначно определена, либо полностью не определена. Развивать теорию можно, даже не имея такого четкого определения электростатического потенциала, какое дает электростатика, и не заботясь о тщательном определении его смысла. Если анализ проводится правильно, то физически осмысленные результаты можно получить в конце, компенсируя неопределенные члены.

Любое выбранное определение Ф должно удовлетворять одному условию. Оно должно сводиться к определению (13-2), использованному для разности электрических потенциалов между фазами с одинаковым составом. Так, если фазы имеют одинаковый состав, то

Таким образом, Ф является количественной мерой электрического состояния одной фазы относительно другой, имеющей тот же состав. Этому условию удовлетворяет целый ряд возможных определений Ф.

Вместо Ф может использоваться внешний потенциал, который в принципе измерим. Его недостаток - трудность измерения и использования в термодинамических расчетах. Преимуществом является то, что он придает определенный смысл Ф, и в окончательных результатах этот потенциал не фигурирует, так что нужда в его измерении фактически отпадает.

Другая возможность - использование потенциала подходящего электрода сравнения. Поскольку электрод сравнения обратим по некоторому иону, присутствующему в растворе, это эквивалентно использованию электрохимического потенциала иона или Произвольность этого определения видна из необходимости выбора конкретного электрода сравнения или ионного компонента. Дополнительный недостаток такого выбора состоит в том, что в растворе, не содержащем компонента i, величина обращается в минус бесконечность. Таким образом, электрохимический потенциал не согласуется с нашей обычной концепцией электростатического потенциала, что объясняется его связью с обратимой работой. Данный выбор потенциала обладает тем преимуществом, что он связан с измерениями с помощью электродов сравнения, обычно применяемых в электрохимии.

Рассмотрим теперь третью возможность. Выберем ионный компонент и определим потенциал Ф следующим образом:

Тогда электрохимический потенциал любого другого компонента можно выразить в виде

Следует отметить, что комбинации в скобках точно определены и не зависят от электрического состояния в соответствии с правилами, изложенными в разд. 14. В таком случае можно записать градиент электрохимического потенциала

Снова видна произвольность этого определения Ф, связанная с необходимостью выбора ионного компонента n. Преимущество такого определения Ф состоит в его однозначной связи с электрохимическими потенциалами и согласованности с нашим обычным представлением об электростатическом потенциале. Ввиду наличия члена в уравнении (26-3) последнее можно использовать для раствора с исчезающей концентрацией компонента .

В пределе бесконечно разбавленных растворов члены с коэффициентами активности исчезают вследствие выбора вторичного стандартного состояния (14-6). В этом пределе определение Ф становится независимым от выбора стандартного иона n. Это создает основу того, что следовало бы называть теорией разбавленных растворов электролитов. В то же время уравнения (26-4) и (26-5) показывают, как нужно делать поправки на коэффициент активности в теории разбавленных растворов, не прибегая к коэффициентам активности отдельных ионов. Отсутствие зависимости от типа иона в случае бесконечно разбавленных растворов связано с возможностью измерения разностей электрических потенциалов между фазами с одинаковым составом. Такие растворы имеют существенно одинаковые составы в том смысле, что ион в растворе взаимодействует только с растворителем и даже дальнодействие со стороны остальных ионов им не ощущается.

Введение такого электрического потенциала полезно при анализе процессов переноса в растворах электролитов . Для, таким образом определенного потенциала Смерл и Ньюмен используют термин квазиэлектростатический потенциал.

Мы обсудили возможные способы использования электрического потенциала в электрохимической термодинамике. Применение потенциала в теории переноса по существу то же, что

и в термодинамике. Работая с электрохимическими потенциалами, можно обойтись без электрического потенциала, хотя его введение может оказаться полезным или удобным. В кинетике электродных процессов в качестве движущей силы реакции может использоваться изменение свободной энергии. Это равносильно использованию поверхностного перенапряжения, определенного в разд. 8.

Электрический потенциал находит применение и в микроскопических моделях, таких, как теория Дебая-Хюккеля, упоминавшаяся выше и излагаемая в следующей главе. Всегда строго определить такой потенциал невозможно. Следует четко различать между теориями макроскопическими - термодинамика, теория процессов переноса и механика жидкостей - и микроскопическими - статистическая механика и кинетическая теория газов и жидкостей. Исходя из свойств молекул или ионов, микроскопические теории позволяют вычислять и связывать между собой такие макроскопические характеристики, как, например, коэффициенты активности и коэффициенты диффузии. При этом редко удается получить удовлетворительные количественные результаты без привлечения дополнительной экспериментальной информации. Макроскопические теории, с одной стороны, создают основу для наиболее экономного измерения и табулирования макроскопических характеристик, а с другой - позволяют использовать эти результаты для предсказания поведения макроскопических систем.